FINAL JEE-MAIN EXAMINATION - JULY, 2021

(Held On Thursday 22nd July, 2021)
TIME: 3:00 PM to 6:00 PM

MATHEMATICS

SECTION-A

1. Let L be the line of intersection of planes $\overrightarrow{\mathrm{r}} .(\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}})=2 \quad$ and $\quad \overrightarrow{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})=2$. If $\mathrm{P}(\alpha, \beta, \gamma)$ is the foot of perpendicular on L from the point $(1,2,0)$, then the value of $35(\alpha+\beta+\gamma)$ is equal to :
(1) 101
(2) 119
(3) 143
(4) 134

Official Ans. by NTA (2)
2. Let S_{n} denote the sum of first n-terms of an arithmetic progression. If $S_{10}=530, S_{5}=140$, then $S_{20}-S_{6}$ is equal to :
(1) 1862
(2) 1842
(3) 1852
(4) 1872

Official Ans. by NTA (1)
3. Let $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$ be defined as
$f(x)=\left\{\begin{array}{ll}-\frac{4}{3} x^{3}+2 x^{2}+3 x & , \\ 3>0 & x e^{x}\end{array}, x \leq 0\right.$. Then f is increasing function in the interval
(1) $\left(-\frac{1}{2}, 2\right)$
(2) $(0,2)$
(3) $\left(-1, \frac{3}{2}\right)$
(4) $(-3,-1)$

Official Ans. by NTA (3)
4. Let $y=y(x)$ be the solution of the differential equation $\operatorname{cosec}^{2} x d y+2 d x=(1+y \cos 2 x) \operatorname{cosec}^{2} x d x$, with $y\left(\frac{\pi}{4}\right)=0$. Then, the value of $(y(0)+1)^{2}$ is equal to :
(1) $e^{1 / 2}$
(2) $e^{-1 / 2}$
(3) e^{-1}
(4) e

Official Ans. by NTA (3)
5. Four dice are thrown simultaneously and the numbers shown on these dice are recorded in 2×2 matrices. The probability that such formed matrices have all different entries and are non-singular, is :
(1) $\frac{45}{162}$
(2) $\frac{23}{81}$
(3) $\frac{22}{81}$
(4) $\frac{43}{162}$

Official Ans. by NTA (4)

TEST PAPER WITH ANSWER

6. Let a vector \vec{a} be coplanar with vectors $\vec{b}=2 \hat{i}+\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-\hat{j}+\hat{k}$. If \vec{a} is perpendicular to $\vec{d}=3 \hat{i}+2 \hat{j}+6 \hat{k}$, and $|\vec{a}|=\sqrt{10}$. Then a possible value of $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]+\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{d}\end{array}\right]+\left[\begin{array}{lll}\vec{a} & \vec{c} & \vec{d}\end{array}\right]$ is equal to :
(1) -42
(2) - 40
(3) -29
(4) -38

Official Ans. by NTA (1)

7. If $\int_{0}^{100 \pi} \frac{\sin ^{2} x}{e^{\left(\frac{x}{\pi}-\left[\frac{x}{\pi}\right]\right)}} d x=\frac{\alpha \pi^{3}}{1+4 \pi^{2}}, \alpha \in \mathbf{R}$ where $[x]$ is the greatest integer less than or equal to x , then the value of α is :
(1) $200\left(1-\mathrm{e}^{-1}\right)$
(2) $100(1-\mathrm{e})$
(3) $50(\mathrm{e}-1)$
(4) $150\left(\mathrm{e}^{-1}-1\right)$

Official Ans. by NTA (1)
8. Let three vectors \vec{a}, \vec{b} and \vec{c} be such that $\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}$ and $|\vec{a}|=2$. Then which one of the following is not true ?
(1) $\vec{a} \times((\vec{b}+\vec{c}) \times(\vec{b}-\vec{c}))=\overrightarrow{0}$
(2) Projection of \vec{a} on $(\vec{b} \times \vec{c})$ is 2
(3) $\left[\begin{array}{lll}\overrightarrow{\mathrm{a}} & \vec{b} & \vec{c}\end{array}\right]+\left[\begin{array}{lll}\overrightarrow{\mathrm{c}} & \overrightarrow{\mathrm{a}} & \vec{b}\end{array}\right]=8$
(4) $|3 \vec{a}+\vec{b}-2 \vec{c}|^{2}=51$

Official Ans. by NTA (4)
9. The values of λ and μ such that the system of equations $x+y+z=6,3 x+5 y+5 z=26$, $x+2 y+\lambda z=\mu$ has no solution, are :
(1) $\lambda=3, \mu=5$
(2) $\lambda=3, \mu \neq 10$
(3) $\lambda \neq 2, \mu=10$
(4) $\lambda=2, \mu \neq 10$

Official Ans. by NTA (4)
10. If the shortest distance between the straight lines $3(x-1)=6(y-2)=2(z-1)$ and
$4(x-2)=2(y-\lambda)=(z-3), \lambda \in \mathbf{R}$ is $\frac{1}{\sqrt{38}}$, then the integral value of λ is equal to:
(1) 3
(2) 2
(3) 5
(4) -1

Official Ans. by NTA (1)
11. Which of the following Boolean expressions is not a tautology?
(1) $(\mathrm{p} \Rightarrow \mathrm{q}) \vee(\sim \mathrm{q} \Rightarrow \mathrm{p})$
(2) $(\mathrm{q} \Rightarrow \mathrm{p}) \vee(\sim \mathrm{q} \Rightarrow \mathrm{p})$
(3) $(\mathrm{p} \Rightarrow \sim \mathrm{q}) \vee(\sim \mathrm{q} \Rightarrow \mathrm{p})$
(4) $(\sim p \Rightarrow q) \vee(\sim q \Rightarrow p)$

Official Ans. by NTA (4)
12. Let $A=\left[a_{i j}\right]$ be a real matrix of order 3×3, such that $a_{i 1}+a_{i 2}+a_{i 3}=1$, for $i=1,2,3$. Then, the sum of all the entries of the matrix A^{3} is equal to :
(1) 2
(2) 1
(3) 3
(4) 9

Official Ans. by NTA (3)
13. Let $[x]$ denote the greatest integer less than or equal to x. Then, the values of $x \in \mathbf{R}$ satisfying the equation $\left[\mathrm{e}^{\mathrm{x}}\right]^{2}+\left[\mathrm{e}^{\mathrm{x}}+1\right]-3=0$ lie in the interval :
(1) $\left[0, \frac{1}{\mathrm{e}}\right)$
(2) $\left[\log _{\mathrm{e}} 2, \log _{\mathrm{e}} 3\right)$
(3) $[1, \mathrm{e})$
(4) $\left[0, \log _{\mathrm{e}} 2\right)$

Official Ans. by NTA (4)
14. Let the circle $S: 36 x^{2}+36 y^{2}-108 x+120 y+C=0$ be such that it neither intersects nor touches the co-ordinate axes. If the point of intersection of the lines, $x-2 y=4$ and $2 x-y=5$ lies inside the circle S, then :
(1) $\frac{25}{9}<\mathrm{C}<\frac{13}{3}$
(2) $100<\mathrm{C}<165$
(3) $81<$ C <156
(4) $100<\mathrm{C}<156$

Official Ans. by NTA (4)
15. Let n denote the number of solutions of the equation $z^{2}+3 \bar{z}=0$, where z is a complex number. Then the value of $\sum_{\mathrm{k}=0}^{\infty} \frac{1}{\mathrm{n}^{\mathrm{k}}}$ is equal to
(1) 1
(2) $\frac{4}{3}$
(3) $\frac{3}{2}$
(4) 2

Official Ans. by NTA (2)
16. The number of solutions of $\sin ^{7} x+\cos ^{7} x=1$, $x \in[0,4 \pi]$ is equal to
(1) 11
(2) 7
(3) 5
(4) 9

Official Ans. by NTA (3)
17. If the domain of the function $f(x)=\frac{\cos ^{-1} \sqrt{x^{2}-x+1}}{\sqrt{\sin ^{-1}\left(\frac{2 x-1}{2}\right)}}$ is the interval $(\alpha, \beta]$, then $\alpha+\beta$ is equal to :
(1) $\frac{3}{2}$
(2) 2
(3) $\frac{1}{2}$
(4) 1

Official Ans. by NTA (1)
18. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined as
$f(x)=\left\{\begin{array}{ll}\frac{x^{3}}{(1-\cos 2 x)^{2}} \log _{e}\left(\frac{1+2 \mathrm{xe}^{-2 x}}{\left(1-\mathrm{xe}^{-x}\right)^{2}}\right) & , \quad \mathrm{x} \neq 0 \\ \alpha \quad, & x=0\end{array}\right.$.
If f is continuous at $\mathrm{x}=0$, then α is equal to :
(1) 1
(2) 3
(3) 0
(4) 2

Official Ans. by NTA (1)
19. Let a line $L: 2 x+y=k, k>0$ be a tangent to the hyperbola $x^{2}-y^{2}=3$. If L is also a tangent to the parabola $y^{2}=\alpha x$, then α is equal to :
(1) 12
(2) -12
(3) 24
(4) -24

Official Ans. by NTA (4)
20. Let $E_{1}: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$. Let E_{2} be another ellipse such that it touches the end points of major axis of E_{1} and the foci of E_{2} are the end points of minor axis of E_{1}. If E_{1} and E_{2} have same eccentricities, then its value is :
(1) $\frac{-1+\sqrt{5}}{2}$
(2) $\frac{-1+\sqrt{8}}{2}$
(3) $\frac{-1+\sqrt{3}}{2}$
(4) $\frac{-1+\sqrt{6}}{2}$

Official Ans. by NTA (1)

SECTION-B

1. Let $A=\{0,1,2,3,4,5,6,7\}$. Then the number of bijective functions $f: \mathrm{A} \rightarrow \mathrm{A}$ such that $f(1)+f(2)=3-f(3)$ is equal to

Official Ans. by NTA (720)
2. If the digits are not allowed to repeat in any number formed by using the digits $0,2,4,6,8$, then the number of all numbers greater than 10,000 is equal to \qquad _.

Official Ans. by NTA (96)
3. Let $\mathrm{A}=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$. Then the number of 3×3 matrices B with entries from the set $\{1,2,3,4,5\}$ and satisfying $A B=B A$ is \qquad .

Official Ans. by NTA (3125)
4. Consider the following frequency distribution :
$\begin{array}{lccccc}\text { Class: } & 0-6 & 6-12 & 12-18 & 18-24 & 24-30 \\ \text { Frequency: } & \text { a } & \text { b } & 12 & 9 & 5\end{array}$
If mean $=\frac{309}{22}$ and median $=14$, then the value $(a-b)^{2}$ is equal to \qquad .

Official Ans. by NTA (4)
5. The sum of all the elements in the set $\{\mathrm{n} \in\{1,2, \ldots . ., 100\}$ । H.C.F. of n and 2040 is 1$\}$ is equal to \qquad .

Official Ans. by NTA (1251)
6. The area (in sq. units) of the region bounded by the curves $x^{2}+2 y-1=0, y^{2}+4 x-4=0$ and $y^{2}-4 x-4=0$, in the upper half plane is \qquad _.

Official Ans. by NTA (2)
7. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a function defined as

$$
f(\mathrm{x})=\left\{\begin{array}{ccc}
3\left(1-\frac{|\mathrm{x}|}{2}\right) & \text { if } & |\mathrm{x}| \leq 2 \\
0 & \text { if } & |\mathrm{x}|>2
\end{array}\right.
$$

Let $\mathrm{g}: \mathbf{R} \rightarrow \mathbf{R}$ be given by $\mathrm{g}(\mathrm{x})=f(\mathrm{x}+2)-f(\mathrm{x}-2)$. If n and m denote the number of points in \mathbf{R} where g is not continuous and not differentiable, respectively, then $n+m$ is equal to \qquad -.

Official Ans. by NTA (4)
8. If the constant term, in binomial expansion of $\left(2 \mathrm{x}^{\mathrm{r}}+\frac{1}{\mathrm{x}^{2}}\right)^{10}$ is 180 , then r is equal to \qquad -

Official Ans. by NTA (8)

9. Let $y=y(x)$ be the solution of the differential equation $\left((x+2) e^{\left(\frac{y+1}{x+2}\right)}+(y+1)\right) d x=(x+2) d y$, $y(1)=1$. If the domain of $y=y(x)$ is an open interval (α, β), then $|\alpha+\beta|$ is equal to \qquad —.

Official Ans. by NTA (4)
10. The number of elements in the set $\{\mathrm{n} \in\{1,2,3, \ldots ., 100\}$ । $\left.(11)^{n}>(10)^{n}+(9)^{n}\right\}$ is \qquad .

Official Ans. by NTA (96)

