

GARGER INSTITUTE FINAL JEE-MAIN EXAMINATION – JULY, 2021		
(He	eld On Tuesday 20 th July, 2021)	TIME: 3:00 PM to 6:00 PM
	MATHEMATICS	TEST PAPER WITH ANSWER
	SECTION-A	5. The lines $x = ay - 1 = z - 2$ and
1.	For the natural numbers m, n, if	$x = 3y - 2 = bz - 2$, $(ab \neq 0)$ are coplanar, if :
	$(1 - y)^{m} (1 + y)^{n} = 1 + a_{1}y + a_{2}y^{2} + \dots + a_{m+n}y^{m+n}$ and	(1) b = 1, a $\in \mathbb{R} - \{0\}$ (2) a = 1, b $\in \mathbb{R} - \{0\}$
	$a_1 = a_2 = 10$, then the value of $(m + n)$ is equal to :	(3) $a = 2, b = 2$ (4) $a = 2, b = 3$
	(1) 88 (2) 64 (2) 100 (4) 80	Official Ans. by NTA (1)
	(3) 100 (4) 80	6. If [x] denotes the greatest integer less than or equal
	Official Ans. by NTA (4)	to x, then the value of the integral
2.	The value of $\tan\left(2\tan^{-1}\left(\frac{3}{5}\right) + \sin^{-1}\left(\frac{5}{13}\right)\right)$ is equal	$\int_{-\pi/2}^{\pi/2} [[x] - \sin x] dx$ is equal to :
	to :	(1) $-\pi$ (2) π (3) 0 (4) 1
	(1) $\frac{-181}{69}$ (2) $\frac{220}{21}$	Official Ans. by NTA (1)
		7. If the real part of the complex number
	$(3) \frac{-291}{76} \qquad (4) \frac{151}{63}$	$(1 - \cos\theta + 2i\sin\theta)^{-1}$ is $\frac{1}{5}$ for $\theta \in (0, \pi)$, then the
_	Official Ans. by NTA (2)	
3.	Let r_1 and r_2 be the radii of the largest and	value of the integral $\int_0^{\theta} \sin x dx$ is equal to :
	smallest circles, respectively, which pass through the point (-4.1) and having their contrast on the	(1) 1 (2) 2 (3) -1 (4) 0
	point (- 4,1) and having their centres on the circumference of the circle $x^2 + y^2 + 2x + 4y - 4 = 0$.	Official Ans. by NTA (1)
	If $\frac{r_1}{r_2} = a + b\sqrt{2}$, then $a + b$ is equal to :	8. Let $f: \mathbf{R} - \left\{\frac{\alpha}{6}\right\} \to \mathbf{R}$ be defined by $f(x) = \frac{5x+3}{6x-\alpha}$.
	(1) 3 (2) 11	Then the value of α for which $(fof)(x) = x$, for all
	(3) 5 (4) 7	$-$ (α).
	Official Ans. by NTA (3)	$\mathbf{x} \in \mathbf{R} - \left\{\frac{\alpha}{6}\right\}, \text{ is }$:
4.	Consider the following three statements :	(1) No such α exists (2) 5
	(A) If $3 + 3 = 7$ then $4 + 3 = 8$.	(3) 8 (4) 6
	(B) If $5 + 3 = 8$ then earth is flat.	Official Ans. by NTA (2)
	(C) If both (A) and (B) are true then $5 + 6 = 17$.	9. If $f : \mathbf{R} \to \mathbf{R}$ is given by $f(x) = x + 1$, then the value of
	Then, which of the following statements is	1[,(5),(10),(5(n-1))]
	correct? (1) (A) is folse, but (B) and (C) are true.	$\lim_{n\to\infty}\frac{1}{n}\left[f(0)+f\left(\frac{5}{n}\right)+f\left(\frac{10}{n}\right)+\ldots+f\left(\frac{5(n-1)}{n}\right)\right],$
	(1) (A) is false, but (B) and (C) are true(2) (A) and (C) are true while (B) is false	is :
	(2) (A) and (C) are full while (B) and (C) are false	
	(4) (A) and (B) are false while (C) is true	(1) $\frac{3}{2}$ (2) $\frac{5}{2}$ (3) $\frac{1}{2}$ (4) $\frac{7}{2}$
	Official Ans. by NTA (2)	Official Ans. by NTA (4)
	• • • • • • • • • • • • • • • • • • • •	

Final JEE-Main Exam July, 2021/20-07-2021/ Evening Session

10. Let A, B and C be three events such that the probability that exactly one of A and B occurs is (1 – k), the probability that exactly one of B and C occurs is (1 – 2k), the probability that exactly one of C and A occurs is (1 – k) and the probability of all A, B and C occur simultaneously is k², where 0 < k < 1. Then the probability that at least one of A, B and C occur is :

Official Ans. by NTA (2)

11. The sum of all the local minimum values of the twice differentiable function $f : \mathbf{R} \to \mathbf{R}$ defined by

$$f(\mathbf{x}) = \mathbf{x}^3 - 3\mathbf{x}^2 - \frac{3f''(2)}{2}\mathbf{x} + f''(1) \text{ is :}$$

(1) -22 (2) 5 (3) -27 (4) 0
Official Ans. by NTA (3)

12. Let in a right angled triangle, the smallest angle beθ. If a triangle formed by taking the reciprocal of its sides is also a right angled triangle, then sinθ is equal to :

(1)
$$\frac{\sqrt{5}+1}{4}$$
 (2) $\frac{\sqrt{5}-1}{2}$ (3) $\frac{\sqrt{2}-1}{2}$ (4) $\frac{\sqrt{5}-1}{4}$
Official Ans. by NTA (2)

13. Let y=y(x) satisfies the equation $\frac{dy}{dx} - |A| = 0$, for all x > 0, where $A = \begin{bmatrix} y & \sin x & 1 \\ 0 & -1 & 1 \\ 2 & 0 & \frac{1}{x} \end{bmatrix}$. If

 $y(\pi) = \pi + 2$, then the value of $y\left(\frac{\pi}{2}\right)$ is :

(1)
$$\frac{\pi}{2} + \frac{4}{\pi}$$
 (2) $\frac{\pi}{2} - \frac{1}{\pi}$ (3) $\frac{3\pi}{2} - \frac{1}{\pi}$ (4) $\frac{\pi}{2} - \frac{4}{\pi}$
Official Ans. by NTA (1)

14. Consider the line L given by the equation $\frac{x-3}{2} = \frac{y-1}{1} = \frac{z-2}{1}$ Let Q be the mirror image of the point (2, 3, -1) with respect to L. Let a plane P be such that it passes through Q, and the line L is perpendicular to P. Then which of the following points is on the plane P? (1) (-1, 1, 2) (2) (1, 1, 1) (3) (1, 1, 2) (4) (1, 2, 2) Official Ans. by NTA (4) 15. If the mean and variance of six observations

7, 10, 11, 15, a, b are 10 and $\frac{20}{3}$, respectively,

then the value of |a - b| is equal to :

(1) 9 (2) 11 (3) 7 (4) 1

Official Ans. by NTA (4)

16. Let
$$g(t) = \int_{-\pi/2}^{\pi/2} \cos\left(\frac{\pi}{4}t + f(x)\right) dx$$
, where

 $f(\mathbf{x}) = \log_{e} \left(\mathbf{x} + \sqrt{\mathbf{x}^{2} + 1} \right)$, $\mathbf{x} \in \mathbf{R}$. Then which one of the following is correct ?

(1)
$$g(1) = g(0)$$
 (2) $\sqrt{2}g(1) = g(0)$

(3)
$$g(1) = \sqrt{2g(0)}$$
 (4) $g(1) + g(0) = 0$

Official Ans. by NTA (2)

17. Let P be a variable point on the parabola $y = 4x^2 + 1$. Then, the locus of the mid-point of the point P and the foot of the perpendicular drawn from the point P to the line y = x is :

(1) $(3x - y)^{2} + (x - 3y) + 2 = 0$

(2) $2(3x - y)^2 + (x - 3y) + 2 = 0$

- (3) $(3x y)^2 + 2(x 3y) + 2 = 0$
- (4) $2(x 3y)^2 + (3x y) + 2 = 0$

Official Ans. by NTA (2)

18. The value of $k \in \mathbf{R}$, for which the following system of linear equations

$$3x - y + 4z = 3$$
,
 $x + 2y - 3z = -2$,
 $6x + 5y + kz = -3$,
has infinitely many solutions, is :
(1) 3 (2) - 5 (3) 5 (4) -3
Official Ans. by NTA (2)

Final JEE-Main Exam July, 2021/20-07-2021/ Evening Session

19. If sum of the first 21 terms of the series log_{9^{1/2}} x + log_{9^{1/3}} x + log_{9^{1/4}} x +, where x > 0 is 504, then x is equal to

(1) 243
(2) 9
(3) 7
(4) 81

Official Ans. by NTA (4)

20. In a triangle ABC, if |BC|=3, |CA|=5 and |BA|=7, then the projection of the vector BA on

 \overrightarrow{BC} is equal to

(1) $\frac{19}{2}$ (2) $\frac{13}{2}$ (3) $\frac{11}{2}$ (4) $\frac{15}{2}$

Official Ans. by NTA (3)

SECTION-B

1. Let
$$A = \{a_{ij}\}$$
 be a 3 × 3 matrix, where

$$a_{ij} = \begin{cases} (-1)^{j-i} \text{ if } i < j, \\ 2 \text{ if } i = j, \\ (-1)^{i+j} \text{ if } i > j, \end{cases}$$

then det $(3Adj(2A^{-1}))$ is equal to _____

Official Ans. by NTA (108)

2. The number of solutions of the equation

$$\log_{(x+1)}(2x^2 + 7x + 5) + \log_{(2x+5)}(x+1)^2 - 4 = 0,$$

x > 0, is

Official Ans. by NTA (1)

3. Let a curve y = y(x) be given by the solution of the differential equation

$$\cos\left(\frac{1}{2}\cos^{-1}(e^{-x})\right)dx = \sqrt{e^{2x} - 1} dy$$

If it intersects y-axis at y = -1, and the intersection point of the curve with x-axis is (α , 0), then e^{α} is equal to _____.

Official Ans. by NTA (2)

4. For p > 0, a vector $\vec{v}_2 = 2\hat{i} + (p+1)\hat{j}$ is obtained by rotating the vector $\vec{v}_1 = \sqrt{3}p\hat{i} + \hat{j}$ by an angle θ about origin in counter clockwise direction. If $\tan \theta = \frac{(\alpha\sqrt{3}-2)}{(4\sqrt{3}+3)}$, then the value of α is equal to

Official Ans. by NTA (6)

and C(3, 8). If a line L passing through the circum-centre of triangle ABC, bisects line BC, and intersects y-axis at point $\left(0,\frac{\alpha}{2}\right)$, then the

Consider a triangle having vertices A(-2, 3), B(1, 9)

value of real number α is _____.

Official Ans. by NTA (9)

5.

7.

6. If the point on the curve $y^2 = 6x$, nearest to the point $\left(3, \frac{3}{2}\right)$ is (α, β) , then $2(\alpha + \beta)$ is equal to

Official Ans. by NTA (9)

Let a function
$$g : [0, 4] \to \mathbf{R}$$
 be defined as

$$g(x) = \begin{cases} \max_{\substack{0 \le t \le x \\ 4 - x \end{cases}} \{t^3 - 6t^2 + 9t - 3\}, \ 0 \le x \le 3, \\ 3 < x \le 4, \end{cases}$$

then the number of points in the interval (0, 4) where g(x) is NOT differentiable, is _____.

Official Ans. by NTA (1)

8. For
$$k \in N$$
, let

$$\frac{1}{\alpha(\alpha+1)(\alpha+2)....(\alpha+20)} = \sum_{K=0}^{20} \frac{A_k}{\alpha+k}$$

where
$$\alpha > 0$$
. Then the value of $100 \left(\frac{A_{14} + A_{15}}{A_{13}} \right)^2$ is

equal to _____.

Official Ans. by NTA (9)

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence such that $a_1 = 1$, $a_2 = 1$ and $a_{n+2} = 2a_{n+1} + a_n$ for all $n \ge 1$. Then the value of $47\sum_{n=1}^{\infty} \frac{a_n}{2^{3n}}$ is equal to _____.

Official Ans. by NTA (7)

10. If
$$\lim_{x \to 0} \frac{\alpha x e^x - \beta \log_e(1+x) + \gamma x^2 e^{-x}}{x \sin^2 x} = 10, \alpha, \beta, \gamma \in \mathbf{R},$$

then the value of $\alpha + \beta + \gamma$ is _____.

Official Ans. by NTA (3)

9.

