FINAL JEE-MAIN EXAMINATION - JULY, 2021

(Held On Tuesday 20th July, 2021)
TIME : 9: 00 AM to 12: 00 NOON

MATHEMATICS

SECTION-A

1. The Boolean expression $(\mathrm{p} \wedge \sim \mathrm{q}) \Rightarrow(\mathrm{q} \vee \sim \mathrm{p})$ is equivalent to :
(1) $q \Rightarrow p$
(2) $p \Rightarrow q$
(3) $\sim \mathrm{q} \Rightarrow \mathrm{p}$
(4) $p \Rightarrow \sim q$

Official Ans. by NTA (2)
2. Let a be a positive real number such that $\int_{0}^{a} e^{x-[x]} d x=10 e-9$ where $[x]$ is the greatest integer less than or equal to x. Then a is equal to :
(1) $10-\log _{\mathrm{e}}(1+e)$
(2) $10+\log _{e} 2$
(3) $10+\log _{e} 3$
(4) $10+\log _{\mathrm{e}}(1+e)$

Official Ans. by NTA (2)
3. The mean of 6 distinct observations is 6.5 and their variance is 10.25 . If 4 out of 6 observations are 2 , 4,5 and 7 , then the remaining two observations are:
(1) 10,11
(2) 3,18
(3) 8,13
(4) 1,20

Official Ans. by NTA (1)
4. The value of the integral $\int_{-1}^{1} \log _{\mathrm{e}}(\sqrt{1-\mathrm{x}}+\sqrt{1+\mathrm{x}}) \mathrm{dx}$ is equal to :
(1) $\frac{1}{2} \log _{\mathrm{e}} 2+\frac{\pi}{4}-\frac{3}{2}$
(2) $2 \log _{\mathrm{e}} 2+\frac{\pi}{4}-1$
(3) $\log _{\mathrm{e}} 2+\frac{\pi}{2}-1$
(4) $2 \log _{\mathrm{e}} 2+\frac{\pi}{2}-\frac{1}{2}$

Official Ans. by NTA (2)
ALLEN Ans. (3)
5. If α and β are the distinct roots of the equation $\mathrm{x}^{2}+(3)^{1 / 4} \mathrm{x}+3^{1 / 2}=0$, then the value of $\alpha^{96}\left(\alpha^{12}-1\right)+\beta^{96}\left(\beta^{12}-1\right)$ is equal to :
(1) 56×3^{25}
(2) 56×3^{24}
(3) 52×3^{24}
(4) 28×3^{25}

Official Ans. by NTA (3)
6. Let $\mathrm{A}=\left[\begin{array}{ll}2 & 3 \\ \mathrm{a} & 0\end{array}\right], \mathrm{a} \in \mathbf{R}$ be written as $\mathrm{P}+\mathrm{Q}$ where P is a symmetric matrix and Q is skew symmetric matrix. If $\operatorname{det}(Q)=9$, then the modulus of the sum of all possible values of determinant of P is equal to :
(1) 36
(2) 24
(3) 45
(4) 18

TEST PAPER WITH ANSWER

Official Ans. by NTA (1)

7. If z and ω are two complex numbers such that $|z \omega|=1$ and $\arg (\mathrm{z})-\arg (\omega)=\frac{3 \pi}{2}$, then $\arg \left(\frac{1-2 \bar{z} \omega}{1+3 \bar{z} \omega}\right)$ is :
(Here $\arg (z)$ denotes the principal argument of complex number z)
(1) $\frac{\pi}{4}$
(2) $-\frac{3 \pi}{4}$
(3) $-\frac{\pi}{4}$
(4) $\frac{3 \pi}{4}$

Official Ans. by NTA (3)
ALLEN Ans. (2)
8. If in a triangle $\mathrm{ABC}, \mathrm{AB}=5$ units, $\angle \mathrm{B}=\cos ^{-1}\left(\frac{3}{5}\right)$ and radius of circumcircle of $\triangle \mathrm{ABC}$ is 5 units, then the area (in sq. units) of $\triangle \mathrm{ABC}$ is :
(1) $10+6 \sqrt{2}$
(2) $8+2 \sqrt{2}$
(3) $6+8 \sqrt{3}$
(4) $4+2 \sqrt{3}$

Official Ans. by NTA (3)
9. Let $[\mathrm{x}]$ denote the greatest integer $\leq \mathrm{x}$, where $x \in \mathbf{R}$. If the domain of the real valued function $f(x)=\sqrt{\left[\frac{[x]-2}{[x] \mid-3}\right.}$
is $(-\infty, a) \cup[b, c) \cup[4, \infty), \mathrm{a}<\mathrm{b}<\mathrm{c}$, then the value of $a+b+c$ is:
(1) 8
(2) 1
(3) -2
(4) -3

Official Ans. by NTA (3)
10. Let $y=y(x)$ be the solution of the differential equation $x \tan \left(\frac{y}{x}\right) d y=\left(y \tan \left(\frac{y}{x}\right)-x\right) d x$, $-1 \leq x \leq 1, y\left(\frac{1}{2}\right)=\frac{\pi}{6}$. Then the area of the region bounded by the curves $\mathrm{x}=0, \mathrm{x}=\frac{1}{\sqrt{2}}$ and $\mathrm{y}=\mathrm{y}(\mathrm{x})$ in the upper half plane is:
(1) $\frac{1}{8}(\pi-1)$
(2) $\frac{1}{12}(\pi-3)$
(3) $\frac{1}{4}(\pi-2)$
(4) $\frac{1}{6}(\pi-1)$

Official Ans. by NTA (1)
11. The coefficient of x^{256} in the expansion of $(1-x)^{101}\left(x^{2}+x+1\right)^{100}$ is:
(1) ${ }^{100} \mathrm{C}_{16}$
(2) ${ }^{100} \mathrm{C}_{15}$
(3) $-{ }^{100} \mathrm{C}_{16}$
(4) - ${ }^{100} \mathrm{C}_{15}$

Official Ans. by NTA (2)
12. Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ be a 3×3 matrix, where
$a_{i j}=\left\{\begin{array}{cc}1, & \text { if } i=j \\ -x, & \text { if }|i-j|=1 \\ 2 x+1, & \text { otherwise. }\end{array}\right.$
Let a function $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$ be $\operatorname{defined}$ as $\mathrm{f}(\mathrm{x})=\operatorname{det}(\mathrm{A})$.
Then the sum of maximum and minimum values of f on \mathbf{R} is equal to:
(1) $-\frac{20}{27}$
(2) $\frac{88}{27}$
(3) $\frac{20}{27}$
(4) $-\frac{88}{27}$

Official Ans. by NTA (4)
13. Let $\vec{a}=2 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=\hat{i}+\hat{j}$. If \vec{c} is a vector such that $\vec{a} \cdot \vec{c}=|\overrightarrow{\mathbf{c}}|,|\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}}|=2 \sqrt{2}$ and the angle between ($\vec{a} \times \vec{b}$) and \vec{c} is $\frac{\pi}{6}$, then the value of $|(\vec{a} \times \vec{b}) \times \vec{c}|$ is :
(1) $\frac{2}{3}$
(2) 4
(3) 3
(4) $\frac{3}{2}$

Official Ans. by NTA (4)
14. The number of real roots of the equation $\tan ^{-1} \sqrt{\mathrm{x}(\mathrm{x}+1)}+\sin ^{-1} \sqrt{\mathrm{x}^{2}+\mathrm{x}+1}=\frac{\pi}{4}$ is :
(1) 1
(2) 2
(3) 4
(4) 0

Official Ans. by NTA (4)
15. Let $y=y(x)$ be the solution of the differential equation $e^{x} \sqrt{1-y^{2}} d x+\left(\frac{y}{x}\right) d y=0, y(1)=-1$.

Then the value of $(\mathrm{y}(3))^{2}$ is equal to:
(1) $1-4 e^{3}$
(2) $1-4 e^{6}$
(3) $1+4 \mathrm{e}^{3}$
(4) $1+4 e^{6}$

Official Ans. by NTA (2)
16. Let ' a ' be a real number such that the function $f(x)=a x^{2}+6 x-15, x \in \mathbf{R}$ is increasing in $\left(-\infty, \frac{3}{4}\right)$ and decreasing in $\left(\frac{3}{4}, \infty\right)$. Then the function $g(x)=a x^{2}-6 x+15, x \in \mathbf{R}$ has a :
(1) local maximum at $x=-\frac{3}{4}$
(2) local minimum at $x=-\frac{3}{4}$
(3) local maximum at $\mathrm{x}=\frac{3}{4}$
(4) local minimum at $x=\frac{3}{4}$

Official Ans. by NTA (1)
17. Let a function $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined as
$f(x)= \begin{cases}\sin x-e^{x} & \text { if } x \leq 0 \\ a+[-x] & \text { if } 0<x<1 \\ 2 x-b & \text { if } x \geq 1\end{cases}$
Where $[\mathrm{x}]$ is the greatest integer less than or equal to x . If f is continuous on \mathbf{R}, then ($\mathrm{a}+\mathrm{b}$) is equal to:
(1) 4
(2) 3
(3) 2
(4) 5

Official Ans. by NTA (2)
18. Words with or without meaning are to be formed using all the letters of the word EXAMINATION. The probability that the letter M appears at the fourth position in any such word is:
(1) $\frac{1}{66}$
(2) $\frac{1}{11}$
(3) $\frac{1}{9}$
(4) $\frac{2}{11}$

Official Ans. by NTA (2)
19. The probability of selecting integers $a \in[-5,30]$ such that $x^{2}+2(a+4) x-5 a+64>0$, for all $\mathrm{x} \in \mathbf{R}$, is:
(1) $\frac{7}{36}$
(2) $\frac{2}{9}$
(3) $\frac{1}{6}$
(4) $\frac{1}{4}$

Official Ans. by NTA (2)
20. Let the tangent to the parabola $S: y^{2}=2 x$ at the point $\mathrm{P}(2,2)$ meet the x -axis at Q and normal at it meet the parabola S at the point R. Then the area (in sq. units) of the triangle $P Q R$ is equal to:
(1) $\frac{25}{2}$
(2) $\frac{35}{2}$
(3) $\frac{15}{2}$
(4) 25

Official Ans. by NTA (1)

SECTION-B

1. Let $\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{c}}$ be three mutually perpendicular vectors of the same magnitude and equally inclined at an angle θ, with the vector $\vec{a}+\vec{b}+\vec{c}$. Then $36 \cos ^{2} 2 \theta$ is equal to \qquad .

Official Ans. by NTA (4)
2. Let $\mathrm{A}=\left(\begin{array}{rrr}1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1\end{array}\right)$ and $B=7 \mathrm{~A}^{20}-20 \mathrm{~A}^{7}+2 \mathrm{I}$, where I is an identity matrix of order 3×3. If $B=\left[b_{i j}\right]$, then b_{13} is equal to \qquad .

Official Ans. by NTA (910)
3. Let P be a plane passing through the points $(1,0,1),(1,-2,1)$ and $(0,1,-2)$. Let a vector $\overrightarrow{\mathrm{a}}=\alpha \hat{\mathrm{i}}+\beta \hat{\mathrm{j}}+\gamma \hat{\mathrm{k}}$ be such that $\overrightarrow{\mathrm{a}}$ is parallel to the plane P, perpendicular to $(\hat{i}+2 \hat{j}+3 \hat{k})$ and $\overrightarrow{\mathrm{a}} \cdot(\hat{\mathrm{i}}+\hat{\mathrm{j}}+2 \hat{\mathrm{k}})=2$, then $(\alpha-\beta+\gamma)^{2}$ equals
\qquad .

Official Ans. by NTA (81)

4. The number of rational terms in the binomial expansion of $\left(4^{\frac{1}{4}}+5^{\frac{1}{6}}\right)^{120}$ is \qquad .

Official Ans. by NTA (21)
5. If the shortest distance between the lines $\vec{r}_{1}=\alpha \hat{i}+2 \hat{j}+2 \hat{k}+\lambda(\hat{i}-2 \hat{j}+2 \hat{k}), \lambda \in \mathbf{R}, \alpha>0$ and $\vec{r}_{2}=-4 \hat{i}-\hat{k}+\mu(3 \hat{i}-2 \hat{j}-2 \hat{k}), \mu \in \mathbf{R}$ is 9 , then α is equal to \qquad -

Official Ans. by NTA (6)
6. Let T be the tangent to the ellipse $E: x^{2}+4 y^{2}=5$ at the point $\mathrm{P}(1,1)$. If the area of the region bounded by the tangent T, ellipse E, lines $x=1$ and $\mathrm{x}=\sqrt{5}$ is $\alpha \sqrt{5}+\beta+\gamma \cos ^{-1}\left(\frac{1}{\sqrt{5}}\right)$, then $|\alpha+\beta+\gamma|$ is equal to \qquad .

Official Ans. by NTA (1)
7. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ be in arithmetic progression with common difference λ. If
$\left|\begin{array}{lll}x+a-c & x+b & x+a \\ x-1 & x+c & x+b \\ x-b+d & x+d & x+c\end{array}\right|=2$,
then value of λ^{2} is equal to \qquad .

Official Ans. by NTA (1)
8. There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is \qquad .

Official Ans. by NTA (777)
9. Let $y=m x+c, m>0$ be the focal chord of $y^{2}=-64 x$, which is tangent to $(x+10)^{2}+y^{2}=4$. Then, the value of $4 \sqrt{2}(m+c)$ is equal to \qquad .

Official Ans. by NTA (34)
10. If the value of $\lim _{x \rightarrow 0}(2-\cos x \sqrt{\cos 2 x})^{\left(\frac{x+2}{x^{2}}\right)}$ is equal to e^{a}, then a is equal to \qquad .

Official Ans. by NTA (3)

