

FINAL JEE-MAIN EXAMINATION - JULY, 2021

7.

8.

9.

10.

(Held On Tuesday 20th July, 2021)

TIME: 9:00 AM to 12:00 NOON

MATHEMATICS

SECTION-A

The Boolean expression $(p \land \sim q) \Rightarrow (q \lor \sim p)$ is 1. equivalent to :

> (1) $q \Rightarrow p$ (2) $p \Rightarrow q$ $(3) \sim q \Rightarrow p$ (4) $p \Longrightarrow \sim q$

Official Ans. by NTA (2)

Let a be a positive real number such that 2. $\int_{a}^{a} e^{x-[x]} dx = 10e - 9$ where [x] is the greatest

integer less than or equal to x. Then a is equal to :

(1) $10 - \log_e(1 + e)$ $(2) 10 + \log_{e} 2$

(3)
$$10 + \log_e 3$$
 (4) $10 + \log_e (1+e)$

Official Ans. by NTA (2)

The mean of 6 distinct observations is 6.5 and their 3. variance is 10.25. If 4 out of 6 observations are 2, 4, 5 and 7, then the remaining two observations are:

(1) 10, 11	(2) 3, 18
(3) 8, 13	(4) 1, 20

Official Ans. by NTA (1)

The value of the integral $\int_{-1}^{1} \log_e(\sqrt{1-x} + \sqrt{1+x}) dx$ 4.

is equal to :

(1)
$$\frac{1}{2}\log_e 2 + \frac{\pi}{4} - \frac{3}{2}$$
 (2) $2\log_e 2 + \frac{\pi}{4} - 1$
(3) $\log_e 2 + \frac{\pi}{2} - 1$ (4) $2\log_e 2 + \frac{\pi}{2} - \frac{1}{2}$

Official Ans. by NTA (2) ALLEN Ans. (3)

If α and β are the distinct roots of the equation 5. $x^{2} + (3)^{1/4}x + 3^{1/2} = 0$, then the value of $\alpha^{96}(\alpha^{12}-1) + \beta^{96}(\beta^{12}-1)$ is equal to : $\begin{array}{c} \alpha & (\alpha \\ (1) & 56 \times 3^{25} \\ \hline & & 2^{24} \end{array}$ (2) 56×3^{24} (4) 28×3^{25}

Official Ans. by NTA (3)

Let $A = \begin{bmatrix} 2 & 3 \\ a & 0 \end{bmatrix}$, $a \in \mathbf{R}$ be written as P + Q where P 6.

is a symmetric matrix and Q is skew symmetric matrix. If det(Q) = 9, then the modulus of the sum of all possible values of determinant of P is equal to : (1) 36 (2) 24(3) 45(4) 18

TEST PAPER WITH ANSWER

Official Ans. by NTA (1)

If z and
$$\omega$$
 are two complex numbers such that

$$|z\omega| = 1$$
 and $\arg(z) - \arg(\omega) = \frac{3\pi}{2}$, then

arg
$$\left(\frac{1-2\,\overline{z}\,\omega}{1+3\,\overline{z}\,\omega}\right)$$
 is :

(Here arg(z) denotes the principal argument of complex number z)

(1)
$$\frac{\pi}{4}$$
 (2) $-\frac{3\pi}{4}$ (3) $-\frac{\pi}{4}$ (4) $\frac{3\pi}{4}$

Official Ans. by NTA (3) ALLEN Ans. (2)

If in a triangle ABC, AB = 5 units, $\angle B = \cos^{-1}\left(\frac{3}{5}\right)$

and radius of circumcircle of AABC is 5 units, then the area (in sq. units) of $\triangle ABC$ is :

(1)
$$10 + 6\sqrt{2}$$

(2) $8 + 2\sqrt{2}$
(3) $6 + 8\sqrt{3}$
(4) $4 + 2\sqrt{3}$

Official Ans. by NTA (3)

Let [x] denote the greatest integer < x, where $x \in \mathbf{R}$. If the domain of the real valued function

$$f(x) = \sqrt{\frac{[x]-2}{[x]-3}}$$

is $(-\infty,a) \cup [b,c) \cup [4,\infty), a < b < c$, then the value of a + b + c is:

(1) 8 (2)1
(3)
$$-2$$
 (4) -3

$$)-2$$
 (4) -3

Official Ans. by NTA (3)

Let y = y(x) be the solution of the differential

equation $x \tan\left(\frac{y}{x}\right) dy = \left(y \tan\left(\frac{y}{x}\right) - x\right) dx$,

 $-1 \le x \le 1, y\left(\frac{1}{2}\right) = \frac{\pi}{6}$. Then the area of the region

bounded by the curves x = 0, $x = \frac{1}{\sqrt{2}}$ and y = y(x)in the upper half plane is:

(1)
$$\frac{1}{8}(\pi - 1)$$
 (2) $\frac{1}{12}(\pi - 3)$
(3) $\frac{1}{4}(\pi - 2)$ (4) $\frac{1}{6}(\pi - 1)$

Final JEE-Main Exam July, 2021/20-07-2021/Morning Session

ath to success

Official Ans. by NTA (1)

- 11. The coefficient of x^{256} in the expansion of $(1-x)^{101} (x^2 + x + 1)^{100}$ is: $(1)^{100}C_{16}$ (2) $^{100}C_{15}$ $(3) - {}^{100}C_{16}$ (4) $- {}^{100}C_{15}$
 - Official Ans. by NTA (2)
- **12.** Let $A = [a_{ij}]$ be a 3 \times 3 matrix, where

$$a_{ij} = \begin{cases} 1 & , & \text{if } i = j \\ -x & , & \text{if } |i - j| = 1 \\ 2x + 1 & , & \text{otherwise.} \end{cases}$$

Let a function $f : \mathbf{R} \to \mathbf{R}$ be defined as $f(x) = \det(A)$. Then the sum of maximum and minimum values of f on **R** is equal to:

(1)
$$-\frac{20}{27}$$
 (2) $\frac{88}{27}$
(3) $\frac{20}{27}$ (4) $-\frac{88}{27}$

Official Ans. by NTA (4)

13. Let $\vec{a} = 2\hat{i} + \hat{j} - 2\hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$. If \vec{c} is a vector such that $\vec{a} \cdot \vec{c} = |\vec{c}|, |\vec{c} - \vec{a}| = 2\sqrt{2}$ and the angle between $(\vec{a} \times \vec{b})$ and \vec{c} is $\frac{\pi}{6}$, then the value of $|(\vec{a} \times \vec{b}) \times \vec{c}|$ is : $(1) \frac{2}{3}$ (2) 4

Official Ans. by NTA (4)

14. The number of real roots of the equation

 $(4) \frac{3}{2}$

$$\tan^{-1} \sqrt{\mathbf{x}(\mathbf{x}+1)} + \sin^{-1} \sqrt{\mathbf{x}^2 + \mathbf{x} + 1} = \frac{\pi}{4}$$
 is:
(1) 1 (2) 2

Official Ans. by NTA (4)

15. Let y = y(x) be the solution of the differential

equation
$$e^x \sqrt{1-y^2} dx + \left(\frac{y}{x}\right) dy = 0, y(1) = -1.$$

Then the value of $(y(3))^2$ is equal to:

(1)
$$1 - 4e^3$$

(3) $1 + 4e^3$
(2) $1 - 4e^6$
(4) $1 + 4e^6$

Official Ans. by NTA (2)

16. Let 'a' be a real number such that the function
$$f(x) = ax^2 + 6x - 15$$
, $x \in \mathbf{R}$ is increasing in $\left(-\infty, \frac{3}{4}\right)$ and decreasing in $\left(\frac{3}{4}, \infty\right)$. Then the function $g(x) = ax^2 - 6x + 15$, $x \in \mathbf{R}$ has a:
(1) local maximum at $x = -\frac{3}{4}$
(2) local minimum at $x = -\frac{3}{4}$
(3) local maximum at $x = \frac{3}{4}$
(4) local minimum at $x = \frac{3}{4}$
Official Ans. by NTA (1)

17. Let a function
$$f: \mathbf{R} \to \mathbf{R}$$
 be defined as

 $f(x) = \begin{cases} \sin x - e^x & \text{if } x \le 0\\ a + [-x] & \text{if } 0 < x < 1\\ 2x - b & \text{if } x \ge 1 \end{cases}$

Where [x] is the greatest integer less than or equal to x. If *f* is continuous on **R**, then (a + b) is equal to:

$$\begin{array}{c} (1) \ 4 \\ (3) \ 2 \\ (4) \ 5 \\ (1) \ 4 \\ (2) \ 3 \\ (4) \ 5 \\$$

Official Ans. by NTA (2)

Words with or without meaning are to be formed using all the letters of the word EXAMINATION. The probability that the letter M appears at the fourth position in any such word is:

(1)
$$\frac{1}{66}$$
 (2) $\frac{1}{11}$ (3) $\frac{1}{9}$ (4) $\frac{2}{11}$

Official Ans. by NTA (2)

19. The probability of selecting integers $a \in [-5,30]$ such that $x^2 + 2(a + 4)x - 5a + 64 > 0$, for all $x \in \mathbf{R}$, is:

(1)
$$\frac{7}{36}$$
 (2) $\frac{2}{9}$ (3) $\frac{1}{6}$ (4) $\frac{1}{4}$

Official Ans. by NTA (2)

20. Let the tangent to the parabola $S : y^2 = 2x$ at the point P(2, 2) meet the x-axis at Q and normal at it meet the parabola S at the point R. Then the area (in sq. units) of the triangle PQR is equal to:

(1)
$$\frac{25}{2}$$
 (2) $\frac{35}{2}$ (3) $\frac{15}{2}$ (4) 25

18.

Final JEE-Main Exam July, 2021/20-07-2021/Morning Session

ALLER ALLER INSTITUTE KOTA (RAJASTHAN)

Official Ans. by NTA (1)

SECTION-B

1. Let \vec{a} , \vec{b} , \vec{c} be three mutually perpendicular vectors of the same magnitude and equally inclined at an angle θ , with the vector $\vec{a} + \vec{b} + \vec{c}$. Then $36 \cos^2 2\theta$ is equal to _____.

Official Ans. by NTA (4)

2. Let $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$ and $B = 7A^{20} - 20A^7 + 2I$,

where I is an identity matrix of order 3×3 . If $B = [b_{ij}]$, then b_{13} is equal to _____.

Official Ans. by NTA (910)

3. Let P be a plane passing through the points (1, 0, 1), (1, -2, 1) and (0, 1, -2). Let a vector $\vec{a} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$ be such that \vec{a} is parallel to the plane P, perpendicular to $(\hat{i} + 2\hat{j} + 3\hat{k})$ and $\vec{a} \cdot (\hat{i} + \hat{j} + 2\hat{k}) = 2$, then $(\alpha - \beta + \gamma)^2$ equals

Official Ans. by NTA (81)

4. The number of rational terms in the binomial expansion of $\left(4^{\frac{1}{4}} + 5^{\frac{1}{6}}\right)^{120}$ is _____.

Official Ans. by NTA (21)

5. If the shortest distance between the lines $\vec{r_1} = \alpha \hat{i} + 2\hat{j} + 2\hat{k} + \lambda (\hat{i} - 2\hat{j} + 2\hat{k}), \ \lambda \in \mathbf{R}, \ \alpha > 0$ and $\vec{r_2} = -4\hat{i} - \hat{k} + \mu (3\hat{i} - 2\hat{j} - 2\hat{k}), \ \mu \in \mathbf{R}$ is 9, then α is equal to _____.

Official Ans. by NTA (6)

6. Let T be the tangent to the ellipse E : $x^2 + 4y^2 = 5$ at the point P(1, 1). If the area of the region bounded by the tangent T, ellipse E, lines x = 1 and x = $\sqrt{5}$ is $\alpha\sqrt{5} + \beta + \gamma \cos^{-1}\left(\frac{1}{\sqrt{5}}\right)$, then $|\alpha + \beta + \gamma|$ is equal to _____. 7. Let a, b, c, d be in arithmetic progression with common difference λ . If

 $\begin{vmatrix} x + a - c & x + b & x + a \\ x - 1 & x + c & x + b \\ x - b + d & x + d & x + c \end{vmatrix} = 2,$

then value of λ^2 is equal to _____.

Official Ans. by NTA (1)

8. There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is

Official Ans. by NTA (777)

9.

Let y = mx + c, m > 0 be the focal chord of $y^2 = -64x$, which is tangent to $(x + 10)^2 + y^2 = 4$. Then, the value of $4\sqrt{2}$ (m + c) is equal to

Official Ans. by NTA (34)

10. If the value of $\lim_{x\to 0} (2 - \cos x \sqrt{\cos 2x})^{\left(\frac{x+2}{x^2}\right)}$ is equal

to e^a, then a is equal to _____.

Official Ans. by NTA (3)

Official Ans. by NTA (1)