

Vedantu MASTER TEACHER

BOW GURU MANTRA GOAL

Get a Chance to Learn from India's Best Teachers & Crack JEE ADVANCED 2021

Vedantu's Eklavya 2021 is a Specialized Program for JEE ADVANCED, designed and headed by Co-Founder, IIT alumnus and Master Teacher Anand Prakash. Get mentored by **Top JEE Experts**, who have produced JEE Advanced **AIR 1, 2, 4, 7**, & many more.

Anand Prakash

Co-Found<mark>er, Vedantu</mark> II<mark>T- Roorkee</mark>

Our Previous EKLAVYANs & Their Achievements

Student Name	Main Rank 🛏 Advanced Rank
Chirag Jain	731 ▶→ 41
Prakhar Agrawal	445 >>> 177
Tanmay Gangwar	2133 ► 227
Aditya Kukreja	1772 ►→ 635
Eknoor Singh	3574 ► 1243
Aditya Gupta	14275 → 1326

547 JEE Advanced Selections in 2020

JOIN NOW

Study Materials

- JEE Main & Advanced Free Study Material
- <u>NEET UG Free Study Material</u>
- NCERT Solutions for Class 1 to 12
- NCERT Books PDF for Class 1 to 12
- ICSE & ISC Free Study Material
- Free Study Material for Kids Learning (Grade 1 to 5)
- Olympiad Free Study Material
- <u>Reference Books (RS Aggarwal, RD Sharma, HC Verma, Lakhmir</u> <u>Singh, Exemplar and More)</u>
- <u>Previous Year Question Paper CBSE & State Boards</u>
- Sample Papers
- <u>Access All Free Study Material Here</u>

Vedantu Innovations Pvt. Ltd. Score high with a personal teacher, Learn LIVE Online! www.vedantu.com

JEE-Main-27-08-2021-Shift-1 (Memory Based)

PHYSICS

Question: Two persons X and Y are moving towards each other with speeds of 36 km/ hr and 72 km/ hr. Y hears the sound of frequency 1320 Hz from X. What is the actual frequency?

Options:

- (a) 1400 Hz
- (b) 1440 Hz
- (c) 1210 Hz
- (d) 1300 Hz
- Answer: (c)

Solution:

X is source and Y is the observer.

 $v_{s} = 36km / h = 10m / s, v_{o} = -72km / h = -20m / s,$ $f_{0} \left(\frac{v - (-v_{0})}{v - v_{s}} \right) = f'$ $f_{0} \left(\frac{340 + 20}{340 - 10} \right) = 1320$ $\Rightarrow f_{o} = 1320 \times \frac{33}{36}$ $\Rightarrow f_{o} = 1210Hz$

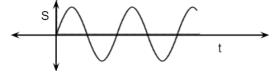
Question: Equation of a wave is given by: $Y = A \sin(500x - 10^{11}t)$. Find velocity of wave in

the

medium (in terms of C), where C is speed of light.

Options:

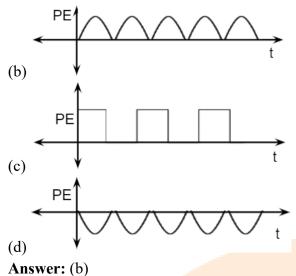
(a) C (b) $\frac{3C}{2}$ (c) $\frac{2C}{3}$ (d) $\frac{C}{2}$ Answer: (c) Solution: $y = a \sin(kx - \omega t)$; wave equation

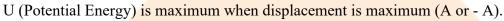

 $Y = A\sin(500x - 10^{11}t); \text{ given wave}$ $k = 500, \omega = 10^{11} \text{ (in proper units)}$ Now, wave velocity; $v = \frac{\omega}{k} = \frac{10^{11}}{500} = 2 \times 10^8 \text{ m/s}$ We know $c = 3 \times 10^8 \text{ m/s}$ $\Rightarrow v = \frac{2}{3}c$

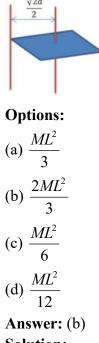
Question: If E and H represents electric field and magnetizing intensity respectively, what is the dimensional formula of $\frac{E}{H}$.

Options:

(a) $\left[ML^{2}T^{-3}A^{-2} \right]$ (b) $\left[MLT^{-2}A^{-2} \right]$ (c) $\left[ML^{2}T^{-2}A^{-2} \right]$ (d) $\left[M^{0}L^{0}T^{0}A^{0} \right]$ Answer: (a) Solution: $[E] = \frac{[V]}{[L]};$ $H = \frac{B}{\mu_{0}}; \text{ unit } = A/m \Rightarrow [H] = \frac{[I]}{[L]}$ $\frac{[E]}{[H]} = \frac{[V]/[L]}{[I]/[L]} = \frac{[V]}{[I]}$ But, V = W/q and q = It $\frac{[E]}{[H]} = \frac{[V]}{[I]} = \frac{[W]}{[I^{2}][t]} = \frac{ML^{2}T^{-2}}{A^{2}T} = ML^{2}T^{-3}A^{-2}$


Question: From the given displacement time (s - t) graph; choose the correct PE vs t graph.


Options:


Solution:

U = 0 for displacement = 0)

This is shown by graph in option (b)

Question: Find moment of inertia of a square plate (mass M, side length L) about an axis passing through one of its corner and perpendicular to the plane.

Solution:

MI. of a square plate about its center and \perp to its plane is $\frac{1}{6}mL^2$

Here length of diagonal is $\frac{\sqrt{2}}{2}L$

Distance of area's from center is $\frac{\sqrt{2}}{2}L$

Using parallel axis theorem

$$I' = \frac{1}{6}mL^2 + m\left(\frac{\sqrt{2}L}{2}\right)^2$$
$$= \frac{2}{3}mL^2$$

Question: The pressure and temperature of an ideal gas are related as PT^3 = constant. The coefficient of volume expansion of the gas is?

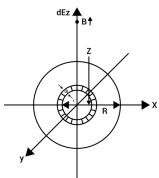
Options: (a) 4/T (b) 2/T (c) 1/T (d) T/4 **Answer:** (a) **Solution:** $PT^3 = \text{constant}$ PV = nRT $\Rightarrow P = \frac{nRT}{V}$ $\therefore \frac{nRT^4}{V} = \text{constant...}(1)$ $\therefore r = \frac{1}{V} \frac{dV}{dT}$

From (1) T^4V^{-1} = constant Differentiating

$$T^{4}(-1)V^{-2}dV + V^{-1}4T^{3}dT = 0$$

$$\Rightarrow \frac{4T^{3}}{V}dT = \frac{T^{4}}{V^{2}}dV$$

$$\Rightarrow \frac{1}{V}\left(\frac{dV}{dT}\right) = \frac{4T^{3}}{T^{4}} = \frac{4}{T}$$


$$\therefore \gamma = \frac{4}{T}$$

Question: An uniformly charged disc $(\sigma C / m^2)$ is placed in xy plane. What is the electric field at a point B at a distance z? **Options:**

(a)
$$\frac{\sigma}{2\varepsilon_o} \left(1 - \frac{z}{\sqrt{z^2 + R^2}} \right)$$

(b)
$$\frac{\sigma}{2\varepsilon_0} \left(1 - \frac{R}{\sqrt{z^2 + R^2}} \right)$$

(c)
$$\frac{\sigma}{2\varepsilon_0} \left(1 + \frac{z}{\sqrt{z^2 + R^2}} \right)$$

(d)
$$\frac{\sigma}{2\varepsilon_o} \left(1 + \frac{R}{\sqrt{z^2 + R^2}} \right)$$

Answer: (a) Solution:

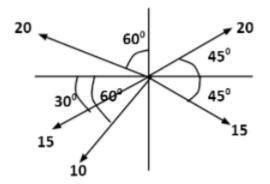
Consider a small ring of radius 'r' and thickness 'dr' on the disc.

Area of ring $(dA) = 2\pi r dr$

charge on ring $(dq) = \sigma 2\pi r dr$

Electric field in horizontal direction will be zero because of symmetry. Only vertical component will remain.

$$dE_{z} = \frac{Kdqz}{\left(z^{2} + r^{2}\right)^{3/2}} = \frac{Kz(2\pi rdr)}{\left(z^{2} + r^{2}\right)^{3/2}}$$


Integrate from O to R, we get

$$E = \frac{\sigma}{2\epsilon_0} \left[1 - \frac{1}{\sqrt{\frac{R^2}{z^2} + 1}} \right] = \frac{\sigma}{2\epsilon_0} \left[1 - \frac{z}{\sqrt{R^2 + z^2}} \right]$$

Ъ

Question: From the given diagram. Find the resultant of forces.

Options:

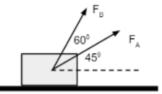
- (a) $-10.56\hat{i} 2.624\hat{j}$
- (b) $10.56\hat{i} + 2.624\hat{j}$
- (c) $10.56\hat{i} 2.624\hat{j}$
- (d) $-10.56\hat{i} + 4.624\hat{j}$

Answer: (a)

Solution:

Net force in x-direction:

 $F_x = 20\cos 45^\circ + 15\cos 45 - 20\sin 60^\circ - 15\cos 30^\circ - 10\cos 60^\circ$


$$=\frac{20}{\sqrt{2}} + \frac{15}{\sqrt{2}} - 20\frac{\sqrt{3}}{2} - 15\frac{\sqrt{3}}{2} - \frac{10}{2}$$
$$= 14.18 + 10.63 - 17.3 - 12.975 - 5$$

≈ -10.561

Parallel y, $F_y = 20\sin 45 + 20\cos 60^\circ - 15\sin 45^\circ - 10\sin 60^\circ - 15\sin 30^\circ$

$$= \frac{20}{\sqrt{2}} + \frac{20}{2} - \frac{15}{\sqrt{2}} - \frac{10\sqrt{3}}{2} - \frac{15}{2}$$

= 14.18 + 10 - 10.63 - 8.65 - 7.5
= -2.624
 $\therefore \vec{F} = -10.50\hat{i} - 2.624\hat{j}$

Question: If block displaces right & work done by both forces is equal; find $\frac{F_A}{F_B} = ?$

Options: (a) $\sqrt{2}$

(b)
$$\frac{1}{\sqrt{2}}$$

(c) 1

(d) Not possible

Answer: (b)

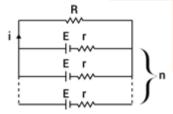
Solution:

Work done is same for both forces then Let's assume block moves a distance 'x'

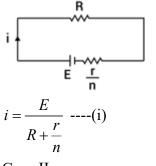
$$\therefore \left(F_B \cos 60^\circ\right)(x) = \left(F_A \cos 45^\circ\right)(x)$$
$$\Rightarrow \frac{F_B}{F_A} = \frac{\cos 45^\circ}{\cos 60^\circ} = \frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2}$$
$$\therefore \frac{F_A}{F_B} = \frac{1}{\sqrt{2}}$$

Question: Find identical cells each of internal resistance r $(r = 1\Omega)$ are first connected in parallel and then in series. In both cases an external resistance R is used. If current flow in both cases is same. Find R.

Options:

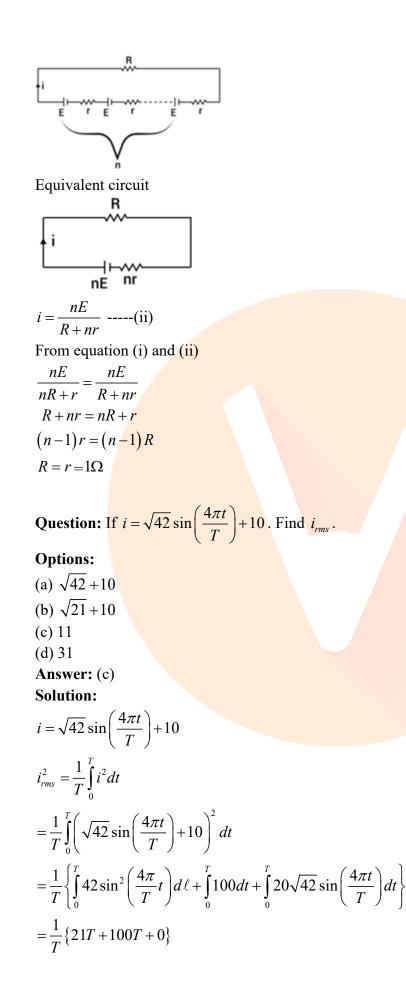

- (a) 1Ω
- (b) 2Ω
- (c) 3Ω
- (d) 4Ω

Answer: (a)


Solution:

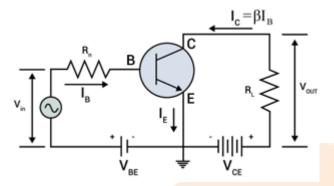
Case I

When they connected in parallel.



Equivalent circuit

Case-II When they connected in series



$$i_{rms}^2 = 121$$
$$i_{rms} = 11$$

Question: A transistor is used as an amplifier in common emitter mode, the biasing is?

Options:

(a) Saturated

(b) Active

(c) Cut-off

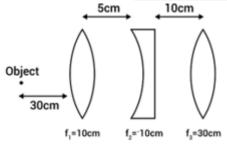
(d) Forward

Answer: (b)

Solution:

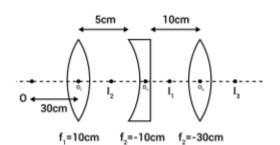
From figure.

$$I_C = \beta I_B$$


We know when the transistor is in the active state when $I_C = \beta I_B$

In Cut-off $I_{B} = 0, I_{C} = 0, I_{E} = 0$

In saturated:- $I_C = I_E$

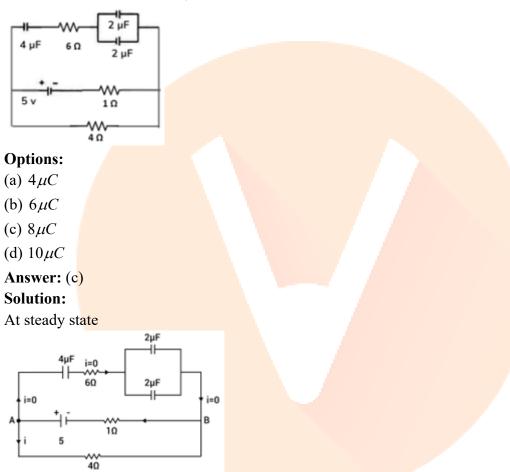

Answer B is correct

Question: Find the distance of the final image from first lens?

Answer: (23.57 cm) Solution:

For first lens

 $\frac{1}{f_1} = \frac{1}{u_1} + \frac{1}{v_1}$ $\frac{1}{10} = \frac{1}{-30} + \frac{1}{v_1}$ $\frac{1}{v_1} = \frac{1}{10} + \frac{1}{30}$ $v_1 = \frac{30}{4}$ $v_1 = 7.5 cm$ $v_1 = O_1 I_1$ $O_2 I_1 = O_1 I_1 - 5cm$ = 7.5 cm - 5 cm $O_2 I_1 = 2.5 c_m$ $u_2 = +2.5cm$ For second lens $\frac{1}{-10} = \frac{1}{2.5} + \frac{1}{v_2}$ $\frac{1}{v_2} = -\frac{1}{10} - \frac{2}{5}$ $\frac{1}{v_2} = -\frac{5}{10}$ $v_2 = -2cm$ $O_2 I_2 = V_2 = -2cm$ For third lens $u_3 = O_3 I_2 = -(10+2) = -12cm$ $f_3 = 30cm$ $\frac{1}{30} = \frac{1}{-12} + \frac{1}{v_3}$ $\frac{1}{v_3} = \frac{1}{30} + \frac{1}{12}$



 $v_3 = \frac{60}{7}cm$ $v_3 = 8.57cm$

Distance of the final Image from first lens

= 5 + 10 + 8.57= 23.57 cm

Question: Find change of $4\mu F$ capacitor in steady state.

$$i = \frac{5}{5} \mathbf{1}A$$
$$V_{AB} = 5 - 1 \times 1 = 4V$$

At steady state voltage across $4\mu F$ capacitor = 2V Q = CV $Q = 4 \times 2 = 8\mu C$

Question: Which of the following is not dimensions less **Options:**

(a) μ (coefficient of friction)

(b) quality factor

(c) power factor

(d) ε_0 (permittivity of free space)

Answer: (d)

Solution:

(1) $\mu = \frac{f}{N}$; f and N both have dimension of force. Hence, μ is dimensionless.

(2) $Q = \frac{\text{energy stored}}{\text{energy dissipated per cycle}}$,

Q is also dimensionless.

(3) Power factor is $\cos \phi$, which is also dimensionless.

(4) ε_0 is permittivity of free space is not dimensionless.

$$\left[\varepsilon_{0}\right] = \left[ML^{3}T^{-4}A^{2}\right]$$

Question: If the intensity of light is increased for the same color?

Options:

(a) Frequency will increase

- (b) No. of photons will increase
- (c) Kinetic energy of photoelectrons will increase

(d) Momentum will increase

Answer: (b)

Solution:

Number of photon \propto Intensity of light

Hence, if intensity of light is increased then no. of photons will increase.

Question: A uniform wire is of length **24a**. It is first bent to form an equilateral triangle of side length **a** and connected to a battery. The magnetic moment was M_1 . Now the wire is bent to form a square of side length **a** and connected to the same battery. The magnetic moment was M_2 . Find the ratio of M_1 and M_2 .

Options:

(a) 1 (b) $\sqrt{3}$ (c) $\frac{1}{3}$ (d) $\frac{1}{\sqrt{3}}$

Answer: (d) Solution:

Length of wire = 24 a Perimeter of equilateral triangle of the side $\mathbf{a} = 3a$ $n \rightarrow$ number of turns in triangle

n = 8 Perimeter of square of side a is = 4a n' \rightarrow no. of turn in square $n' = \frac{24a}{4a} = 6$

Now, $M_1 = nIA = 8 \times i \times \frac{\sqrt{3}}{4}a^2$ $M_2 = nIA = 6 \times i \times a^2$ $\frac{M_1}{M_2} = \frac{8 \times i \times \sqrt{3}/4 \times a^2}{6 \times i \times a^2} = \frac{\sqrt{3}}{3} = \frac{1}{\sqrt{3}}$

Question: The height of transmitting tower is 320 m and the height of receiving tower is 2000 m. The distance between then so that there is no hindrance in communication is – (in km)

Options:

(a)160

(b) 64

(c) 224

(d) 248

Answer: (c)

Solution:

Here dm stands as d minimum

distance = $\sqrt{2h_1R} + \sqrt{2h_2R}$

 $d_{m} = \sqrt{2 \times .320 \times 6.4 \times 10^{+r}} + \sqrt{2 \times 2000 \times 6.4 \times 10^{+6}}$ = 8 × 8 × 10⁺³ + 2 × 8 × 10³ × 10 = 64 + 160 × 10³ = 224 × 10³ m = 224 km

Question: An object is placed at a distance D_1 from centre of curvature of a concave mirror, away from the mirror. Its image is formed at a distance D_2 from centre of curvature towards the mirror. Find Radius of curvature of the mirror.

Options:

(a)
$$\frac{2D_1D_2}{D_1 - D_2}$$

(b)
$$\frac{D_1 D_2}{D_1 - D_2}$$

(c) $\frac{2D_1 D_2}{D_1 + D_2}$

(d)
$$\frac{D_1 D_2}{D_1 + D_2}$$

Answer: (a) Solution:

Given $v = -D_2 + R$

 $u = +D_1 + R$

$$\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$$

$$\frac{1}{R} = \frac{1}{v(R-D_2)} + \frac{1}{v(R+D_1)}$$

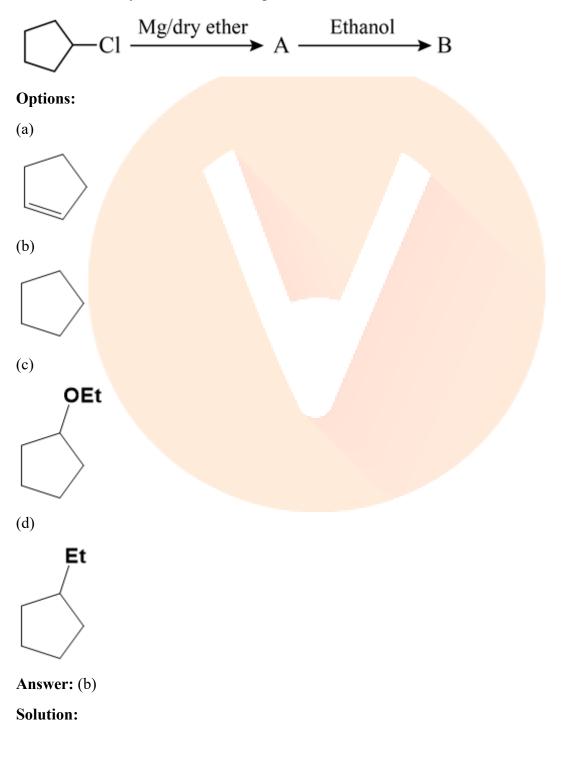
$$\frac{2}{R} = \frac{1}{(R-D_2)} + \frac{1}{R+D_1}$$

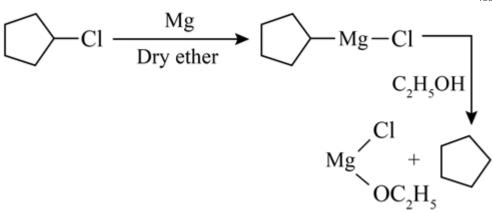
$$\frac{2}{R} = \frac{R+D_1+R-D_2}{(R-D_2)(R+D_1)}$$

$$2(R^2 - D_2R + D_1R - D_1D_2) = 2R^2 + D_1R - D_2R$$

$$2R^2 - 2D_2R + 2D_1R - 2D_1D_2 = 2R^2 + D_1R - D_2R$$

$$D_1R - D_2R = 2D_1D_2$$


$$R = \frac{2D_1D_2}{D_1 - D_2}$$


JEE-Main-27-08-2021-Shift-1 (Memory Based)

CHEMISTRY

Question: Identify 'B' in the following reaction

Question: Low melting point metals are purified by:

Options:

- (a) Liquation
- (b) Zone refining
- (c) Chromatography
- (d) Distillation
- Answer: (a)

Solution: Low melting metals are purified by liquidation method in which molten crude metal is allowed to flow on slop with obstacles. Pure metal reaches down into the collector.

Question: V₂O₃ and CrO are respectively:

Options:

- (a) Acidic and basic
- (b) Basic and amphoteric
- (c) Basic and basic
- (d) Amphoteric and basic

Answer: (c)

Solution: CrO is basic because Cr is lowest oxidation number (+2)

 V_2O_3 is also basic as +3 is the lowest oxidation state of V as well

Question: When 0.75 molal sucrose have a freezing point of -4° C (K_f = 1.86), then the amount of ice separated (in grams)

Options:

- (a) 350 g
- (b) 100 g
- (c) 180 g
- (d) 650 g
- Answer: (d)

Solution:

 $\Delta T_{\rm f} = K_{\rm f} \times m \times i$

 $0-(-4)=K_{\rm f}\times m\times 1$

 $4 = 1.86 \times m \times 1$

$$4 = 1.86 \times \frac{n_{\text{solute}}}{W_{\text{solvent}}(\text{kg})} \times 1$$

 $W_{solvent} = 0.349 \text{ kg}$

: Ice formed = 1 - 0.349 = 0.651 kg

Question: Tyndall effect is more effectively pronounced in:

Options:

- (a) True solution
- (b) Lyophobic colloids
- (c) Lyophilic colloids
- (d) Suspension

Answer: (b)

Solution: Lyophobic colloids are larger in size compared to solution and lyophilic colloid.

The difference in refractive index between particles of dispersed phase and medium is quite large

Question: Number of water molecules present in gypsum, dead burnt plaster and plaster of paris respectively are:

Options:

(a) 2, 0, 0.5

(b) 0.5, 2, 0

(c) 2, 0.5, 0

(d) 0, 2, 0.5

Answer: (a)

Solution:

Gypsum plaster, gypsum powder, or plaster of Paris, is produced by heating gypsum to about 120 - 180 °C (248 - 356 °F) in a Klln

 $CaSO_4 . 2H_2O + heat \rightarrow CaSO_4 . \frac{1}{2}H_2O + 1 \frac{1}{2} H_2O \text{ (released as steam)}$

Plaster of paris has a remarkable property of setting into a hard mass on wetting with water

CaSO4 .
$$\frac{1}{2}$$
H₂O + 1 $\frac{1}{2}$ H₂O \rightarrow CaSO₄ . 2H₂O

Question: The unit of 'a' m

Options:

(a) Atm
$$\times$$
 L⁻² mol²

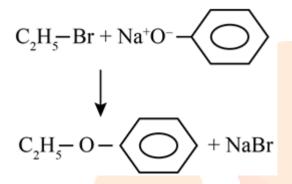
- (b) Atm \times L⁻² mol⁻¹
- (c) Atm \times L⁻¹ mol²
- (d) Atm \times L² mol⁻²
- Answer: (d)

Solution: Van der waals equation for n moles

$$\left(P + \frac{an^2}{V^2}\right) \left(V - nb\right) = nRT$$

So, dimension of P = dimension of $\frac{an^2}{V^2}$

$$\frac{an^{2}}{V^{2}} = atm$$
$$a = atm \times V^{2} \times n^{-2}$$
$$= Atm \times L^{2} \text{ mol}^{-2}$$


Question: A: ethyl phenyl ether can be prepared by Williamson synthesis R: bromo benzene on reaction with sodium ethoxide gives ethyl phenyl ether **Options:**

- (a) A and R are correct and R is the correct explanation of A
- (b) A and R are correct and R is not the correct explanation of A
- (c) Both A and R are incorrect
- (d) A is correct, R is incorrect

Answer: (d)

Solution: In Williamson synthesis, the alkyl halide should be aliphatic property 1°. So to prepare ethyl phenyl ether we use

If we use bromo benzene, reaction will not take place due to double bond character in C-Brbond

Question: In carius method 0.2 g of an organic compound gives 0.188 g AgBr. Find % of Br in compound.

Options:

(a) 80 %

(b) 20 %

(c) 40 %

(d) 10 %

Answer: (c)

Solution: AgBr = 188 g/ml

In 188 g AgBr, we have 80 g Br

As per formula % of Br = $\frac{80 \times 0.188 \times 100}{188 \times 0.2} = \frac{80}{2} = 40\%$

Question: Match the column.

Column I No of lone pairs

P) XeO ₂ F ₂	A) 0
Q) XeF ₄	B) 1
R) XeF ₂	C) 2
S) XeO ₃ F ₂	D) 3

Options:

(a) $P \rightarrow B; Q \rightarrow C; R \rightarrow D; S \rightarrow A$

(b) $P \rightarrow C; Q \rightarrow D; R \rightarrow B; S \rightarrow A$

(c) $P \rightarrow A; Q \rightarrow C; R \rightarrow B; S \rightarrow D$

(d) $P \rightarrow D; Q \rightarrow C; R \rightarrow A; S \rightarrow B$

Answer: (a)

Solution:

 $XeO_2F_2 \Rightarrow 1$

 $XeF_4 \Rightarrow 4$

 $XeF_2 \Rightarrow 3$

 $XeO_3F_2 \Rightarrow 0$

Question: Match the column.

Column I		Column II (No of lone pairs)
P) Fe ₃ O ₄		A) Paramagnetic
Q) MnO		B) Ferrimagnetic
R) NaCl		C) Diamagnetic
S) O ₂		D) Antiferromagnetic

Options:

```
(a) Q \rightarrow A; R \rightarrow B; S \rightarrow D; P \rightarrow C
```

(b) $Q \rightarrow D$; $R \rightarrow A$; $S \rightarrow B$; $P \rightarrow C$

(c) $Q \rightarrow C$; $R \rightarrow D$; $S \rightarrow A$; $P \rightarrow B$

(d) $Q \rightarrow D$; $R \rightarrow C$; $S \rightarrow A$; $P \rightarrow B$

Answer: (d)

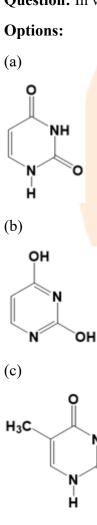
Solution:

 $MnO \Rightarrow Antiferromagnetic$ $NaCl \Rightarrow Diamagnetic$

 $O_2 \Rightarrow Paramagnetic$

 $Fe_3O_4 \Rightarrow$ Ferrimagnetic

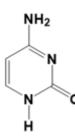
Question: Deuterium is different from hydrogen in which property


Options:

- (a) It reacts more vigorously than hydrogen
- (b) It reacts less vigorously than hydrogen
- (c) It emits beta -particles
- (d) Its reactivity is same as that of hydrogen

Answer: (b)

Solution: Deuterium reacts less vigorously than hydrogen


Question: In which form uracil is present in DNA?

(d)

ŅΗ

Answer: (a)

Solution:

Question: When FeCl₃ reacts with K₄[Fe(CN)₆], a blue coloured colloidal solution is obtained which is of?

Options:

- (a) KFe[Fe(CN)6]
- (b) $Fe_4[Fe(CN)_6]_3$
- (c) $Fe_4[Fe(CN)_6]_2$
- (d) $Fe_3[Fe(CN)_6]_2$
- Answer: (b)

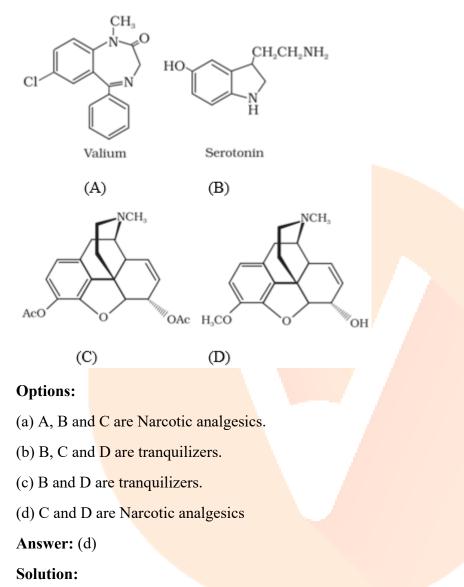
Solution:

 $\operatorname{FeCl}_{3} + \operatorname{K}_{4}[\operatorname{Fe}(\operatorname{CN})_{6}] \rightarrow \operatorname{Fe}_{4}[(\operatorname{Fe}(\operatorname{CN})_{3}]_{3}]_{(\text{Blue colour})}$

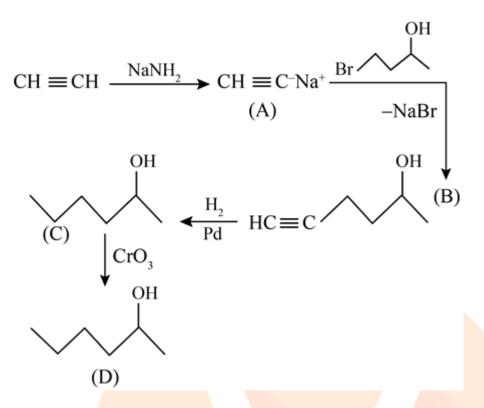
Question: Which of the following statements is incorrect about primary amines?

Options:

(a) Primary amines are less basic than secondary amines


- (b) Primary amines can be prepared by Gabriel Phthalimide synthesis
- (c) Intermolecular association is more in primary amines than in secondary amines
- (d) Primary amines on reaction with nitrous acid give respective alcohol except methyl amine

Answer: (d)



Solution: methyl amine also form methanol on reaction with nitrous acid.

Question:

Question: 10 ml of KMnO₄ reacts with equal volume of 0.1 M Ferrous sulphate in acidic medium. Find strength of KMnO₄ in g/lit (nearest integer)

Answer: 3.00

Solution:

$$N_1V_1 = N_2V_2$$

$$n_f = 5 (KMnO_4) (FeSO_4) n_f = 1$$

$$M_1 \times 10 \times 5 = 0.1 \times 10$$

$$M_1 = \frac{1}{50} = 0.02 \text{ M}$$

Molar mass of $KMnO_4 = 158 \text{ g/mol}$

Strength = 0.02×158 g/lit

$$= 3.16 \text{ g/lit}$$

Question: One mole of octahedral complex ML_2Cl_3 reacts with AgNO₃ to give one mole of AgCl. The denticity of L is

Answer: 2.00

Solution:

Octahedral complex = 6 lone pairs donated \therefore One more complex has one Cl⁻ ion outside The coordination sphere ML₂Cl₃ \Rightarrow [ML₂Cl₂]Cl This shows density of L = 2 (two)

Question: Find the electrons in f orbital in element Np (atomic number 93)

Answer: 4.00 Solution: Np(Neptunium) Z = 93E configuration = [Rn] $7s^26d^15f^4$ $5f^4 \Rightarrow$ Answer = 4

JEE-Main-27-08-2021-Shift-1 (Memory Based)

MATHEMATICS

Question:
$$I = \int_{6}^{16} \frac{\ln x^2}{\ln x^2 + \ln (x - 22)^2} dx = ?$$

Answer: 5 Solution:

$$I = \int_{6}^{16} \frac{\ln x^{2}}{\ln x^{2} + \ln (x - 22)^{2}} dx \qquad \dots (1)$$

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b - x) dx$$

$$I = \int_{6}^{16} \frac{\ln (22 - x)^{2}}{\ln (22 - x)^{2} + \ln x^{2}} dx \qquad \dots (2)$$

$$(1) + (2)$$

$$2I = \int_{6}^{16} dx \Rightarrow I = 5$$

Question: If
$$\int \frac{dx}{(x^2 + x + 1)^2} = A \tan^{-1} \frac{2x + 1}{\sqrt{3}} + B \frac{(2x + 1)}{x^2 + x + 1}$$
, then find A & B.
Answer: $A = \frac{4}{3\sqrt{3}}, B = \frac{1}{3}$

Solution:

$$\int \frac{dx}{(1+x+x^2)^2} = A \tan^{-1} \left(\frac{2x+1}{\sqrt{3}}\right) + B\left(\frac{2x+1}{1+x+x^2}\right)$$

On differentiating

$$\frac{d}{dx} \left[\tan^{-1} \left(\frac{2x+1}{\sqrt{3}} \right) \right] = \frac{1}{1 + \left(\frac{2x+1}{\sqrt{3}} \right)^2} \times \frac{2}{\sqrt{3}}$$
$$= \frac{2\sqrt{3}}{\left(2x+1 \right)^2 + 3} = \frac{\sqrt{3}}{2\left(1+x+x^2 \right)}$$

$$\frac{d}{dx} \left(\frac{2x+1}{1+x+x^2}\right) = \frac{2\left(1+x+x^2\right) - (2x+1)^2}{\left(1+x+x^2\right)^2}$$
$$= \frac{-2x^2 - 2x+1}{\left(1+x+x^2\right)^2}$$
$$\Rightarrow \frac{1}{\left(1+x+x^2\right)^2} = \frac{A\sqrt{3}}{2\left(1+x+x^2\right)} + -2B\left(\frac{1}{1+x+x^2}\right) + \frac{3B}{\left(1+x+x^2\right)^2}$$
$$\Rightarrow 1 = \left(1+x+x^2\right) \left(\frac{\sqrt{3}A}{2} - 2B\right) + 3B$$
$$\Rightarrow \frac{\sqrt{3}A}{2} = 2B \text{ and } \frac{\sqrt{3}A}{2} + B = 1$$
$$\Rightarrow B = \frac{1}{3}, A = \frac{A}{3\sqrt{3}}$$

Question: If $\frac{z+i}{z+2i}$ is purely real then find locus of z

Answer: y-axis Solution:

 $\frac{z+i}{z+xi}$ is purely real

Let z = x + iy

$$\frac{x_{iy+i}}{x+iy+2i} = \left(\frac{x+i(y+1)}{x+i(y+2)}\right) \left(\frac{x-i(y+2)}{x-i(y+2)}\right)$$

Imaginary part = $\frac{-x(y+2) + x(y+2)}{x^2 + (y+2)^2} = 0$

$$\Rightarrow -xy - 2x + xy + x = 0$$
$$\Rightarrow x = 0$$

Question: $\sum_{k=0}^{20} {\binom{20}{C_k}}^2 = ?$ **Answer:** ${}^{40}C_{20}$ **Solution:**

$$\sum_{k=0}^{20} {\binom{20}{C_k}}^2$$

= ${\binom{20}{C_0}}^2 + {\binom{20}{C_1}}^2 + \dots + {\binom{20}{C_{20}}}^2$
= ${}^{20}C_0 \cdot {}^{20}C_{20} + {}^{20}C_1 \cdot {}^{20}C_{19} + \dots + {}^{20}C_{20} \cdot {}^{20}C_2$
= Coefficient of x^{20} in $(1+x)^{40}$
= ${}^{40}C_{20}$

Question: A(0, 6) & B(2t,0), where t is parameter midpoint of A & B is M. Perpendicular bisector of AB cuts y-axis at C. Find locus of midpoint of MC

Answer: $3y = 9 - 2x^2$

Solution:

A(0, 6), B(2t, 0)

$$m = (t,3)$$

 $m_{AB} = \frac{6-0}{0-2t} = \frac{-3}{t}$

Slope of perpendicular bisector $=\frac{t}{3}$

Equation of perpendicular bisector $y-3 = \frac{t}{3}(x-t)$

x coordinate of c is 0

$$\Rightarrow y - 3 = \frac{c}{3}(0,t)$$

$$\Rightarrow y = \frac{-t^{2}}{3} + 3$$

$$\Rightarrow C = \left(0, 3 - \frac{t^{2}}{3}\right)$$

Mid point of MC is $\left(\frac{0+t}{2}, \frac{3 - \frac{t^{2}}{3} + 3}{2}\right)$

$$\Rightarrow \left(\frac{t}{2}, 3 - \frac{t^2}{6}\right) \equiv (h, k)$$
$$h = \frac{t}{2}, k = 3 - \frac{t^2}{6}$$
$$\Rightarrow t = 2h$$
$$\Rightarrow k = 3 - \frac{(2h)^2}{6}$$
$$\Rightarrow y = 3 - \frac{2x^2}{3}$$

Question: A dice has probability of occurrence of a number $\left(\frac{1}{6} + x\right)$ and the number opposite to it on the dice is $\left(\frac{1}{6} - x\right)$ and the rest of the numbers has probability $\frac{1}{6}$. The probability that when the dice is rolled twice and the sum = 7 is $\frac{13}{96}$. Find x?

Answer: $\frac{1}{8}$

Solution:

Required probability is

$$\left[\left(\frac{1}{6} - x\right) \left(\frac{1}{6} + x\right) + \left(\frac{1}{6}\right) \left(\frac{1}{6}\right) + \left(\frac{1}{6}\right) \left(\frac{1}{6}\right) \right] \times 2 = \frac{13}{96}$$
$$\frac{1}{6} - 2x^2 = \frac{13}{96}$$
$$2x^2 = \frac{3}{96}$$

$$\Rightarrow x = \frac{1}{8}$$

Question: If
$$u(n) = \prod_{r=0}^{n} \left(1 + \frac{r^2}{n^2}\right)^r$$
 then $\lim_{n \to \infty} (u)^{\frac{2}{n^2}}$
Answer: $\frac{e^2}{16}$

Solution:

$$y = \lim_{n \to \infty} \prod_{r=0}^{n} \left(1 + \frac{r^2}{n^2} \right)^{\frac{-4r}{n^2}}$$
$$\log y = \lim_{n \to \infty} \frac{-4}{n} \left(\frac{r}{n} \right) \sum_{r=0}^{n} \log \left(1 + \frac{r^2}{n^2} \right)$$
$$\Rightarrow \log y = -4 \int_0^1 x \log \left(1 + x^2 \right) dx$$
$$\log y = -2 \int_1^2 \log t \, dt$$
$$= -2 \left[t \log t - t \right]_1^2$$
$$= -2 \left[(\log 4 - 2) - (-1) \right]$$
$$= 2 - \log 16 = 2 - 4 \log 2$$
$$\log y = \log \frac{e^2}{16}$$
$$\Rightarrow y = \frac{e^2}{16}$$

Question: P(2, -4) is a point on $y^2 = 8x$. Tangent & normal at P cuts directrix at A & B respectively. If ABPQ is a square then find sum of coordinates of Q. Answer: 6

Solution: $y^2 = 8x$

P(2,-4)

Tangent at $P \equiv -4y = \frac{8(x+2)}{2}$ $\Rightarrow -y = x+2$ $\Rightarrow y = -x-2$ $m_T = -1$

 $m_N = 1$

Equation of normal = y - (-4) = 1(x-2)

$$\Rightarrow y+4=x-2$$

$$\Rightarrow y = x - 6$$

Directrix is x = -2

$$\therefore A \equiv (-2,0), B \equiv (-2,-8)$$

$$P \equiv (2, -4), Q(\alpha, \beta)$$

Mid point of AP and BQ will be same

$$\Rightarrow \frac{-2+2}{2} = \frac{-2+\alpha}{2} \text{ and } \frac{0-4}{2} = \frac{-8+\beta}{2}$$
$$\Rightarrow \alpha = 2 \text{ and } \beta = 4$$
$$\alpha + \beta = 2 + 4 = 6$$

Question: If $\alpha \& \beta$ are roots of $x^2 + bx + c = 0$. Find $\lim_{x \to \beta} \frac{e^{2(x^2 + bx + c)} - 1 - 2(x^2 + bx + c)}{(x - \beta)^2}$

Answer:
$$2(b^2 - 4c)$$

Solution:

$$\lim_{x \to \beta} \frac{e^{2(x-\alpha)(x-\beta)} - 1 - 2(x-\alpha)(x-\beta)}{(x-\beta)^2}$$

$$= \lim_{x \to \beta} \frac{e^{2(x-\alpha)(x-\beta)} \cdot 2 \cdot (2x - (\alpha + \beta)) - (2x - (\alpha + \beta))}{2(x-\beta)}$$

$$= \lim_{x \to \beta} 2(2x - (\alpha + \beta)) \frac{(e^{2(x-\alpha)(x-\alpha)} - 1)(x-\alpha)}{2(x-\alpha)(x-\beta)}$$

$$= \lim_{x \to \beta} 2(2x - \alpha + \beta) \times 1(x-\alpha)$$

$$= 2(\beta - \alpha)^2$$

$$= 2\left(\frac{\sqrt{b^2 - 4c}}{1}\right)^2 = 2(b^2 - 4c)$$

Question: $(\sin^{-1} x)^2 - (\cos^{-1} x)^2 = a$ for 0 < x < 1 find $2x^2 - 1$ **Options:**

(a)
$$\sin\left(\frac{2a}{\pi}\right)$$

(b) $\cos\left(\frac{4a}{\pi}\right)$
(c) $\cos\left(\frac{2a}{\pi}\right)$
(d) $\sin\left(\frac{4a}{\pi}\right)$

Answer: (a) Solution:

$$(\sin^{-1} x)^2 = (\cos^{-1} x)^2 = a$$

Let $\cos^{-1} x = t \Rightarrow x = \cos t$

$$\left(\frac{x}{2}-t\right)^2 = t^2 = a$$

$$\Rightarrow \frac{\pi^2}{4} + t^2 - \pi t - t^2 = a$$

$$\Rightarrow \frac{\pi^2}{4} - \pi t = a$$

$$\Rightarrow \pi t = \frac{\pi^2}{4} - a$$

$$\Rightarrow t = \frac{\pi}{4} - \frac{a}{\pi}$$

$$2x^2 - 1 = 2\cos^2 t - 1 = \cos 2t$$

$$= \cos 2\left(\frac{\pi}{4} - \frac{9}{\pi}\right)$$

$$= \cos\left(\frac{\pi}{2} - \frac{29}{\pi}\right)$$

$$= \sin\frac{29}{\pi}$$

$$=\sin\frac{29}{\pi}$$

Question: $\frac{\sin A}{\sin B} = \frac{\sin (A-C)}{\sin (C-B)}$

Options:

(a) $b^2, c^2, a^2 \rightarrow A.P.$

(b) $a^2, b^2, c^2 \rightarrow A.P.$ (c) (d) Answer: (a) Solution: $\frac{\sin A}{\sin B} = \frac{\sin (A-C)}{\sin (C-B)}$ $\sin (C+B)\sin (C-B) = \sin (A+C)\sin (A-C)$ $\sin^2 C - \sin^2 B = \sin^2 A - \sin^2 C$ $2\sin^2 C = \sin^2 A + \sin^2 B$ $\Rightarrow b^2, c^2, a^2 \rightarrow A.P.$

Question: An odd natural number n is such that variance of 1, 2,, n is 14. Find n. Answer: 13 Solution:

Variance =
$$\frac{\sum x^2}{n} - \frac{\left(\sum x\right)^2}{n^2}$$

 $14 = \frac{1^2 + 2^2 + ... + n^2}{n} - \frac{\left(1 + 2 + 3 + ... + n\right)^2}{n^2}$
 $\Rightarrow 14 = \frac{n(n+1)(2n+1)}{6n} - \left(\frac{n(n+1)}{2n}\right)^2$
 $\Rightarrow 14 = \frac{(n+1)(2n+1)}{6} - \frac{(n+1)^2}{4}$
 $\Rightarrow 28 = \frac{2n^2 + 3n + 1}{3} - \frac{n^2 + 2n + 1}{2}$
 $\Rightarrow 28 = \frac{4n^2 + 6n + 2 - 3n^2 - 6n - 3}{6}$
 $\Rightarrow 28 = \frac{n^2 - 1}{6}$
 $\Rightarrow n^2 - 1 = 168$
 $\Rightarrow n^2 = 169$
 $\Rightarrow n = 13$

Question: Total length of wire = 20 cm. It is cut into two pieces one is square and other is regular hexagon. Find the side of hexagon such that combined area of square and hexagon is maximum.

Options:

- (a)
- (b)
- (c)
- (d)
- Answer: ()

Solution:

Let side of square be x & that of hexagon be y

$$\therefore 4x + 6y = 20$$

$$f(y) = x^{2} + 6 \times \frac{\sqrt{3}}{4} \times y^{2}$$

$$= \frac{3\sqrt{3}}{2}y^{2} + \left(\frac{10 - 3y}{2}\right)^{2}$$

$$f'(y) = 0 \Rightarrow 3\sqrt{3}y - 3(10 - 3y) = 0$$

$$y = \frac{30}{3\sqrt{3} + 9} = \frac{10}{3 + \sqrt{3}}$$

$$= \frac{10(3 - \sqrt{3})}{6} = \frac{5}{3}(3 - \sqrt{3})$$

Question: $\frac{x^2}{b^2} + \frac{y^2}{4a^2} = 1$. Find the minimum area of triangle formed by tangent to it. Answer: 2*ab*

Solution:

$$\frac{x^2}{b^2} + \frac{y^2}{4a^2} = 1$$

Tangent at $(b\cos\theta, 2a\sin\theta)$ is $\frac{b\cos\theta x}{b^2} + \frac{2a\sin\theta y}{4a^2} = 1$

$$\frac{\cos \theta x}{b} + \frac{\sin \theta y}{2a} = 1$$

x-intercept = $\frac{b}{\cos \theta}$
y-intercept = $\frac{2a}{\sin \theta}$

Area $=\frac{1}{2}\frac{b}{\cos\theta}\cdot\frac{2a}{\sin\theta}=\frac{2ab}{\sin 2\theta}$

Minimum area = 2ab when $\sin 2\theta = 1$

Question:
$$A = \begin{bmatrix} 0 & 2 \\ x & -1 \end{bmatrix}$$
. $A(A^3 + 3I) = 25$. Find x.

Answer:

Solution: $A = \begin{bmatrix} 0 & 2 \\ x & -1 \end{bmatrix}$ $A^{2} = \begin{bmatrix} 0 & 2 \\ x & -1 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ x & -1 \end{bmatrix}$ $= \begin{bmatrix} 2x & -2 \\ -x & 2x+1 \end{bmatrix}$ $A^{4} = (A^{2})^{2} = \begin{bmatrix} 2x & -2 \\ -x & 2x+1 \end{bmatrix} \begin{bmatrix} 2x & -2 \\ -x & 2x+1 \end{bmatrix}$ $= \begin{bmatrix} 4x^{2} + 2x & -8x - 2 \\ -4x^{2} - x & 2x + (2x+1)^{2} \end{bmatrix}$ $= \begin{bmatrix} 4x^{2} + 2x & -8x - 2 \\ -4x^{2} - x & 4x^{2} + 6x + 1 \end{bmatrix}$ $A^{4} + 3A = \begin{bmatrix} 4x^{2} + 2x & -8x + 4 \\ -4x^{2} + 2x & 4x^{2} + 6x - 2 \end{bmatrix} = 2I$ $x = \frac{1}{2}$

Question: $\frac{dy}{dx} + \frac{y}{x} = x^2$ passes through (-2, 2) **Options:**

(a) (b) (c) (d) Answer: () Solution: $\frac{dy}{dx} + \frac{y}{x} = x^2$

I.F=
$$e^{\int \frac{dx}{x}} = x$$

 $\therefore yx = \frac{x^4}{4} + C$

Passes through (-2, 2) c = -4 - 4 = -8 $\therefore 4xy = x^4 - 32$

Question: Number of distinct real roots of equation $3x^4 + 4x^3 - 12x^2 + 4 = 0$ Options:

(a) (b) (c) (d) **Answer:** () **Solution:** $3x^4 + 4x^3 - 12x^2 + 4 = f(x)$ $f'(x) = 12x^3 + 12x^2 - 24x$ = 12x(x-1)(x+2) $f'(x) = 0 \Rightarrow x = -2, 0, 1$ f(0) = 4 > 0 f(-2) = -28 < 0f(1) = -1 < 0

 $\therefore f(x)$ has 4 distinct real roots

Question: $y = \log_{10} x + \log_{10} x^{\frac{1}{3}} + \log_{10} x^{\frac{1}{a}} + \dots \frac{2+4+6+\dots 2y}{3+6+9+\dots 3y} = \frac{4}{\log_{10} x}$. Find (x, y). Answer: () Solution: $y = \log_{10} x \left[1 + \frac{1}{3} + \frac{1}{9} + \dots \right]$

$$S = 1 + \frac{1}{3} + \frac{1}{9} + \dots = \frac{1}{1 - \frac{1}{3}} = \frac{3}{2}$$
$$y = \frac{3}{2} \log_{10} x \quad \dots (1)$$
Also, $\frac{2}{3} = \frac{4}{\log_{10} x} \Longrightarrow \log_{10} x = 6$
$$x = 10^{6}, y = 9$$

Thank YOU for downloading the PDF

FREE LIVE ONLINE

MASTER CLASSES FREE Webinars by Expert Teachers

Vedantii FREE MASTER CLASS SERIES

- ⊘ For Grades 6-12th targeting JEE, CBSE, ICSE & much more
- Series Free 60 Minutes Live Interactive classes everyday
- ⊘ Learn from the Master Teachers India's best

Register for **FREE**

Limited Seats!