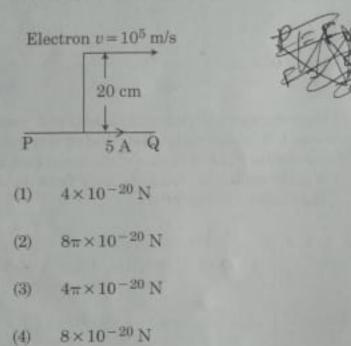
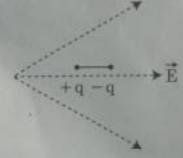
Section - A (Physics)

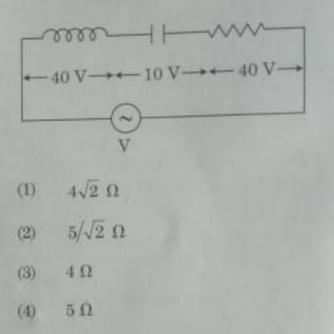

2

3.


4.

5.

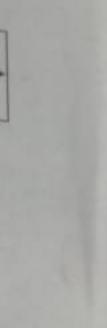
 An infinitely long straight conductor carries a current of 5 A as shown. An electron is moving with a speed of 10⁵ m/s parallel to the conductor. The perpendicular distance between the electron and the conductor is 20 cm at an instant. Calculate the magnitude of the force experienced by the electron at that instant.


 A dipole is placed in an electric field as shown. In which direction will it move ?

- (1) towards the left as its potential energy will increase.
- (2) towards the right as its potential energy will decrease.
- (a) towards the left as its potential energy will decrease.
- (4) towards the right as its potential energy will increase.

An inductor of inductance L, a capacitor of capacitance C and a resistor of resistance 'R' are connected in series to an ac source of potential difference 'V volts as shown in figure.

Potential difference across L, C and R is 40 V, 10 V and 40 V, respectively. The amplitude of current flowing through LCR series circuit is $10\sqrt{2}$ A. The impedance of the circuit is :

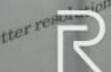

For a plane electromagnetic wave propagating in x-direction, which one of the following combination gives the correct possible directions for electric field (E) and magnetic field (B) respectively? 9:

8.

- (1) $\hat{j} + \hat{k}, \ \hat{j} + \hat{k}$ (2) $-\hat{j} + \hat{k}, -\hat{j} - \hat{k}$ (3) $\hat{j} + \hat{k}, -\hat{j} - \hat{k}$ (4) $-\hat{j} + \hat{k}, -\hat{j} + \hat{k}$
- A lens of large focal length and large aperture best suited as an objective of an astronomic telescope since :
- a large aperture contributes to the qual and visibility of the images.
- (2) a large area of the objective ensures bet light gathering power.
- (3) a large aperture provides a better resolution
- (a) all of the above.

apacitor of ance 'R' are of potential

d R is 40 V implitude of es circuit is it is :



ropagating in g combination ns for electric ectively?

ge aperture is astronomical

to the quality

ensures better

Column - I gives certain physical terms associated with flow of current through a metallic conductor. Column - II gives some mathematical relations involving electrical quantities. Match Column - I and Column - II with appropriate relations.

Column - I

(A)

Column - II

neua

EJ

(R)

3

19.

10.

- (P) Drift Velocity (Q)
- Electrical Resistivity
- Relaxation Period
- Current Density (S) (D)
 - (A)-(R), (B)-(S), (C)-(P), (D)-(Q)
- (A)-(R), (B)-(S), (C)-(Q), (D)-(P) (2)
- (A)-(R), (B)-(P), (C)-(S), (D)-(Q)
- (A)-(R), (B)-(Q), (C)-(S), (D)-(P) (4)

An electromagnetic wave of wavelength ' λ ' is incident on a photosensitive surface of negligible work function. If 'm' mass is of photoelectron emitted from the surface has de-Broglie wavelength λ_d , then :

(1) $\lambda = \left(\frac{2m}{hc}\right) \lambda_d^2$ (2) $\lambda_d = \left(\frac{2mc}{b}\right) \lambda^2$ (3) $\lambda = \left(\frac{2mc}{h}\right) \lambda_d^2$ $(4) \quad \lambda = \left(\frac{2h}{mc}\right) \lambda_d^2$

8.

1

A particle is released from height S from the surface of the Earth. At a certain height its kinetic mergy is three times its potential energy. The height from the surface of earth and the speed of the particle at that instant are respectively :

K.1 = 3P √3gS 4

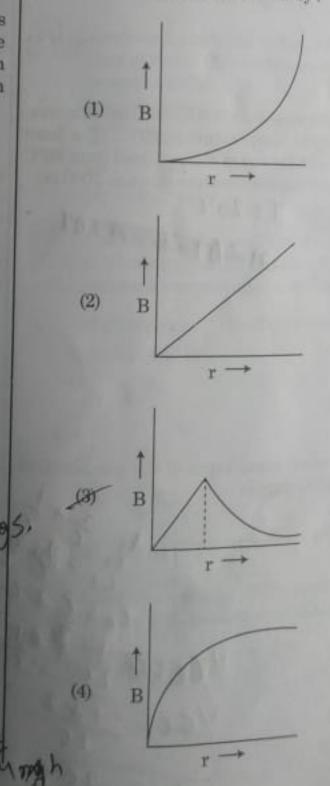
KitVi= KetV

Can.

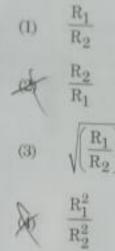
Out mas

3 mgh my -Shot on realme 2

A screw gauge gives the following readings when

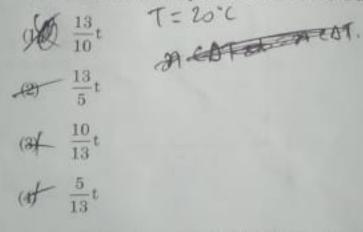

Main scale reading : 0 mm

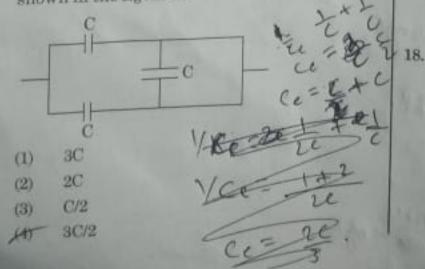
Circular scale reading : 52 divisions


Given that 1 mm on main scale corresponda to 100 divisions on the circular scale. The diameter

- (1)0.52 cm
- (2)0.026 cm
- (3)0.26 cm
- (4)0.052 cm

A thick current carrying cable of radius 'R' carries current 'I' uniformly distributed across its cross-section. The variation of magnetic field B(r) due to the cable with the distance 'r' from the axis of the cable is represented by :

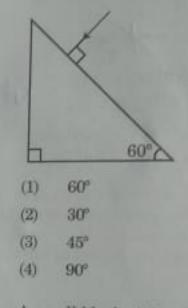

11. Two charged spherical conductors of radius R_1 and R_2 are connected by a wire. Then the ratio of surface charge densities of the spheres (σ_1/σ_2) is :


12. The number of photons per second on an average emitted by the source of monochromatic light of wavelength 600 nm, when it delivers the power of 3.3×10^{-3} watt will be : (h = 6.6×10^{-34} Js)

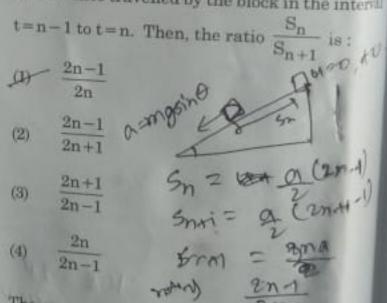
- (1) 10¹⁸
- (2) 1017
- (3) 10¹⁶
- (4) 1015

13. A cup of coffee cools from 90°C to 80°C in t minutes, when the room temperature is 20°C. The time taken by a similar cup of coffee to cool from 80°C to 60°C at a room temperature same at 20°C is :

14. The equivalent capacitance of the combination shown in the figure is :



The effective resistance of a parallel connection the consists of four wires of equal length, equal area of cross-section and same material is 0.25 Ω . What will be the effective resistance if they are connected in series ?


- 0.25 Ω
- (2) 0.5 Ω
- (3) 1 Ω
- (4) 4 Ω

(16.)

Find the value of the angle of emergence from the prism. Refractive index of the glass is $\sqrt{3}$.

17. A small block slides down on a smooth inclined plane, starting from rest at time t=0. Let S_{a} be the distance travelled by the block in the interval

9

The escape velocity from the Earth's surface st The escape velocity from the surface of another planet having a radius, four times that of Earth and same mass density is :

(19.	The h	alf-life of a radio	5					
0	after	alf-life of a radioactive nuclide is 100 hours. raction of original activity that will remain 150 hours would be :	23,	Mate the c	ch Column - I and Colur correct match from the gi Column - I	nn -11	and ch	
	(1)	1/2	1000		Column -1	Col	DICIER.	
		1		(A)	Root mean square		mn - II	
	(2)	$\overline{2\sqrt{2}}$			speed of gas molecules	(P)	$\frac{1}{3}$ nm \overline{v}^2	
				(B)	Pressure exerted	(Q)	3.RT	
	(3)	$\frac{2}{3}$			by ideal gas	(4)	V M	
			-	(C)	Average kinetic energy	(R)	$\frac{5}{2}$ RT	
	(4)	2			of a molecule	1	2 41	
	(4)	$\overline{3\sqrt{2}}$		(D)	Total internal energy	-	3.	
20.	Inan	otentiomator circuit a coll of FATE 1 = 11			of 1 mole of a diatomic gas	(S)	$\frac{1}{2}$ k _B T	
0	balar	otentiometer circuit a cell of EMF 1.5 V gives ace point at 36 cm length of wire. If another		(1)	(A) - (R), (B) - (P), (C) - (is) m	-(0)	
	cell o	f EMF 2.5 V replaces the first cell, then at		(2)	(A) - (Q), (B) - (R), (C) -	(S), (D)	- (Q)) - (P)	
	what	length of the wire, the balance point occurs?		(3)	(A) - (Q), (B) - (P), (C) -	(S), (D)	- (R)	
	(1)	60 cm		(4)	$(A) \cdot (R), (B) \cdot (Q), (C) \cdot$	(P), (D) + (S)	
	(2)	21.6 cm	24.	A spi	ring is stretched by 5 cm l	oy a for	rce 10 N. The	
	(3)	64 cm		issu	period of the oscillations spended by it is :	5 CM	, FMON.	
	(4)	62 cm		(1)	0.0628 s	2. Kg	- 2	
			1.0	(2)	6.28 s	~	E.	
Ð	15 k	or falls from a height of 60 m at the rate of g/s to operate a turbine. The losses due to		(3) (4)	3.14 s 0.628 s		150/07 mg	
	frictional force are 10% of the input energy. How much power is generated by the turbine ? $(g = 10 \text{ m/s}^2)$			The velocity of a small ball of mass M and density d, when dropped in a container filled with glycerine becomes constant after some time. If the density				
	(1)	10.2 kW			verine is $\frac{d}{d}$, then the vis			
	(2)	8.1 kW	lare a		ball will be $\frac{2}{3}$			
	(3)	12.3 kW	-	(1)	Mg			
	(4)	7.0 kW		(1)	2			
	149	1.0 4.1		(2)	Mg			
D	Berni	electron concentration in an n-type conductor is the same as hole concentration		(3)	$\frac{3}{2}$ Mg			
	in a p-type semiconductor. An external field (electric) is applied across each of them. Compare the currents in them.			(4)	2Mg	mani	e motion with	
		current in n-type = current in p-type.	26.	A bod	ly is executing simple ha ency 'n', the frequency of	its pot	ential energy	
	(1)	the second s		is :			Att	
	(2)	current in p-type > current in n-type.		-95	n A	+	- m	
	(3)	current in n-type > current in p-type.		(2)	2n	Y		
	(4)	No current will flow in p-type, current will		(3)	3n			
		only flow in n-type.		(4)	4n			

- R
- Shot on realme 2

oth inclined 0. Let S_n be the interval

n is: x0 +1,00, x0

ana ana

surface is v-e of another hat of Earth

2

e

ection the ual aread 5 fl. Whe contrected

the from the $\sqrt{3}$.

- 27. A nucleus with mass number 240 breaks into two fragments each of mass number 120, the binding energy per nucleon of unfragmented nuclei is 7.6 MeV while that of fragments is 8.5 MeV. The total gain in the Binding Energy in the process is :
 - (1) 0.9 MeV
 - (2) 9.4 MeV
 - (3) 804 MeV
 - (4) 216 MeV
- 28. A parallel plate capacitor has a uniform electric

field $\stackrel{\bullet}{E}$ in the space between the plates. If the distance between the plates is 'd' and the area of each plate is 'A', the energy stored in the capacitor is : ($\epsilon_0 = \text{permittivity of free space}$)

- (1) $\frac{1}{2}\epsilon_0 E^2$
- (2) $\epsilon_0 EAd$
- (3) $\frac{1}{2}\epsilon_0 E^2 Ad$
- (4) $\frac{E^2Ad}{\epsilon_0}$

29. Polar molecules are the molecules :

- (1) having zero dipole moment.
- (2) acquire a dipole moment only in the presence of electric field due to displacement of charges.
- (3) acquire a dipole moment only when magnetic field is absent.
- (1) having a permanent electric dipole moment.
- A radioactive nucleus ^A_ZX undergoes spontaneous decay in the sequence

 ${}_{Z}^{A}X \rightarrow {}_{Z-1}B \rightarrow {}_{Z-3}C \rightarrow {}_{Z-2}D$, where Z is the atomic number of element X. The possible decay particles in the sequence are :

- (1) α, β^-, β^+
- (2) α, β^+, β^-
- (3) β^+, α, β^-
- (4) $\beta^{-}, \alpha, \beta^{+}$
- Consider the following statements (A) and (B) and identify the correct answer.
 - (A) A zener diode is connected in reverse bias, when used as a voltage regulator.
 - (B) The potential barrier of p-n junction lies between 0.1 V to 0.3 V.

(A) and (B) both are correct.

- (A) and (B) both are incorrect.
- (A) is correct and (B) is incorrect.

Shot on realme 2

$V = V_0 \sin \omega t$

82.

The displacement current between the plates of the capacitor, would then be given by :

(1) $I_d = V_0 \omega C \cos \omega t$

(2)
$$I_d = \frac{V_0}{\omega C} \cos \omega t$$

(3)
$$I_d = \frac{V_0}{\omega C} \sin \omega t$$

- (4) $I_d = V_0 \omega C \sin \omega t$
- 3. If E and G respectively denote energy and gravitational constant, then $\frac{E}{G}$ has the dimensions of:
 - (1) $[M^2][L^{-1}][T^0]$
 - (2) [M][L⁻¹][T⁻¹]
 - (3) [M] [L⁰] [T⁰]
 - (4) $[M^2][L^{-2}][T^{-1}]$
- 34. A convex lens 'A' of focal length 20 cm and a concave lens 'B' of focal length 5 cm are kept along the same axis with a distance 'd' between them. If a parallel beam of light falling on 'A' leaves 'B' as a parallel beam, then the distance 'd' in cm will be:
 - (1) 25
 - (2) 15
 - (3) 50
 - (4) 30
- 35. If force [F], acceleration [A] and time [T] are chosen as the fundamental physical quantities. Find the dimensions of energy.
 - (1) [F][A][T]
 - (2) [F] [A] [T²]
 - (3) $[F][A][T^{-1}]$
 - (4) $[F][A^{-1}][T]$

Section - B (Physics)

A step down transformer connected to an ac mains supply of 220 V is made to operate at 11 V, 44 W lamp. Ignoring power losses in the transformer, what is the current in the primary circuit ?

(1) 0.2 A
 (2) 0.4 A

36.

- (3) 2 A
- (4) 4 A

39.

38.

unected across

n the plates of

e energy and the dimensions

m and a concave kept along the veen them. If a V'leaves 'B'asa d' in cm will be:

nd time [T] are sical quantities.

5)

ed to an ac mains ate at 11 V, 44 W the transformer. ary circuit ?

A ball of mass 0.15 kg is dropped from a height 10 m. strikes the ground and rebounds to the same height. The magnitude of impulse imparted to \$7. the ball is $(g = 10 \text{ m/s}^2)$ nearly :

- 0 kg m/s ar
- 4.2 kg m/s (2)
- 2.1 kg m/s (3)
- 1.4 kg m/s (4)
- A particle moving in a circle of radius R with a uniform speed takes a time T to complete one 38. revolution.

If this particle were projected with the same speed at an angle '0' to the horizontal, the maximum height attained by it equals 4R. The angle of projection, 0, is then given by :

(1)
$$\theta = \cos^{-1} \left(\frac{gT^2}{\pi^2 R} \right)^{1/2}$$

$$\theta = \cos \left(\frac{1}{gT^2} \right)$$

3)
$$\theta = \sin^{-1} \left(\frac{\pi^2 R}{g T^2} \right)^{\frac{1}{2}}$$

A particle of mass 'm' is projected with a velocity 39. $\nu = kV_{\rho}(k < 1)$ from the surface of the earth.

 $\pi^2 R$

(Ve=escape velocity)

0=sin

(4)

The maximum height above the surface reached by the particle is :

 $R\left(\frac{k}{1-k}\right)^2$ (1) (2) $R\left(\frac{k}{1+k}\right)^2$

$$\frac{1}{1+k}$$

$$\frac{Rk^2}{1-k^2}$$

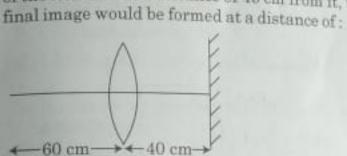
Shot on realme 2

7

40.

41.

A car starts from rest and accelerates at 5 m/s2 At t=4 s, a ball is dropped out of a window by a person sitting in the car. What is the velocity and acceleration of the ball at t=6 s? $(Take g = 10 m/s^2)$


20 m/s, 5 m/s² M

20 m/s, 0 (Z)

20/2 m/s, 0 (3)

 $20\sqrt{2}$ m/s. 10 m/s² (32)

A point object is placed at a distance of 60 cm from a convex lens of focal length 30 cm. If a plane mirror were put perpendicular to the principal axis of the lens and at a distance of 40 cm from it, the

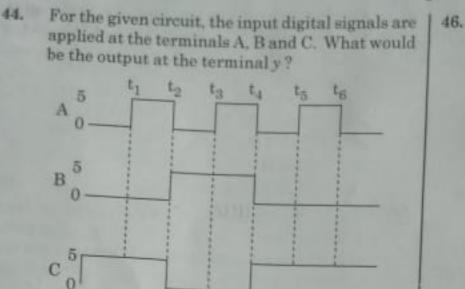
- 20 cm from the lens, it would be a real (1) image.
- 30 cm from the lens, it would be a real (2)image.
- 30 cm from the plane mirror, it would be a (3)virtual image.
- 20 cm from the plane mirror, it would be a (4) virtual image.

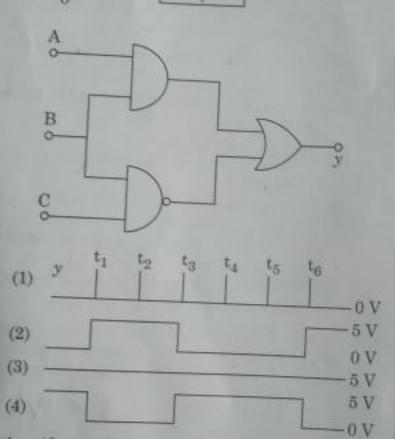
42. Twenty seven drops of same size are charged at 220 V each. They combine to form a bigger drop. Calculate the potential of the bigger drop. F= Q(V+B). = 21+4460+14135

- (1) 660 V
- (2) 1320 V (3) 1520 V
- (4) 1980 V
- In the product

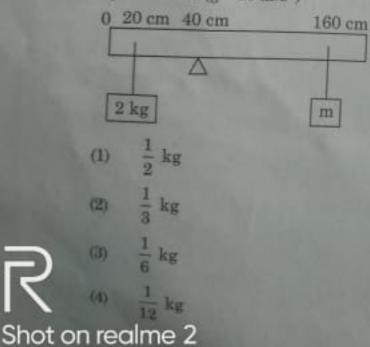
43.

$$\vec{\mathbf{F}} = \mathbf{q} \begin{pmatrix} \vec{v} \times \vec{\mathbf{B}} \\ \vec{v} \times \vec{\mathbf{B}} \end{pmatrix}$$
$$= \vec{q} \vec{v} \times \begin{pmatrix} \hat{\mathbf{B}} & \hat{i} + \mathbf{B} & \hat{j} + \mathbf{B}_0 & \hat{k} \end{pmatrix}$$


For
$$q = 1$$
 and $\overrightarrow{v} = 2i + 4j + 6k$ and


$$\overrightarrow{\mathbf{F}} = 4 \widehat{i} - 20 \widehat{j} + 12 \widehat{k}$$

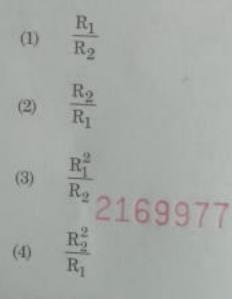
What will be the complete expression for B ?


(1) $-8\hat{i}-8\hat{j}-6\hat{k}$ $-6\hat{i}-6\hat{j}-8\hat{k}$ (2) $8\hat{i}+8\hat{j}-6\hat{k}$ (3)

(4)
$$6\hat{i} + 6\hat{j} - 8\hat{k}$$

A uniform rod of length 200 cm and mass 500 g is 45. balanced on a wedge placed at 40 cm mark. A mass of 2 kg is suspended from the rod at 20 cm and another unknown mass 'm' is suspended from the rod at 160 cm mark as shown in the figure. Find the value of 'm' such that the rod is in equilibrium. $(g = 10 \text{ m/s}^2)$

8


Le.

A uniform conducting wire of length 12a and resistance 'R' is wound up as a current carrying coil in the shape of,

- an equilateral triangle of side 'a'. 6)
- a square of side 'a'. (ii)

The magnetic dipole moments of the coil in each case respectively are :

- $\sqrt{3}$ Ia² and 3 Ia² (1)
- 3 Ia² and Ia² (2)
- 3 Ia² and 4 Ia² (3)
- 4 Ia² and 3 Ia² (4)
- Two conducting circular loops of radii R1 and R, 47. are placed in the same plane with their centres coinciding. If $R_1 >> R_2$, the mutual inductance M between them will be directly proportional to:

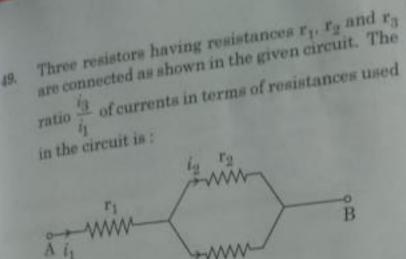
From a circular ring of mass 'M' and radius Rat arc corresponding to a 90° sector is removed. The moment of inertia of the remaining part of the risk about an axis passing through the centre of the ring and perpendicular to the plane of the ring # 'K' times 'MR2'. Then the value of 'K' is :

51.

52

3 (I) 4 (2)8 (3)(4)

48.


MS

and rying

n each

and R₂ centres tance M al to:

dius 'R' an oved. The of the ring ntre of the the ring is is :

13

$$\frac{r_1}{r_2 + r_3}$$

12

$$\begin{array}{c} \frac{r_2}{r_2 + r_3} \\ \frac{r_1}{r_1 + r_2} \end{array} \quad 12669$$

(4)
$$r_1 + r_3$$

A series LCR circuit containing 5.0 H
80 μ F capacitor and 40 Ω resistor is co
230 V variable frequency ac source. T

inductor. nnected to 50. he angular ch power transferred to the circuit is half the power at the resonant angular frequency are likely to be :

26

- 25 rad/s and 75 rad/s (1)
- 50 rad/s and 25 rad/s (2)
- 46 rad/s and 54 rad/s
- (4) 42 rad/s and 58 rad/s

Section - A (Chemistry)

- 51. Noble gases are named because of their inertness towards reactivity. Identify an incorrect statement about them.
 - Noble gases are sparingly soluble in water. (13)
 - Noble gases have very high melting and (2) boiling points.
 - Noble gases have weak dispersion forces. (4)
 - Noble gases have large positive values of electron gain enthalpy.
 - The correct option for the number of body centred unit cells in all 14 types of Bravais lattice unit

 - 5

2

(4) 3 Shot on realme 2

52

Which one among the following is the correct option for right relationship between Cp and Cy for one

- $C_P + C_V = R$ (1)
- $C_{p}-C_{v}=R$ (2)
- $C_{\rm P} = RC_{\rm V}$ (3)
- $C_V = RC_P$ (4)

 $\operatorname{Zr}(\mathbf{Z}=40)$ and $\operatorname{Hf}(\mathbf{Z}=72)$ have similar atomic and 54. ionic radii because of :

- belonging to same group (1)
- diagonal relationship (2)
- lanthanoid contraction (3)
- having similar chemical properties (4)

The maximum temperature that can be achieved 55. in blast furnace is :

- upto 1200 K (1)
- upto 2200 K (2)
- upto 1900 K (3)
- upto 5000 K (4)

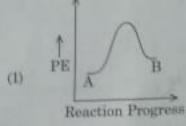
Statement I : 56.

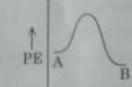
Acid strength increases in the order given as HF << HCl << HBr << HI.

Statement II :

As the size of the elements F, Cl, Br, I increases down the group, the bond strength of HF, HCl, HBr and HI decreases and so the acid strength increases.

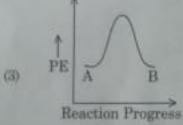
In the light of the above statements, choose the correct answer from the options given below.

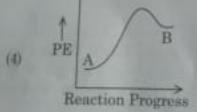

- Both Statement I and Statement II are (1)
- true. Both Statement I and Statement II are (2)
- false. Statement I is correct but Statement II (3)
- is false. but incorrect is
- Statement 1 (4)Statement II is true.


57.

The compound which shows metamerism is: (1) C5H12 (2)C₃H₈O (3) C₂H₆O (4) C4H10O

53.


For a reaction $A \rightarrow B$, enthalpy of reaction is -4.2 kJ mol^{-1} and enthalpy of activation is 9.6 kJ mol^{-1} . The correct potential energy profile for the reaction is shown in option.



(2)

Reaction Progress

- 59. The right option for the statement "Tyndall effect is exhibited by", is :
 - (1) NaCl solution
 - (2) Glucose solution
 - (3) Starch solution
 - (4) Urea solution
- 60. BF₃ is planar and electron deficient compound. Hybridization and number of electrons around the central atom, respectively are :
 - (1) sp³ and 4
 - (2) sp³ and 6
 - (3) sp² and 6
 - ap2 and 8

Shot on realme 2

643.

		ch List - Iv	with List	t - II.		The I
61.	Mate	ch List - Iv	VILIT MAL	List-II	67.	CH3C
		List-I	6)	Square pyramidal		and 9
	(a)	PCl5	(ii)	Trigonal planar		condu Choose
	(b)	SF_6	(iii)	Octahedral		
	(c)	BrF5	(iv)	Trigonal bipyramidal		(1)
	(d)	BF3	ant ansy	ver from the options given		(2)
	Cho	se the corr				(3)
	below	(a)-fiv), (b)-(iii), (c))-(i), (d)-(ii)		(4)
	(1)	(a)-(ii), (b)-(iii), (c)	-(iv), (d)-(i)		
	(2) (3)	(a)-(iii), (t)-(i), (c)-	(iv), (d)-(ii)	19	Giver
	(4)	(a)-(iv), (b)-(iii), (c))-(ii), (d)-(i)	68.	State
						100
62.	The	structures	of beryll	ium chloride in solid state		Aspir
		vapour pha	d dimar	respectively		narco
	(1)			Teoperatory		Stat
	(2)	Linear in		r, respectively		Morp
	(3)			r, respectively		In th
	(4)	Chain in	both			COTT
63.	The	correct sequ	ence of b	ond enthalpy of 'C-X' bond		(1)
	15 :					(LA)
	(1)	CH3-F	$< CH_3 -$	$\mathrm{Cl} < \mathrm{CH}_3 - \mathrm{Br} < \mathrm{CH}_3 - 1$		(2)
	(2)	CH3-F	$> CH_3 -$	$\mathrm{Cl} > \mathrm{CH}_3 - \mathrm{Br} > \mathrm{CH}_3 - \mathrm{I}$		(2)
	(3)			$\mathrm{Cl} > \mathrm{CH}_3 - \mathrm{Br} > \mathrm{CH}_3 - 1$		1000
	(4)	CH ₃ -Cl	> CH ₃ -	$-F > CH_3 - Br > CH_3 - I$		(3)
64.	Whi by a	ch one of th ddition poly	he follow ymerisat	ving polymers is prepared tion ?		(4)
	(1)	Teflon				
	(2)	Nylon-66	5		69.	The
	(3)	Novolac				10 g
	(4)	Dacron				10 g
65.	Dik	ideal and a	-			10 1
	is :	aurat angle	ofleast	stable conformer of ethane		Wata
	(1)	120°				orde
	(2)	180°				(I)
	(3)	60*				(2)
	(4)	0"				(3)
20						
66.	Ano	rganic com	pound o	ontains 78% (by wt.) carbon		(4)
	opti	on for the	percent	age of hydrogen. The right	70,	Ama
	(1)	CH	of C 18	formula of this compound [12, H is 1]		Holy
	(2)	CHg				
	(3)	CTT				(1)

10

(3)

(4)

CHa

CH4

71.

yramidal planar ca] bipyramidal

6

68.

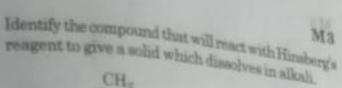
- he options given
- δ. 6

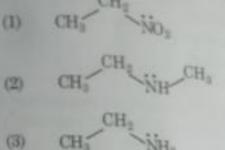
- ride in solid state
- vely
- tively
- halpy of 'C-X' bond
- $H_3 Br < CH_3 I$ $I_3 - Br > CH_3 - I_3$
- $H_n Br > CH_n I$ $H_3 - Br > CH_3 - I$
- lymers is prepared

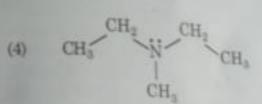
conformer of ethane

ns 78% (by wt.) carbon f hydrogen. The right aula of this compound H is 1]

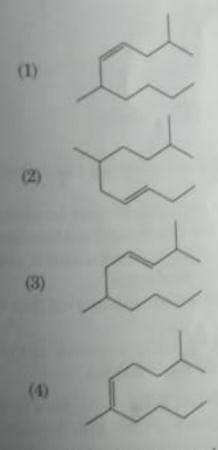
- The molar conductance of NaCl, HCl and | CH_COONs at infinite dilution are 126.45, 426.16 and 91.0 S cm² mol⁻¹ respectively. The molar meductance of CH₃COOH at infinite dilution is.
- Choose the right option for your answer.
 - 201.28 S cm² mol-1 190.71 S cm² mol-1
 - 696.28 S cm² mol-1
 - 540.48 S cm² mol⁻¹
- (4)
- Given below are two statements :
- Statement I :


Aspirin and Paracetamol belong to the class of narcotic analgesics.


Statement II :


Morphine and Heroin are non-narcotic analgesics.

In the light of the above statements, choose the correct answer from the options given below.


- Both Statement I and Statement II are true.
- Both Statement I and Statement II are (2)false.
- Statement I is correct but Statement II
- incorrect but Statement I is 643 Statement II is true.
- 臌 The following solutions were prepared by dissolving 10 g of glucose (C_nH₁₂O_n) in 250 ml of water (P₁), 10 g of urea (CH4N2O) in 250 ml of water (P2) and 10 g of sucrose (C12H22O11) in 250 ml of water (P3). The right option for the decreasing order of osmotic pressure of these solutions is :
 - (1) $P_2 > P_1 > P_3$ (2) $P_1 > P_2 > P_3$ (3) $P_{2} > P_{3} > P_{1}$ (4) $P_1 > P_1 > P_2$
 - Among the following alkaline earth metal halides. one which is covalent and soluble in organic
 - (i) Calcium chloride
 - Strontium chloride
 - (3) Magnesium chloride
 - Beryllium chloride

- Right option for the number of tetrahedral and 72. octahedral voids in hexagonal primitive unit cell are :
 - 8,4 (1)
 - 6, 12 (2)
 - 2,1 (3)
 - 12.6 (4)
- The correct structure of 2,6-Dimethyl-dec-4-ene 73. is:

- The RBC deficiency is deficiency disease of : 74.
 - Vitamin B₁₂ (1)
 - (2)Vitamin B₆
 - Vitamin B1
 - (4)Vitamin B2

80.

75. Which one of the following methods can be used to obtain highly pure metal which is liquid at room temperature?

- Electrolysis (1)
- (2)Chromatography
- (3)Distillation
- (4)Zone refining

What is the IUPAC name of the organic compound 76. formed in the following chemical reaction ?

- (ii) H2O, H (1)
- 2-methyl propan-2-ol (2)
- pentan-2-ol (3)pentan-3-ol
- (4)
- 2-methyl butan-2-ol

77. The major product of the following chemical reaction is : CH3

 $CH - CH = CH_2 + HBr (C_6H_5CO)_2O_2$? CHa CH3

$$CH_{3} \sim CH - CH_{2} - CH_{2} - Br$$

$$CH_{3} \sim CH - CH_{2} - CH_{2} - Br$$

$$CH_{3} \sim CH - CH_{2} - CH_{2} - O - COC_{6}H_{5}$$

$$CH_3$$
 $CH - CH - CH_3$
 CH_3 Br Br

78.

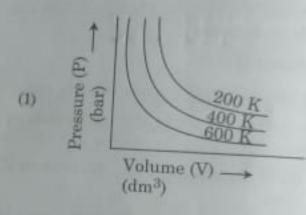
(4)

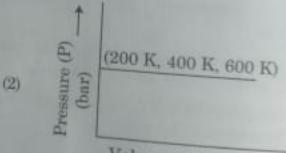
- The incorrect statement among the following 18.: (1)
- Actinoid contraction is greater for element to element than Lanthanoid contraction. (2)
- Most of the trivalent Lanthanoid ions are colorless in the solid state. (3)
- Lanthanoids are good conductors of heat and electricity.
- Actinoids are highly reactive metals. (4) especially when finely divided.

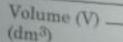
A particular station of All India Radio, New Delhi. 79. broadcasts on a frequency of 1,368 kHz (kilohertz) The wavelength of the electromagnetic radiation emitted by the transmitter is : [speed of light. $c = 3.0 \times 10^8 \text{ ms}^{-1}$]

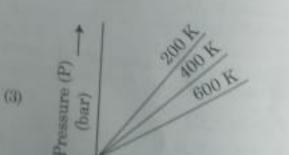
- (1). 219.3 m (2)
- 219.2 m (3)
- 2192 m 64)
- 21.92 cm

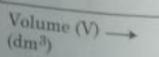
Shot on realme 2

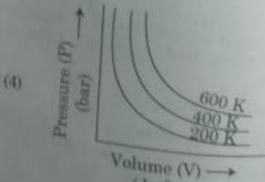

(1)
$$2KClO_{3} \xrightarrow{\Delta} 2KCl + 3O_{2}$$

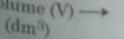

- $Cr_2O_3 + 2A1 \xrightarrow{\Delta} Al_2O_3 + 2Cr$ (2)
- $\mathrm{Fe} + 2\mathrm{HCl} \rightarrow \mathrm{Fe}\mathrm{Cl}_2 + \mathrm{H}_2 \uparrow$ (3)
- $2Pb(NO_3)_2 \rightarrow 2PbO + 4NO_2 + O_2^{\uparrow}$ (4)
- Choose the correct option for graphical 81. representation of Boyle's law, which shows a graph of pressure vs. volume of a gas at different temperatures:


84.


85


NQ.





88

85

1					
24					
20		2	9.0	ą	-
2.9	9	Þ	15	2	74
			- 14		1

84

solution is:

(2)

(4)

83.

8.50

5.50

7.75

6.25

0,1

00 K)

r graphical shows a graph at different The major product formed in dehydrohalogenation reaction of 2-Bromo pentane is Pent-2-ene. This product formation is based on ?

are 3.27 and 4.77 respectively at T (K). The correct option for the pH of dimethylammonium acetate

Saytzeff's Rule (1)

- Hund's Rule (2)
- Hofmann Rule
- Huckel's Rule (4)

Ethylene diaminetetraacetate (EDTA) ion is :

- Hexadentate ligand with four "O" and two 84. (1) "N" donor atoms
 - Unidentate ligand (2)
 - Bidentate ligand with two "N" donor atoms
 - Tridentate ligand with three "N" donor (4) atoms

Tritium, a radioactive isotope of hydrogen, emits 85. which of the following particles ?

- Beta (B⁻) (1)
- Alpha (a) (2)
- Gamma (y)
- (4) Neutron (n)

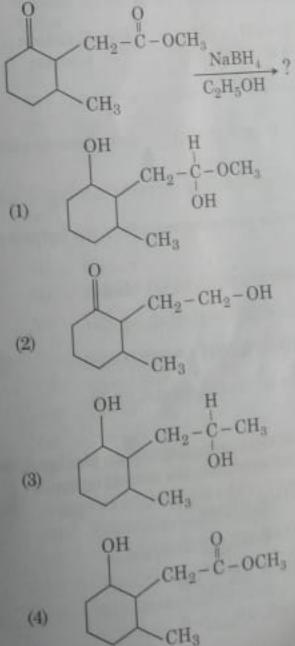
Section - B (Chemistry)

86. Match List - I with List - II.

	List-I		List - II
(a)	[Fe(CN)6]3-	(i)	5.92 BM
(b)	[Fe(H ₂ O) ₆] ³⁺	(ii)	0 BM
(c)	[Fe(CN)6]4-	(iii)	4.90 BM
(d)	[Fe(H2O)6]2+	(iv)	1.73 BM

(1) (a)-(iv), (b)-(ii), (c)-(i), (d)-(iii)

(2) (a)-(ii), (b)-(iv), (c)-(iii), (d)-(i)


(a)-(i), (b)-(iii), (c)-(iv), (d)-(ii) (4)

(a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)

Shot on realme 2

	In wh	ich one of the foll sequence is not rties indicated ag		
	given	sequence is not rties indicated ag HF < HCl	lowing a	Ma Ma
	prope	rties indicate 1	strictly	Brook hents the
	(1)	HF < HCl	APTIBLIE.	1 Storthand
		<hbr <="" hi<="" td=""><td>1</td><td>Increme</td></hbr>	1	Increme
	(2)	$H_{2}O < H_{2}S$		Increasing acidic strength
		<h2se <h2te<="" td=""><td>÷</td><td>Increasing pK,</td></h2se>	÷	Increasing pK,
	(3)	NH3 < PH3		Contractor Contractor
	0.2	<ash3<sph3< td=""><td>÷</td><td>Transie</td></ash3<sph3<>	÷	Transie
	(4)	CO2 <sio2< td=""><td></td><td>acidic character Increasing</td></sio2<>		acidic character Increasing
	100	< SnO ₂ < PbO,	200	Increasing
3	Che	show the second	2	oxidizing power
	a tot [Giv (1) (2) (3)) in a mixture of tal volume of one ven R = 0.082 L at 2.518 2.602 25.18 26.02	litre at	the total pressure (in nd 2 g H ₂ confined in 0° C is : $^{-1}$ K ⁻¹ , T = 273 K]
9.			ingmol	lecules is non-polar in
J.		ure?	mg mo	recutes is non-potar in
		POCla		
	(2)	CH ₂ O SbCl ₅		
		NO ₂	39.	A C.D. Son Anning!
90.		e product form action is :	ed in t	he following chemical
	re	and the second se		
		0 0)	

103

given

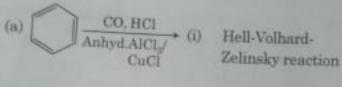
91. The slope of Arrhenius Plot $\left(\ln k \sqrt{s} \frac{1}{T} \right)$ of first order reaction is -5×10^3 K. The value of E_a of the reaction is. Choose the correct option for your answer.

14

- [Given R = 8.314 JK⁻¹mol⁻¹]
- (1) 41.5 kJ mol^{-1}
- (2) 83.0 kJ mol⁻¹
- (3) 166 kJ mol⁻¹
- (4) -83 kJ mol-1

92. Match List - I with List - II.

List-I


(ii)

List-II

Gattermann-Koch

reaction

(iii) Haloform reaction

(b)
$$R - C - CH_3 + NaOX \longrightarrow$$

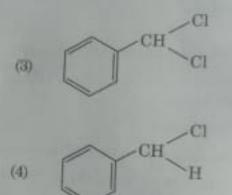
(c)
$$R - CH_2 - OH$$

+ $R'COOH$
Conc. H_2SO_4

(d) $R-CH_2COOH$ (iv) Esterification $\xrightarrow{(i) X_2/Red P}$ (ii) H_2O

Choose the correct answer from the options given below.

- (1) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)
- (2) (a)-(iii), (b)-(ii), (c)-(i), (d)-(iv)
- (3) (a)-(i), (b)-(iv), (c)-(iii), (d)-(ii)
- (4) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)


93. For irreversible expansion of an ideal gas under isothermal condition, the correct option is :

(1)
$$\Delta U = 0, \Delta S_{\text{total}} = 0$$

- (2) $\Delta U \neq 0, \Delta S_{total} \neq 0$
- (3) $\Delta U = 0, \Delta S_{\text{total}} \neq 0$

(4)
$$\Delta U \neq 0, \Delta S_{total} = 0$$

(1) (2) $CH_3 CI_2 CS_2 \times H_3O^+$ $CH(OCrOHCl_2)_2$ $CH(OCrOHCl_2)_2$ $CH(OCOCH_3)_2$

95. Match List - I with List - II.

List - I

List-II

98

39,

100

(a) $2SO_2(g) + O_2(g) \rightarrow$ (i) Acid rain $2SO_3(g)$

(b) HOCl(g) $\xrightarrow{h_{\mathcal{V}}}$ (ii) Smog $\dot{O}H + \dot{C}$

- (c) $CaCO_3 + H_2SO_4 \rightarrow (iii)$ Ozone $CaSO_4 + H_2O + CO_2$ depletion
- (d) $NO_2(g) \xrightarrow{h\nu}$ (iv) Tropospheric NO(g) + O(g) pollution

Choose the correct answer from the options port

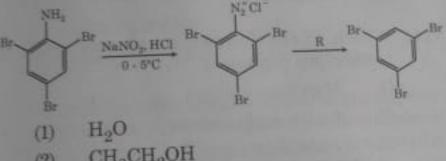
- (1) (a)-(i), (b)-(ii), (c)-(iii), (d)-(iv)
- (2) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
- (3) (a)-(iv), (b)-(iii), (c)-(i), (d)-(ii)
- (4) (a)-(iii), (b)-(ii), (c)-(iv), (d)-(i)

M3

The molar conductivity of 0.007 M acetic acid is 20 S cm² mol⁻¹. What is the dissociation constant of acetic acid ? Choose the correct option.

$$\begin{bmatrix} \Lambda_{\rm H^+}^{\circ} = 350 \text{ S cm}^2 \text{ mol}^{-1} \\ \Lambda_{\rm CH_3C00}^{\circ} = 50 \text{ S cm}^2 \text{ mol}^{-1} \end{bmatrix}$$

 $1.75 \times 10^{-4} \text{ mol } \text{L}^{-1}$ (1) $2.50 \times 10^{-4} \text{ mol } L^{-1}$ (2)


- $1.75 \times 10^{-5} \text{ mol } L^{-1}$ (3)
- $2.50 \times 10^{-5} \text{ mol } \text{L}^{-1}$ (4)

From the following pairs of ions which one is not 97. an iso-electronic pair ?

02-, F-(1)

- Na+, Mg2+ (2)
- Mn2+, Fe3+ (3)
- Fe2+, Mn2+ (4)

The reagent 'R' in the given sequence of chemical 98. reaction is :

HI

CuCN/KCN (4)

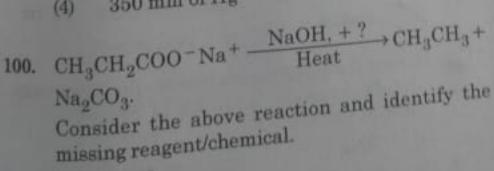
The correct option for the value of vapour pressure of a solution at 45°C with benzene to octane in 99. molar ratio 3 : 2 is :

[At 45°C vapour pressure of benzene is 280 mm Hg and that of octane is 420 mm Hg. Assume Ideal gas]

- 160 mm of Hg (1)
- 168 mm of Hg (2)
- 336 mm of Hg (3)
- 350 mm of Hg (4)

heric

n tions given


n

11

owing

H

96.

 B_2H_6 (1)

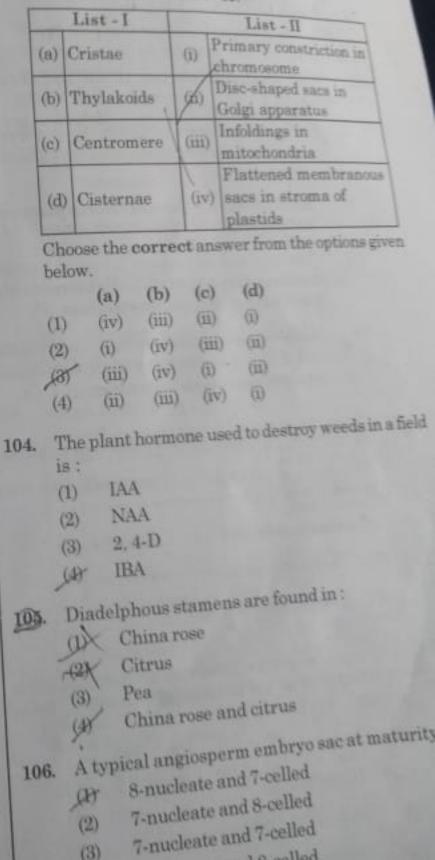
Red Phosphorus (2)

Shot on realme 20 DIBAL-H (4)

Section

15

101.


Whie reser	h of the following algae contains manual ve food material? Ectocarpus	
(1)	Ectocarpus Gracilaria	
(1)	Voluox Ulothrix	

Amensalism can be represented as 102/

Species A(-); Species B(0) (1)

- Species A(+); Species B(+) (2)
- Species A(-); Species B(-) (3)
- Species A(+); Species B(0) (4)

Match List - I with List - II. 103.

8-nucleate and 8-celled

(3)

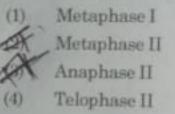
(4)

112

107. Which of the following is a correct sequence of steps in a PCR (Polymerase Chain Reaction) ?

- Denaturation, Annealing, Extension (23)
- Denaturation, Extension, Annealing (2)
- Extension, Denaturation, Annealing (3)
- Annealing, Denaturation, Extension (4)
- 108, The site of perception of light in plants during photoperiodism is:
 - (1) Shootapex
 - (2)Stem
 - (3) Axillary bud
 - 14) Leaf
- 109. Which of the following is an incorrect statement?
 - Mature sieve tube elements possess a conspicuous nucleus and usual cytoplasmic organelles.
 - Microbodies are present both in plant and (2)animal cells.
 - The perinuclear space forms a barrier (3)between the materials present inside the nucleus and that of the cytoplasm.
 - Nuclear pores act as passages for proteins (4) and RNA molecules in both directions between nucleus and cytoplasm.
- 1195 The first stable product of CO2 fixation in sorghum
 - (B) Pyruvic acid
 - (2) Oxaloacetic acid
 - (3) Succinic acid
 - Phosphoglyceric acid (4)
- 111 When gene targetting involving gene amplification is attempted in an individual's tissue to treat disease, it is known as :
 - (1) Biopiracy
 - 127 Gene therapy
 - (3) Molecular diagnosis
 - Safety testing

Shot on realme 2


Match List - I with List - II.

-	List - I	List - II		
(11)	Protoplast fusion	(i)	Totipotency	
	Plant tissue culture	Gitt-	Pomato	
(c)	Meristem culture	(m)	Somaclones	
(d)	Micropropagation	(iv)	Virus free plants	

Choose the correct answer from the options given below.

	(a)	(b)	(c)	(d)
(1)	(iii)	(iv)	(ii)	(i)
(2)	(ii)	(i)	(iv)	(iii)
(3)	(iii)	(iv)	(i)	(ii)
45	(iv)	(iii)	(ii)	(i)

113./ Which of the following stages of meiosis involves division of centromere?

- Which of the following are not secondary 114. metabolites in plants?
 - Morphine, codeine (1)
 - (2)Amino acids, glucose
 - Vinblastin, curcumin (3)
 - Rubber, gums 148
- 115. Which of the following plants is monoecious?
 - ar Carica papaya
 - Chara (2)
 - Marchantia polymorpha (3)
 - Cycas circinalis (4)
- Mutations in plant cells can be induced by: 116.
 - (I) Kinetin
 - (2)Infrared rays
 - Gamma rays
 - USF Zeatin
- 117 During the purification process for recombinant DNA technology, addition of chilled ethanel precipitates out :
 - (1)RNA
 - (2)DNA
 - Histones
 - Polysaccharides 45

t-II	plants follow different pathways in response to environment or phases of life to form different kinds of structures. This ability is called :	124.	DNA brom as:	A strand aide whe	ls on a en viewe	i gel st ed unde	ained with et r UV radiation	M3 hidium
tency	Flasticity				Contraction of the second			. At
clones	Floribility		(2)	Drign	torang	e bands	R	
free	(#/ Diasticity		(3)		red ban			
free plants	(3) Maturity	No.	(4)		t blue b			
options given		125	The	factor	that L	onde i		
	Which of the following is not an application of PCR (Polymerase Chain Reaction)?		The factor that leads to Founder effect in a population is:				lect in a	
	Malagular diagnosis		(2)					
	Come amplification		(3)		tic recor	mbinati	on	
	and the section of isolated protein			Muta				
	 Purification of isonauca protection Detection of gene mutation 	Sec.	(4)	Gene	tic drift	ŧ.		
iosis involves	The amount of nutrients, such as carbon, nitrogen, nhosphorus and calcium present in the soil at any	126.		When the centromere is situated in the midd two equal arms of chromosomes, the chromos is referred as ;		middle of omosome		
	given time, is referred as :		(1)-	Meta	centric			
	(1) Climax		(2)		entric			
	(2) Climax community -	15.11	(3)		netacer	ntrio		
	(3) Standing state	1000	(4)		entric	HULIC		
ot secondary	(0) Standing crop	No.	(4)	Acroc	entric			
	11. The term used for transfer of pollen grains from anthers of one plant to stigma of a different plant which, during pollination, brings genetically different types of pollen grains to stigma, is :		 Genera like Selaginella and Salvinia produce two kinds of spores. Such plants are known as: (1) Homosorus (2) Heterosorus 			roduce two n as :		
	AT Xenogamy		(3)	Home	osporou	18		
onoecious?	(2) Geitonogamy		44	Heter	rosporo	nus		
0110000	(3) Chasmogamy							
		128.	Mat	ch List	t - I wit	th List	- 11.	
	(4) Cleistogamy			List	t - I		List - I	I
	The production of gametes by the parents, formation of zygotes, the F ₁ and F ₂ plants, can be understood from a diagram called		(a)	Cohesi		(i)	liquid phase	e:
nduced by:	 ^{understood} from a diagram called ; Bullet square Punch square Punnett square 		(b)	Adhesi	lhesion (i		Mutual atta among wat molecules	er
			(c)	Surface tension		ion (ii	nnase	
mbinant	Net square			Guttation		(iv	polar sur is	ces
for recombinant chilled ethanol	In the equation GPP - R = NPP R represents :		Choose the correct answer fr			ver from the o	ptions give	
	and the entreme			(a)	(b)	(c)	(d)	
-	netardation factor		10	1000	(iv)	(i)	(iii)	
P	(4) Environment factor		(1)	(ii)			(i)	
	Remained		(2)	(iv)	(iii)	(ii)		
	appration L						1 H H H	
Shot or	⁽¹⁾ Respiration losses		(3)	(iii)	(i)	(iv)	(ii) (iii)	

/

- 129. Gemmae are present in :
 - (1) Mosses (2)
 - Pteridophytes (3)
 - Some Gymnosperms 3,45
 - Some Liverworts
- 180. Which of the following algae produce Carrageen?
 - Green algae (2)
 - Brown algae (3)
 - Red algae (4)
 - Blue-green algae

131. Complete the flow chart on central dogma.

(a) $(DNA \xrightarrow{(b)} mRNA \xrightarrow{(c)} (d)$ (1)

- (a)-Replication; (b)-Transcription; (c)-Transduction; (d)-Protein (2X)
- (a)-Translation; (b)-Replication; (c)-Transcription; (d)-Transduction
- (a)-Replication; (b)-Transcription; (B) (c)-Translation; (d)-Protein (4)
- (a)-Transduction; (b)-Translation; (c)-Replication; (d)-Protein
- 182? Which of the following statements is not correct?
 - Pyramid of biomass in sea is generally (1) inverted.
 - Pyramid of biomass in sea is generally (2)upright.
 - Pyramid of energy is always upright. (3)
 - (4) Pyramid of numbers in a grassland ecosystem is upright.

133 Inspite of interspecific competition in nature, which mechanism the competing species might have evolved for their survival?

- as Resource partitioning
- (2) Competitive release
- (3) Mutualism
- (4) Predation

134. Match List - I with List - II.

	List - I	List - II			
(a)	Lenticels	(i)	Phellogen		
(b)	Cork cambium	(ii)	Suberin deposition		
(c)	Secondary cortex	(iii)	Exchange of gases		
-	Cork	(iv)	Phelloderm		

Choose the correct answer from the options given below.

	(a)	(b)	(c)	(d)
(1)	(iv)	(1)	(iii)	(ii)
(2)	(iiii)	(i)	(iv)	(ii)
(3)	(ii)	(iii)	(iv)	(i)
(4)	(iv)	(ii)	(i)	(iii)

135. Match List - I with List - II.

18

List - II List - I Vascular Cells with active cell (1) tissues division capacity (a) Tissue having all cells Meristematic (b) similar in structure (ii) tissue and function Tissue having (iii) Sclereids different types of cells (c) Dead cells with highly (d) thickened walls and (iv) Simple tissue narrow lumen

Select the correct answer from the options given below.

	(a)	(b)	(c)	(d)
ar	(ii)	(iv)	(i)	(iii)
(2)	(iv)	(iii)	(ii)	6)
(3)	(i)	(ii)	(iii)	(iv)
(4)	(iii)	(ii)	(iv)	6)

Section - B (Biology : Botany)

136. Match Column - I with Column - II.

Column - I			Column - II
(a)	Nitrococcus	(i)	Denitrification
(b)	Rhizobium	(ii)	Conversion of ammonia to nitrite
(c)	Thiobacillus	(iii)	Culous - C to L
(đ)	Nitrobacter		Conversion of atmospheric nitrogen to ammonia

Choose the correct answer from options given

	(a)	(b)	(c)	(d)
yes-	(ii)	(iv)	(i)	(iii)
(2)	6)	(ii)	(iii)	(iv)
(3)	(iii)	(1)	(iv)	(ii)
(4)	(iv)	(iii)	(ii)	0

Shot on realme 2

138.

	Mat			th List - II. List - II			1
137.	1	List	t-1		Prot	teins are	
	6	S phas	e	10	synt	thesized	1
		Gz pha		Xa	i) Inac	tive phi	ise
	T	Quiest		age li	5 mit	erval bet osis and NA repl	initiati
		-		X		A replic	
	(d)	G1 pha	use	10	v) DIN	m the of	tions gi
	Cho	ose the	corre	ct ans	ver iro	III the of	ptions gi
	belo		(b)	(c)	(d)		
		(a)	(ii)		(iv)		
	(1)			(iii)			
		(iv)		(ii)	(iii)		
		(iv)		and and			
	(4)	(ii)	(11)	(m)	41		MC
138.	Mat	ch Col	umn -	I with	Colu	mn - II C	- Pie
		Colu	ımn -	I		C	olumn
	(n)	%¢ K(5	C1+7	Am	+1G1	(i) B	rassica
		₽¢K(5)					Liliacea
		+QP(3+				(iii)	Fabace
							Solana
		⊕¢K ₂₊					
			correc	t ansv	ver fro	m the o	ptions g
	belo			10	(3)		
	-	(a)	(b)	(c)	(d)		
	(1)		(iv)		(1)		
		(1)					
	(3)	(ii)	(iii)	(IV)	(i)		
			(55)	(1)	(iii)		
	(4)	(iv)	(ii)	Ψ	Creek.		
136)						ients is	incorr
130		ich of th	ne follo	wing	staten	ients is ion. role	
130	Whi	ich of th Duri	ne follo ng aer	wing a	staten	ion, role	
139)	Whi	ich of th Duri limit	ne follo ng aer red to t	wing a obic re he ter	staten spirat minal	ion, role stage.	e of oxy
130	Whi	ich of th Duri limit In E	ne follo ng aer ed to t TC (E	wing a obic re he ter lectro	staten spirat minal n Tra	ion, role stage. nsport	e of oxys Chain)
13()	Whi	ich of th Duri limit In E mole	ne follo ng aer ed to t TC (E ecule	wing a obic re he ter lectro of NA	staten spirat minal n Tra ADH +	ion, role stage, nsport · H ⁺ gi	chain)
139	Whi	ich of th Duri limit In E mole 2 AT	ne follo ng aer ed to t TC (E cule P mole	wing a obic re he ter lectro of NA ecules,	statem spirat minal n Tra DH + and o	ion, role stage, nsport · H ⁺ gi	chain)
136)	Whi	ich of th Duri limit In E mole 2 AT to 3	ne follo ng aer ed to t TC (E cule P mole ATP m	wing a obic re he ter lectro of NA ecules, iolecul	statem spirat minal n Tra DH + and o les.	ion, role stage, nsport H ⁺ gi ne FAD	e of oxyg Chain) ives ri H ₂ give
136	Whi (1) (3)	ich of th Duri limit In E mole 2 AT to 3 ATP	ne follo ng aer ed to t TC (E ecule P mole ATP m is syn	wing a obic re he ter lectro of NA ecules, iolecul thesiz	staten spirat minal n Tra DH + and o les. ed thr	ion, role stage. nsport ·H ⁺ gi ne FAD ough co	e of oxyg Chain) ives rii H ₂ give
136)	Whi (1)	ich of th Duri limit In E mole 2 AT to 3. ATP Oxio	ne follo ng aer ed to t TC (E scule P mole ATP m is syn lation	wing a obic re- he ter lectro of NA ecules, iolecul thesiz	statem spirat minal n Tra DH + and o les. ed thr ction	ion, role stage, nsport · H ⁺ gi ne FAD ough co reactio	e of oxyg Chain) ives ri H ₂ give mplex ons pro
130	Whi (1) (2) (3) (4)	ich of th Duri limit In E mole 2 AT to 3. ATP Oxio prote	ne follo ng aer ed to t TC (E cule P mole ATP m is syn is syn dation on gra	wing a obic re- he ter lectro of NA ecules, iolecul thesiz -redu dient i	statem spirat minal n Tra DH + and o les. ed thr ction n resp	ion, role stage, nsport · H ⁺ gi ne FAD ough co reaction	e of oxyg Chain) ives ri H ₂ give mplex ons pro
130	Whi (1) (2) (3) (4) In t	ich of th Duri limit In E 2 AT to 3. ATP Oxic prote	ne follo ng aer ed to t TC (E scule P mole ATP m is syn lation on gra	wing a obic re- he ter lectro of NA scules, iolecul thesiz i-redu dient i	statem spirat minal n Tra DH + and o les. ed thr ction n resp	ion, role stage, nsport · H ⁺ gi ne FAD ough co reaction	e of oxyg Chain) ives ri H ₂ give mplex ons pro
13()	Whi (1) (2) (3) (4) In t N ₁ *	ich of th Duri limit In E 2 AT to 3. ATP Oxic prote	ne follo ng aer ed to t TC (E scule P mole ATP m is syn fation on gra onentia e repr	wing a obic re- he ter lectro of NA ecules, iolecul thesiz thesiz dient i al grow	statem spirat minal n Tra DH + and o les. ed thr ction n resp wth equ	ion, role stage, nsport · H ⁺ gi ne FAD ough co reactio iration	e of oxyg Chain) ives rin H ₂ give mplex ons pro
130	Whi (1) (2) (3) (4) In t N ₁ (1)	ich of th Duri limit In E 2 AT to 3. ATP Oxio proto he expo Noe ^{rt} , The	ne follo ng aer ed to t TC (E scule P mole ATP m is syn fation on gra onentia e repr	wing a obic re- he ter lectro of NA ecules, iolecul thesiz thesiz dient i al grow	statem spirat minal n Tra DH + and o les. ed thr ction n resp wth equ	ion, role stage, nsport · H ⁺ gi ne FAD ough co reactio iration	e of oxyg Chain) ives ri H ₂ give mplex ons pro
136)	Whi (1) (2) (3) (4) In t N ₁ *	ich of th Duri limit In E mole 2 AT to 3. ATP Oxic prote he expo = N ₀ e ^{rt} , The	ne follo ng aer ed to t TC (E cule P mole ATP m is syn lation on gra nentia e repr base o	wing a obic re- he ter lectro of NA ecules, iolecul thesiz -redu dient i al grow resent	statem spirat minal n Tra DH + and o les. ed thr ction n resp vth equ s: ber log	ion, role stage, nsport · H ⁺ gi ne FAD ough co reactio iration uation	e of oxyg Chain) ives ri H ₂ give omplex ons pro
130)	Whi (1) (2) (3) (4) In t N ₁ (1)	ich of th Duri limit In E 2 AT to 3. ATP Oxic proto he expo Noe ^{rt} , The The	ne follo ng aer ed to t TC (E cule P mole ATP m is syn dation on gra nentia e repu base o base o	wing a obic re- he ter lectro of N/ ecules, olecul thesiz dient i al grow resent f num f expo	statem spirat minal n Tra DH + and o les. ed thr ction n resp vth equ s: ber log nentia	ion, role stage, nsport ·H ⁺ gi ne FAD ough co reactio iration	e of oxyg Chain) ives ri H ₂ give omplex ons pro

Clervida

Simple tax

om the options of

y : Botany)

olumn-II.

Column - II

nitrification

onversion of

nitrate

onversion of tmospheric nitrose

ammonia

(d)

(in

(and

wer from options a

Shot on realme 2

mmonia to nitrite

onversion of nitri

19

n

55

Π

ae

ae

en

st?

n is

one

to

ise

uce

141. Which of the following statements is incorrect?

- (1) Both ATP and NADPH+H* are during synthesized non-cyclic photophosphorylation.
- Stroma lamellae have PS I only and lack (2)NADP reductase.
- Grana lamellae have both PS I and PS II. (3)
- Cyclic photophosphorylation involves both (2) PS I and PS II.
- What is the role of RNA polymerase III in the 144 process of transcription in eukaryotes?
 - Transcribes rRNAs (28S, 18S and 5.8S) (1)
 - Transcribes tRNA, 5s rRNA and snRNA (2)
 - Transcribes precursor of mRNA (3)
 - Transcribes only snRNAs (4)
- Now a days it is possible to detect the mutated 143. gene causing cancer by allowing radioactive probe to hybridise its complimentary DNA in a clone of cells, followed by its detection using autoradiography because :
 - mutated gene partially appears on a (I) photographic film.
 - mutated gene completely and clearly (2)appears on a photographic film.
 - mutated gene does not appear on a (3)photographic film as the probe has no complimentarity with it.
 - mutated gene does not appear on (4)photographic film as the probe has complimentarity with it.

Which of the following statements is correct? 144

- Fusion of two cells is called Karyogamy. YY
- Fusion of protoplasms between two motile on non-motile gametes is called plasmogamy.
- Organisms that depend on living plants are (3) called saprophytes.
- Some of the organisms can fix atmospheric (4) nitrogen in specialized cells called sheath cells.

145. Match List - I with List - II

	List - I		List - II
(a)	Protein ,	(j)	C = C double bonds
(D)	tatty acid	V	Phosphodiester bonds
(c)	Nucleic acid /	(iii)	Glycosidic bonds
	Polysaccharide	(iv)	Peptide bonds

Choose the correct answer from the options given below.

	(a)	(b)	(c)	(d)
(1)	(iv)	(i)	(ii)	(iii)
(2)	(i)	(iv)	(iii)	(ii)+
(3)	(ii)	(i)	(iv)	(iii) +
(4)	(iv)	(iii)	(i)	(ii) +

M3

20

146/ Select the correct pair.

M3

- Large colorless empty Subsidiary cells cells in the epidermis of grass leaves
- (2) In dicot leaves, vascular Conjunctive bundles are surrounded tissue by large thick-walled cells
- Cells of medullary rays Interfascicular that form part of cambium cambial ring
- Loose parenchyma cells Spongy rupturing the epidermis parenchyma and forming a lensshaped opening in bark
- 147. DNA fingerprinting involves identifying differences in some specific regions in DNA sequence, called as :
 - (1) Satellite DNA
 - (2) Repetitive DNA
 - (3) Single nucleotides
 - (4) Polymorphic DNA
- 48. Plasmid pBR322 has PstI restriction enzyme site within gene amp^R that confers ampicillin resistance. If this enzyme is used for inserting a gene for β-galactoside production and the recombinant plasmid is inserted in an E.coli strain
 - it will not be able to confer ampicillin resistance to the host cell.
 - (2) the transformed cells will have the ability to resist ampicillin as well as produce β-galactoside.
 - (3) it will lead to lysis of host cell.
 - (*) it will be able to produce a novel protein with dual ability.

Identify the correct statement.

- In capping, methyl guanosine triphosphate is added to the 3' end of hnRNA.
- (2) RNA polymerase binds with Rho factor to terminate the process of transcription in bacteria.
- (3) The coding strand in a transcription unit is copied to an mRNA.
- (4) Split gene arrangement is characteristic of prokaryotes.

159 In some members of which of the following pairs of families, pollen grains retain their viability for months after release ?

- (1) Poaceae ; Rosaceae
 - Poaceae ; Leguminosae
 - Poaceae ; Solanaceae

Rosaceae ; Leguminosae

Section - A (Biology : Zoology)

- 151. Which of the following characteristics is incorrect with respect to cockroach ?
 - (2) A ring of gastric caeca is present at the junction of midgut and hind gut.
 - (2) Hypopharynx lies within the cavity enclosed by the mouth parts.
 - (3) In females, 7th-9th sterna together form a genital pouch.
 - (4) 10th abdominal segment in both sexes, bears a pair of anal cerci.

152. Match List - I with List - II.

List - I			List - II
(a)	Metamerism -	-(j)	Coelenterata
(b)	Canal system	(iji)	Ctenophora
(c)	Comb plates	Airis	Annelida
(d)	Cnidoblasts	(iv)	Porifera

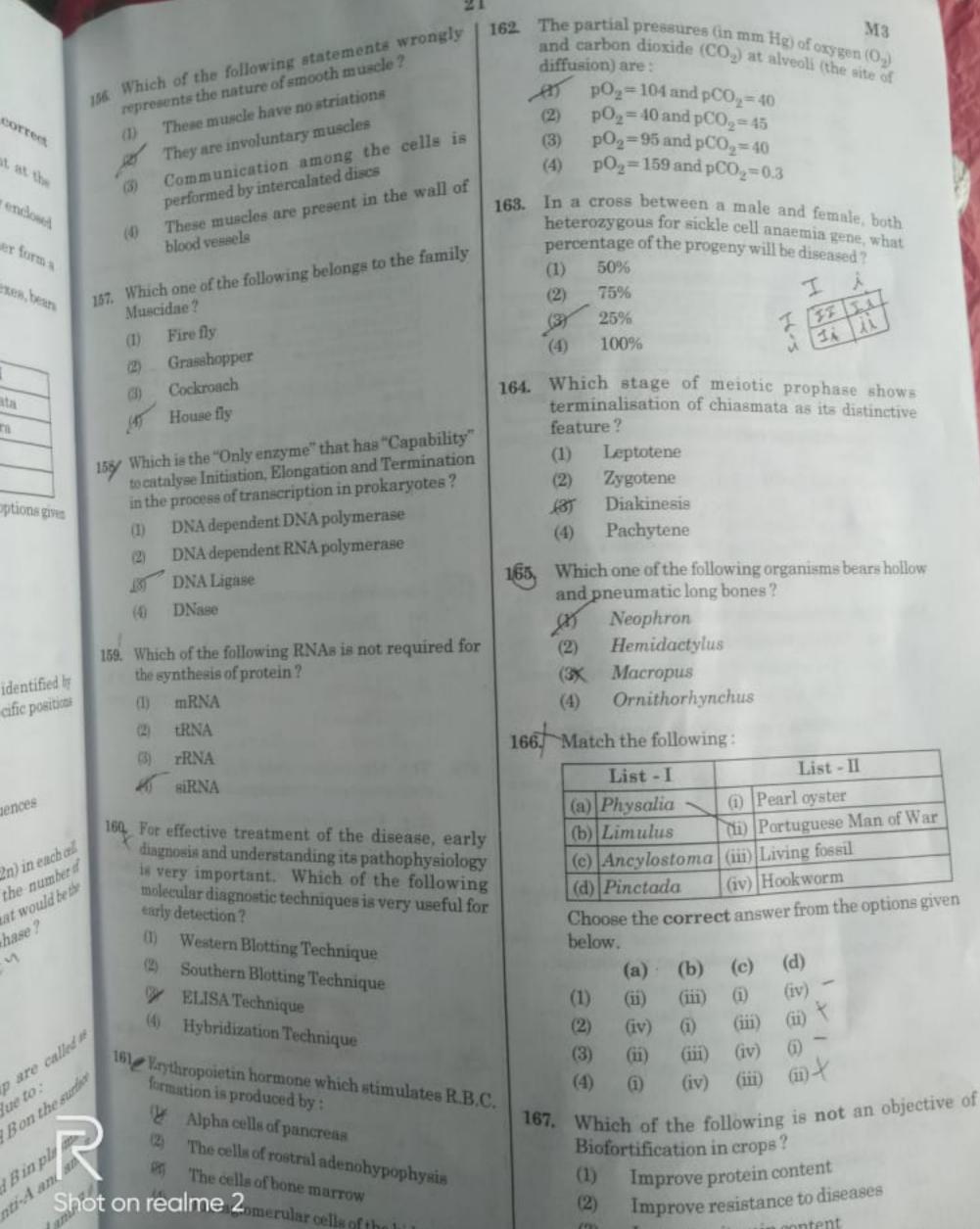
158/

159.

11

01-

Choose the correct answer from the options given below.


	(a)	(b)	(c)	(d)
(1)	(iv)	(iii)	(i)	(ii)×
27	(iii)	(iv)	(i)	(ii) ~
(3)	(iii)	(iv)	(ii)	(1)
(4)	(iv)	(i)	(ii)	(iii)+

- 153. A specific recognition sequence identified by endonucleases to make cuts at specific positions within the DNA is :
 - (1) Degenerate primer sequence
 - (K) Okazaki sequences
 - Palindromic Nucleotide sequences
 - (4) Poly(A) tail sequences
- 154. The fruit fly has 8 chromosomes (2n) in each cell. During interphase of Mitosis if the number of chromosomes at G₁ phase is 8, what would be the number of chromosomes after S phase ?
 - (2) 16 Wh new
 - (2) 16
 - (3) 4
 - (4) 32

155. Persons with 'AB' blood group are called as "Universal recipients". This is due to:

- (f) Absence of antigens A and B on the surface of RBCs
- (2) Absence of antigens A and B in plasma
- (3) Presence of antibodies, anti-A and anti-B on RBCs
- (4) Absence of antibodies, anti-A and anti-B, in plasma

Ř

21

The cells of bone marrow

ata

ta.

Improve resistance to diseases

Improve vitamin content (3)

(2)

sutviont and mineral content

168. If Adenine makes 30% of the DNA molecule, what will be the percentage of Thymine, Guanine and Cytosine in it ?

- (4) T: 20; G: 25; C: 25
- 169. Match List I with List II.

List - I		List - II		
(n)	Vaults	(i)	Entry of sperm through Cervix is blocked	
(b)	IUDs ·	(ji)	Removal of Vas deferens	
(c)	Vasectomy	(iii)	Phagocytosis of sperms within the Uterus	
(đ)	Tubectomy	(iv)	Removal of fallopian tube	

Choose the correct answer from the options given below.

	(a)	(b)	(c)	(d)
(1)	(iv)	(ii)	(1)	(iii)
(2)	(i)	(iii)	(ii)	(iv) -
(3)	(ii)	(iv)	(iii)	(i)
(4)	(iii)	(ii)	(iv)	Gii

170. Veneral diseases can spread through :

- (a) Using sterile needles
- (b) Transfusion of blood from infected person
- (c) Infected mother to foetus
- (d) Kissing
- (e) Inheritance

Choose the correct answer from the options given below.

- (1) (a), (b) and (c) only
- (2) (b), (c) and (d) only
- (b) and (c) only
- (4) (a) and (c) only

171. The centricle undergoes duplication during :

- (D S-phase
- (2) Prophase
- (3) Metaphase
- (4) Gaphase

172 Receptors for sperm binding in mammals are present on :

- (1) Corona radiata
- (2) Vitelline membrane
- (3) Perivitelline space
- (A) Zona pellucida

22

Dobson units are used to measure thickness of

- (D) CFCs
- (2) Stratosphere
- (3) Ozone
- (4) Troposphere

174. Match List - I with List - II.

-	List - I	List - II	
(0)	Aspergillus niger	(1)	Acotic Acid
	Acetobacter aceti	(11)	Lactic Acid
	Clostridium butylicum	(iii)	Citric Acid
1.000	Lactobacillus	(TV)	Butyrie Acid

Choose the correct answer from the options given below.

	(n)	(b)	(c)	(d)
ar	(iii)	(i)	(iv)	(ii)
(2)	(1)	(ii)	(iii)	(iv)
(3)	(ii)	(iii)	(1)	(iv)
(4)	(iv)	(iii)	(i)	(iii)

(175). Identify the incorrect pair.

(1)	Alkaloids		Codeine
(2)	Toxin	47	Abrin
(3)	Lectins		Concanavalin /
(4)	Drugs	-	Ricin

- 176. The organelles that are included in the endomembrane system are :
 - (1) Endoplasmic reticulum, Mitochondria, Ribosomes and Lysosomes
 - Endoplasmic reticulum, Golgi complex, Lysosomes and Vacuoles
 - (3) Golgi complex, Mitochondria, Ribosomes and Lysosomes
 - (4) Golgi complex, Endoplasmic reticulum, Mitochondria and Lysosomes
- 177. Chronic auto immune disorder affecting neuro muscular junction leading to fatigue, weakening and paralysis of skeletal muscle is called as :
 - () Arthritis
 - (2) Muscular dystrophy
 - (3) Myasthenia gravis
 - (4) Gout

a correct options.	183. Which one of the following in M3
With regard to insulin choose correct options.	 183. Which one of the following is an example of (1) CuT
With regard to insulin choose converte insulin. C-peptide is not present in mature insulin.	LNG 20
and a immulia produced w	(3) Cu 7
(b) The inner Copeptide.	(4) Multiload 375
The pro-insulin has C-peptide.	
(c) The pro-insulin has C-peptide of insulin are A-peptide and B-peptide of insulin are	184. Sphincter of oddi is present at :
(d) A-peptide and B-peptide of finders. interconnected by disulphide bridges.	(1) Heo-caecal tubotica
the correct answer from the options given	Junction of hepato-pancreatic duct and
The State of	(3) Gastro-oesophageal junction
(b) and (d) only +	(4) Junction of jejunum and duodenum
(1) (b) and (c) only + (c) (b) and (c) only +	Produke Ciller
(b) and (c) only.	185. Read the following statements.
(a), (c) and (d) only.	 (a) Metagenesis is observed in Helminths. (b) Echinoderms are triploblastic and the
(a) and (d) only	and a standard and a standard and a standard and a standard a st
During the process of gene amplification using	(c) Round worms have organ-system level of
179. During the process of gene amplification annual PCR, if very high temperature is not maintained	body organization.
pCR, if very men which of the following and	(d) Comb plates present in ctenophores help in
in the beginning, then the of PCR will be affected first?	
(1) Annealing	Water vascular system is characteristic of Echinoderms.
(2) Extension	Choose the correct answer from the options given
Denaturation	below.
	(1) (c), (d) and (e) are correct
(4) Ligacion	(a), (b) and (c) are correct
which enzyme is responsible for the conversion	(3) (a), (d) and (e) are correct
(4) Ligation (4) Ligation (4) Which enzyme is responsible for the conversion (50) Which enzyme is responsible for the conversion inactive fibrinogens to fibrins ?	(4) (b), (c) and (e) are correct
Thrombin	Section - B (Biology : Zoology)
	in not an important component
(2) Renin	186. Which of these is not an important in humans? initiation of parturition in humans?
(3) Epinephrine	
e (4) Thrombokinase	(2) Synthesis of prostaglandins
and the second second	(2) Synthesis of proceed (3) Release of Oxytocin
a, SI. Succus entericus is referred to as :	
(I) Pancreatic juice	(4) Release of Front which of
ex. Intestinal juice	 (4) Release of Production (4) R
	187. During musculars following events occur? following disappears
and (3) Gastric juice (4) Chyme	(a) H zone unders
	for the (b) 'A' band widens (b) 'A' band widens (c) 'A' band reduces in width (c) 'I' band reduces in width (c) Myosine hydrolyzes ATP, releasing the (c) 'A' band widens
2. Select the favourable conditions required f	or the tel T band Tody Jes ATP, render
formation of oxyhaemoglobin at the alveoli.	(a) Myosine uy are pulled
	lower (6) Myosine hydroid and Pi and Pi Z-lines attached to actins are pulled in great answer from the option
ening III High pO ₂ , low pCO ₂ , less H ⁺ , temperature	higher (6) Z-lines attached to actins are puncted (6) Z-lines attached to actins are puncted Choose the correct answer from the option
(2) Low nO high nCO more H+	higher L Choose the court
now pog, mgn poog, more ri ,	health a the faither
temperature	higher (2) (a), (c), (d), (e) only (2) (a), (b), (c), (d) only
⁽³⁾ High pO ₂ , high pCO ₂ , less H ⁺ ,	higher (2) (a), (b), (c), (d) only (3) (b), (c), (d), (e) only (b), (c), (d), (e) only
temperature	$\begin{array}{c} (2) \\ (3) \\ (b), (c), (d), (c) \\ (b), (d), (e), (a) \text{ only} \\ (b), (d), (e), (a) \end{array}$
n realme 2	higher! (b), (d), (e), (d)

avalin A

: Jo same

t - II tic Acid stic Acid aric Acid

tyric Acid

options given

ncluded in

n, Mitochondh n, Golgi comp dria, Ribosome alasmic retict somes

der affecting fatigue, weak scle is

Shot

temperature

23

- (4)

	•	

		-		

92

- owing are the statements with reference 188 Lipids having only single bonds are called 447 (n)
 - unsaturated fatty acids.
 - Lecithin is a phospholipid. (b)
 - Trihydroxy propane is glycerol.
 - Palmitic acid has 20 carbon atoms including (d) carboxyl carbon.

Arachidonic acid has 16 carbon atoms. Choose the correct answer from the options given helow.

- (a) and (b) only (1)
- (25 (c) and (d) only
- (b) and (c) only (3)
- (b) and (e) only (4)
- 189. Which of the following is not a step in Multiple Ovulation Embryo Transfer Technology (MOET)?
 - Cow is administered hormone having LH ar like activity for super ovulation
 - Cow yields about 6-8 eggs at a time (2)
 - Cow is fertilized by artificial insemination (3)
 - Fertilized eggs are transferred to surrogate (4) mothers at 8-32 cell stage

Identify the types of cell junctions that help to stop 190. the leakage of the substances across a tissue and facilitation of communication with neighbouring cells via rapid transfer of ions and molecules.

- Gap junctions and Adhering junctions, (E) respectively.
- Tight junctions and Gap junctions, (2) respectively.
- Adhering junctions and Tight junctions, respectively.
- Adhering junctions and Gap junctions, (4)respectively.
- 191. The Adenosine deaminase deficiency results into :
 - Dysfunction of Immune system 290
 - Parkinson's disease (2)
 - (3) Digestive disorder
 - Addison's disease (4)

The codon 'AUG' codes for methionine and Statement I : phenylalanine.

Statement II : 'AAA' and 'AAG' both codons code for the aming

In the light of the above statements, choose the correct answer from the options given below

Both Statement I and Statement II are (1)

- true
- Both Statement I and Statement II are (2) false
- Statement I is correct but Statement II (3) us false
- Statement I is incorrect but (4) Statement II is true
- Match List I with List II. 193.

List - 1 (a) Scapula		List - Il		
		(A)	Cartilaginous joints	
	Cranium	(ii)	Flat bone	
(a)	Stornum	the second second	Fibrous joints	
(5)	Vertebral column	(iv)	Triangular flat bone	

Choose the correct answer from the options given below.

	(a)	(b)	(c)	(d)
(1)	(i)	(iii)	(ii)	(iv) +
. 21	(ii)	(iii)	(iv)	(1)
(3)	(iv)	(ii)	(iii)	(i) ×
(4)	(iv)	(iii)	(11)	(i) ~

^{194.} Match List - I with List - II.

List - I		List - II		
(a)	Filariasis	1 1 1 1	Haemophilus influenzae	
(b)	Amoebinsis	(11)	Trichophyton	
(c)	Pneumonia	(iii)	Wuchereria bancrofti	
(d)	Ringworm	(iv)	Entamoeba histolytica	

Choose the correct answer from the options given below.

	(a)	(b)	(c)	(d)
(1)	(iv)	(1)	(iiii)	(ii) X
-125	(iii)	(iv)	(i)	(ii) —
(3)	(1)	(ii)	(iv)	(iii) L
(4)	(ii)	(iii)	(i)	(iv) –

19

	 _	
-		
-		

Following are the statements about prostomium

- of earthworm. 195, It serves as a covering for mouth.
 - It helps to open cracks in the soil into which (1) (b) it can crawl.
 - It is one of the sensory structures.
 - It is the first body segment.

Choose the correct answer from the options given

- below.
- (a), (b) and (c) are correct (1)
- (a), (b) and (d) are correct (2) (a), (b), (c) and (d) are correct
- BT
- (b) and (c) are correct (4)

Which of the following secretes the hormone, relaxin, during the later phase of pregnancy ? 196.

- Graafian follicle (1)
- Corpus luteum (2)
- Foetus (3)
- Uterus UR

197. Which one of the following statements about Histones is wrong?

- Histones are organized to form a unit of (1) S molecules.
 - The pH of histones is slightly acidic. (2)
- Histones are rich in amino acids Lysine and Arginine.
- Histones carry positive charge in the side (4) chain.

198. Assertion (A):

A person goes to high altitude and experiences altitude sickness' with symptoms like breathing difficulty and heart palpitations.

Reason (R):

Shot on realme 2

Due to low atmospheric pressure at high altitude, the body does not get sufficient oxygen.

- In the light of the above statements, choose the correct answer from the options given below.
- Both (A) and (R) are true and (R) is the ar correct explanation of (A)
- Both (A) and (R) are true but (R) is not the (2) correct explanation of (A)
- (A) is true but (R) is false
- (A) is false but (R) is true (4)

199. Match List - I with List - II

	List -1	-	
(a)	Allen's Rule	(i)	Lint - II
(b)	Physiological adaptation	(ii)	Kangaroo rat Desert lizard
(c)	Behavioural adaptation		Marine fish at depth
(d)	Biochemical adaptation	(iv)	Polar seal

Choose the correct answer from the options given

	(a)	(b)	(c)	(d)
(1)	(iv)	(ii)	(iii)	(i)
(2)	(iv)	(i)	(iii)	(ii)
(3)	(iv)	(ī)	(ii)	(iii)
(4)	(iv)	(iii)	(ii)	(i)

Match List - I with List - II. 200.

	List - I		List - II			
(a)	Adaptive radiation	(i)	Selection of resistant varieties due to excessive use of herbicides and pesticides			
(b)	Convergent evolution	(ii)	Bones of forelimbs in Man and Whale			
(c)	Divergent evolution	(iii)	Wings of Butterfly and Bird			
(d)	Evolution by anthropo- genic action	(iv)	Darwin Finches			

Choose the correct answer from the options given below.

	(a)	(b)	(c)	(d)
(1)	(iv)	(iii)	(ii)	(i)
(2)	(iii)	(iii)	(i)	(iv)
(3)	(ii)	(i)	$(\bar{i}v)$	(iii)
(4)	(i)	(iv)	(iii)	(ii)

-000-

M3

no.			
-	81	ia.	

e amino oose the

elow. nt II are

nt II are

ment II

but

ct

its.

18 joints

flat bone

tions given.

ancrofti

istolytica

ptions given