CCE PF
 CCE PR
 NSR \& NSPR

KARNATAKA SECONDARY EDUCATION EXAMINATION BOARD, MALLESHWARAM, BANGALORE - 560003

S. S. L. C. EXAMINATION, MARCH/APRIL, 2022

యూదరి లుతృరగభృ
MODEL ANSWERS
దినాంళ : 04. 04. 2022]

Date: 04.04. 2022]
Code no. : 81-E

ఎిజ్జయ : గగణిత
 Subject : MATHEMATICS

(Private Fresh \& Private Repeater / NSR \& NSPR)
(ఇంగ్లిషద ఱూధ్యము / English Medium)

[Max. Marks : 100

Qn. Nos.	Ans. Key	Value Points	Marks allotted
I. $\begin{aligned} & \\ & \\ & 1 .\end{aligned}$	(B)	Multiple choice : $8 \times 1=8$ The graphical representation of pair of lines $x+2 y-4=0$ and $2 x+4 y-12=0$ is (A) intersecting lines (B) parallel lines (C) coincident lines (D) perpendicular lines. Ans. : parallel lines	1

Qn. Nos.	Ans. Key	Value Points	Marks allotted
2.		The common difference of the Arithmetic progression	
		$8,5,2,-1, \ldots$ is	
		$\begin{array}{ll}\text { (A) }-3 & \text { (B) }-2\end{array}$	
		(C) 3 (D) 8.	
		Ans. :	
	(A)	- 3	1
3.		The standard form of $2 x^{2}=x-7$ is	
		$\begin{array}{ll}\text { (A) } 2 x^{2}-x=-7 & \text { (B) } 2 x^{2}+x-7=0\end{array}$	
		$\begin{array}{ll}\text { (C) } 2 x^{2}-x+7=0 & \text { (D) } 2 x^{2}+x+7=0 .\end{array}$	
		Ans. :	
	(C)	$2 x^{2}-x+7=0$	1
4.		The value of $\cos \left(90^{\circ}-30^{\circ}\right)$ is	
		(A) -1 (B) $\frac{1}{2}$	
		(C) $0 \quad$ (D) 1.	
		Ans. :	
	(B)	$\frac{1}{2}$	1
5.		The distance of the plant $P(x, y)$ from the origin is (A) $\sqrt{x^{2}+y^{2}}$ (B) $x^{2}+y^{2}$	
		(C) $x^{2}-y^{2}$ (D) $\sqrt{x^{2}-y^{2}}$.	
		Ans. :	
	(A)	$\sqrt{x^{2}+y^{2}}$	1

| Qn.
 Nos. | Ans.
 Key | Value Points |
| ---: | :--- | :--- | :--- |
| 6. | | In a circle, the angle between the tangen
 point of contact is |
| (A) 30° (B) 60°
 (C) 90° (D) 180°. | | |

(A) $\pi\left(r_{1}+r_{2}\right) l$
(B) $\pi\left(r_{1}-r_{2}\right) l$
(C) $\frac{1}{3} \pi h\left(r_{1}^{2}-r_{2}{ }^{2}-r_{1} r_{2}\right)$
(D) $\frac{1}{3} \pi h\left(r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right)$

Ans. :
(D) $\frac{1}{3} \pi h\left(r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right)$

Surface area of a sphere of radius ' r ' unit is
8.
(A) πr^{2} sq.units
(B) $2 \pi r^{2}$ sq.units
(C) $3 \pi r^{2}$ sq.units
(D) $4 \pi r^{2}$ sq.units.

Ans. :
(D)
$4 \pi r^{2}$ sq.units

Qn. Nos.	Value Points	Marks allotted
II.	Answer the following questions : (Direct answers from Q. Nos. 9 to 16 full marks should be given)	
9.	If the pair of linear equations in two variables are inconsistent, then how many solutions do they have? Ans.: No solution	

10. In an Arithmetic progression if ' a ' is the first term and ' d ' is the common difference, then write its $n^{\text {th }}$ term.

Ans. :
$a_{n}=a+(n-1) \mathrm{d}$
Write the standard form of quadratic equation.
Ans. :
$a x^{2}+b x+c=0$
Write the value of $\frac{\sin 18^{\circ}}{\cos 72^{\circ}}$.

Ans. :

1
13. Write the distance of the point (4,3) from x-axis.

Ans. :

3

Find the median of the scores $6,4,2,10$ and 7.
Ans. :
6
15. Write the statement of "Basic Proportionality" theorem (Thales theorem).

Ans. :
If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

Note : If correct alternate statement is written give full marks.
In the given figure, write the formula used to find the curved surface area of the cone.

Ans. :
Curved surface area of cone $=\pi r l$ sq units
III.

Answer the following questions :
Solve the given pair of linear equations by Elimination method :

$$
\begin{aligned}
& 2 x+y=8 \\
& x-y=1
\end{aligned}
$$

Ans. :

$$
\begin{equation*}
2 x+y=8 \tag{1}
\end{equation*}
$$

Adding

$$
\begin{gather*}
x-y=1 \tag{2}\\
\hline 3 x=9
\end{gather*}
$$

19.

Find the sum of first 20 terms of the Arithmetic progression 10, 15, 20, \qquad by using formula.

OR
Find the sum of first 20 positive integers using formula.
Ans. :

$$
a=10, d=15-10=5, n=20, S_{20}=?
$$

$$
S_{n}=\frac{n}{2}[2 a+(n-1) \mathrm{d}]
$$

Value Points		
S_{20}	$=\frac{20}{2}[2(10)+(20-1) 5]$	$1 / 2$
	$=10[20+19 \times 5]$	
	$=10[20+95]$	
	$=10 \times 115$	
S_{20}	$=1150$	$1 / 2$

Note : Any other suitable method is followed to get the correct answer,

Marks allotted full marks should be given.

OR
$S_{n}=\frac{n(n+1)}{2}$
$n=20$
$S_{20}=\frac{20(20+1)}{2}$
$=\frac{20 \times 21}{2}$
$=10 \times 21$
$S_{20}=210$
Find the roots of $x^{2}+5 x+2=0$ by using quadratic formula. Ans. :

$$
\begin{aligned}
& x^{2}+5 x+2=0 \\
& \begin{aligned}
& a x^{2}+b x+c=0 \\
& a= 1, b=5, c=2 \\
& x= \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
&=\frac{-5 \pm \sqrt{5^{2}-4(1)(2)}}{2(1)} \\
&=\frac{-5 \pm \sqrt{25-8}}{2} \\
&=\frac{-5 \pm \sqrt{17}}{2}
\end{aligned}
\end{aligned}
$$

Find the value of the discriminant and hence write the nature of roots of the quadratic equation $x^{2}+4 x+4=0$.
Ans. :

$$
\begin{aligned}
& x^{2}+4 x+4=0 \\
& a x^{2}+b x+c+0 \\
& a=1, \quad b=4, \quad c=4
\end{aligned}
$$

Discriminant $=b^{2}-4 a c$

$$
\begin{aligned}
& =4^{2}-4(1)(4) \\
& =16-16 \\
& =0
\end{aligned}
$$

Nature of roots : Two equal real roots.
Find the distance between the points $A(2,6)$ and $B(5,10)$ by using distance formula.

OR
Find the coordinates of the mid-point of the line segment joining the points $P(3,4)$ and $Q(5,6)$ by using 'mid-point' formula.
Ans. :

$$
\begin{array}{rc}
A(2,6) & B(5,10) \\
x_{1}, y_{1} & x_{2}, y_{2}
\end{array}
$$

Distance formula $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
=\sqrt{(5-2)^{2}+(10-6)^{2}}
$$

$$
=\sqrt{25}
$$

$$
=\sqrt{3^{2}+4^{2}}
$$

$$
=\sqrt{9+16}
$$

$$
d=5 \text { units }
$$

$$
1 / 2
$$

OR

$$
\begin{array}{rr}
P(3,4) & Q(5,6) \\
x_{1}, y_{1} & x_{2}, y_{2}
\end{array}
$$

Mid-point formula $(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

Qn.

 Nos.吅

Value Points \quad	Marks
allotted	

Draw a line segment of length 10 cm and divide it in the ratio $2: 3$ by geometric construction.

Ans. :

Drawing line segment (10 cm) $1 / 2$
Constructing acute angle at $A \quad 1 / 2$
Marking 5 arcs $\quad 1 / 2$
constructing $A_{2} C| | A_{5} B \quad 1 / 2$

2

2
24. In the given figure find the values of
i) $\sin \theta$
ii) $\tan \alpha$.

Qn.

Value Points	

Ans. :
(i) $\sin \theta=\frac{12}{13}$
(ii) $\tan \alpha=\frac{5}{12}$

In the given figure identify and name the following :
i) Chord
ii) Secant of the circle.

Ans. :
(i) $X Y$ 1
(ii) $K N$

What is an Arithmetic progression ? Write its general form.

Ans. :

An arithmetic progression is a list of numbers in which each term is obtained by adding a fixed number to the preceding term except the first term.

General form : $a, a+d, a+2 d, a+3 d$ \qquad
Note : If any other correct alternate definition is written for Arithmetic progression, give full marks.

Qn. Nos.	Value Points	Marks allotted

27. Construct a pair of tangents to a circle of radius 4 cm which are inclined to each other at an angle of 60°.

Ans. :

$$
\angle A O B=180^{\circ}-60^{\circ}=120^{\circ}
$$

Drawing a circle of radius 4 cm
Construction angle 120°
Drawing 2 tangents $(1 / 2+1 / 2)=$
28. Find the roots of the equation $(x+3)(x-4)=0$.

Ans. :
$(x+3)(x-4)=0$
$x+3=0$
$x=-3$
or
$x-4=0$
$x=4$
29. If the point $P(0, y)$ is equidistant from the points $A(3,0)$ and $B(3,2)$, then find the value of y.

Ans. :

Squaring on both sides

$$
\begin{aligned}
9+y^{2} & =9+4+y^{2}-4 y \\
4 y & =4 \\
y & =\frac{4}{4} \\
y & =1
\end{aligned}
$$

In $\triangle A B C$ as shown in the figure, $E F \| B C$. If $A E=1 \mathrm{~cm}, B E=2 \mathrm{~cm}$ and $A F=2 \mathrm{~cm}$, then find $F C$.

Ans. :
In $\triangle A B C, E F| | B C$.
By Basic proportionality theorem,

$$
\frac{A E}{E B}=\frac{A F}{F C}
$$

Qn.

Value Points	Marks allotted

$$
F C=4 \mathrm{~cm}
$$

$A B C$ is an isosceles triangle right angled a
C. Prove that $A B^{2}=2 A C^{2}$.

Ans. :
In $\triangle A B C, \angle C=90^{\circ}$

$$
\begin{array}{rlrr}
A B^{2} & =A C^{2}+B C^{2} & {[\text { By Pythagoras theorem }]} & 1 / 2 \\
A B^{2} & =A C^{2}+A C^{2} & {[\because B C=A C] \text { Isosceles triangle }} & 1 \\
\therefore & A B^{2} & =2 A C^{2} &
\end{array}
$$

32. If $\tan A=\cot B$, then prove that $A+B=90^{\circ}$.

Ans. :
$\tan A=\cot B$
$\cot \left(90^{\circ}-A\right)=\cot B$

Alternate method

$$
\begin{gathered}
\tan A=\cot B \\
\tan A=\tan \left(90^{\circ}-B\right) \\
A=90^{\circ}-B \\
A+B=90^{\circ}
\end{gathered}
$$

$$
\begin{array}{r}
90^{\circ}-A=B \\
\text { or } \quad A+B=90^{\circ}
\end{array}
$$

2
$1 / 2$

$$
F C=2 \times 2
$$ $A B^{2}$.

Qr. .

-

-

33. Two cubes each of side 4 cm are joined end to end. Find the volume of the resulting cuboid.

Ans. :
Length of cuboid $l=(4+4)$

$$
l=8 \mathrm{~cm}
$$

$1 / 2$
$\left.\begin{array}{l}\text { Breadth of cuboid } b=4 \mathrm{~cm} \\ \text { Height of cuboid } h=4 \mathrm{~cm}\end{array}\right\}$
$V=l \times b \times h \quad 1 / 2$
$=8 \times 4 \times 4$
$V=128 \mathrm{~cm}^{3}$
$1 / 2$
Find the area of the quadrant of a circle of radius 7 cm .
[Take $\pi=\frac{22}{7}$]
Ans. :
Area of the quadrant

$$
\begin{aligned}
\text { of a circle } & =\frac{\theta}{360^{\circ}} \times \pi r^{2} \\
& =\frac{90^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 7^{2} \\
& =\frac{90^{\circ}}{360^{\circ} / 4_{2}} \times \frac{222^{11}}{7} \times 7 \times 7 \\
& =\frac{77}{2} \mathrm{~cm}^{2} \\
& =38.5 \mathrm{~cm}^{2}
\end{aligned}
$$

Alternate method

$$
\begin{aligned}
\text { Area of quadrant of a circle } & =\frac{1}{4} \times \pi r^{2} \\
& =\frac{1}{4} \times \frac{22}{7} \times 7^{2} \\
& =\frac{1}{\mathscr{H}_{2}} \times \frac{22^{11}}{7} \times X \times 7
\end{aligned}
$$

Qn.
吅

Value Points	Marks
allotted	

IV.

Answer the following questions:
35. The sum of first 9 terms of an Arithmetic progression is 144 and its 9 th term is 28 then find the first term and common difference of the Arithmetic progression.

Ans. :
$S_{n}=\frac{n}{2}[a+l)$
$S_{9}=\frac{9}{2}[a+28]$
$\left.\begin{array}{l}144=\frac{9}{2}[a+28] \\ \frac{164 \times 2}{9}=a+28\end{array}\right\}$
$32=a+28$
$\left.\begin{array}{l}a=32-28 \\ a=4\end{array}\right\}$
$a_{n}=a+(n-1) \mathrm{d}$
$\left.\begin{array}{l}a_{9}=4+(9-1) \mathrm{d} \\ 28=4+8 d\end{array}\right\}$
$24=8 d$
$d=\frac{24}{8}$
$d=3$
12
2
$1 / 2$

* Any other correct alternate method, may be given full marks.

Marks allotted
36.

The diagonal of a rectangular field is 60 m more than its shorter side. If the longer side is 30 m more than the shorter side, then find the sides of the field.

OR
In a right angled triangle, the length of the hypotenuse is 13 cm . Among the remaining two sides, the length of one side is 7 cm more than the other side. Find the sides of the triangle.

Ans. :

$A B C D \rightarrow$ rectangular field
Let $A B=x \mathrm{~m}$ then $B C=(x+30) \mathrm{m}, \quad A C=(x+60) \mathrm{m}$

$$
A C^{2}=A B^{2}+B C^{2}
$$

$(x+60)^{2}=x^{2}+(x+30)^{2}$
$\not \chi^{\not 2}+60^{2}+2 \times x \times 60=\not \chi^{\mathscr{2}}+x^{2}+30^{2}+2 \times x \times 30$
$3600+120 x=x^{2}+900+60 x$
$x^{2}+900+60 x-3600-120 x=0$
$x^{2}-60 x-2700=0$
$x^{2}-90 x+30 x-2700=0$
$x(x-90)+30(x-90)=0$
$(x-90)(x+30)=0$
$x-90=0$ or $x+30=0$
$x=90$ or $x=-30$ (not considered)
$\therefore \quad x=90$
$A B=x=90 \mathrm{~m}$
$B C=(x+30)=90+30=120 \mathrm{~m}$
OR
Qn.

Value Points	Marks
allotted	

Let $A B C$ be a right angled triangle.
Let $A C=13 \mathrm{~cm}, A B=x \mathrm{~cm}$ and $B C=(x+7) \mathrm{cm}$

$$
\begin{aligned}
& A C^{2}=A B^{2}+B C^{2} \\
& 13^{2}=x^{2}+(x+7)^{2} \\
& \Rightarrow 169=x^{2}+x^{2}+49+14 x \\
& \Rightarrow 169=2 x^{2}+49+14 x \\
& \Rightarrow 2 x^{2}+49+14 x-169=0 \\
& \Rightarrow 2 x^{2}+14 x-120=0 \\
& \div 2, \quad x^{2}+7 x-60=0 \\
& \quad \Rightarrow x^{2}+12 x-5 x-60=0 \\
& \Rightarrow x(x+12)-5(x+12)=0 \\
& \Rightarrow(x+12)(x-5)=0 \\
& x+12=0 \text { or } x-5=0 \\
& x=-12 \quad \text { or } x=5
\end{aligned}
$$

$$
\text { (not considered) } \quad \therefore x=5
$$

$$
A B=x=5 \mathrm{~cm}
$$

$$
B C=(x+7)=5+7=12 \mathrm{~cm}
$$

Qn. Nos.	Value Points	Marks allotted

37.

Prove that
$(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}=7+\tan ^{2} A+\cot ^{2} A$.
OR
Prove that $: \sec \theta(1-\sin \theta)(\sec \theta+\tan \theta)=1$.
Ans. :

$$
\begin{aligned}
\text { LHS } & =(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2} \\
& =\sin ^{2} A+\operatorname{cosec}^{2} A+2 \sin A \cdot \operatorname{cosec} A+\cos ^{2} A+\sec ^{2} A
\end{aligned}
$$

$$
+2 \cos A \cdot \sec A \quad 1
$$

$$
=\underline{\sin ^{2} A+\cos ^{2} A+\operatorname{cosec}^{2} A+2 \sin A \cdot \frac{1}{\sin A}+\sec ^{2} A}
$$

$$
+2 \cos A \cdot \frac{1}{c \not \partial s} A
$$

$=1+\left(1+\cot ^{2} A\right)+2+\left(1+\tan ^{2} A\right)+2$

$$
\begin{aligned}
\because & \operatorname{cosec}^{2} A=1+\cot ^{2} A \\
& \sec ^{2} A=1+\tan ^{2} A \\
& \left.\sin ^{2} A+\cos ^{2} A=1\right]
\end{aligned}
$$

$=7+\tan ^{2} A+\cot ^{2} A$

LHS = RHS
OR
LHS $=\sec \theta(1-\sin \theta)(\sec \theta+\tan \theta)$
$=\frac{1}{\cos \theta}(1-\sin \theta)\left(\frac{1}{\cos \theta}+\frac{\sin \theta}{\cos \theta}\right)$
$=\frac{(1-\sin \theta)}{\cos \theta} \times \frac{(1+\sin \theta)}{\cos \theta}$
$=\frac{1-\sin ^{2} \theta}{\cos ^{2} \theta}$
$=\frac{1-\sin ^{2} \theta}{\cos ^{2} \theta}$
$\left[\because 1-\sin ^{2} \theta=\cos ^{2} \theta\right]$
= 1
\therefore L.H.S. $=$ R.H.S

Value Points

38. Find the coordinates of the point on the line segment joining the points $A(-1,7)$ and $B(4,-3)$ which divides $A B$ internally in the ratio 2:3.

OR

Find the area of triangle $P Q R$ with vertices $P(0,4), Q(3,0)$ and $R(3,5)$.

Ans. :

$$
\begin{align*}
& A(-1,7), B(4,-3) \\
& \begin{array}{rl}
x_{1}, y_{1} & 2: 3 \\
P(x, y) & =\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)
\end{array} \\
&=\left(\frac{2(4)+3(-1)}{2+3}, \frac{2(-3)+3(7)}{2+3}\right) \\
&=\left(\frac{8-3}{5}, \frac{-6+21}{5}\right) \\
&=\left(\frac{5}{5}, \frac{15}{5}\right) \\
& P(x, y)=(1,3)
\end{align*}
$$

OR

$$
\begin{aligned}
& P(0,4), \quad Q(3,0) \\
& x_{1}, y_{1} \quad R(3,5) \\
& A= \\
& \frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] \\
& =\frac{1}{2}[0(0-5)+3(5-4)+3(4-0)]
\end{aligned}
$$

Qn.

Nos.
Value Points allotted

$$
\begin{aligned}
& =\frac{1}{2}[0(-5)+3(1)+3(4)] \\
& =\frac{1}{2}[0+3+12] \\
& =\frac{1}{2} \times 15 \\
A & =\frac{15}{2} \text { or } 7 \cdot 5 \text { sq. units }
\end{aligned}
$$

39. Find the mean for the following grouped data by Direct method:

Class-interval	Frequency
$10-20$	2
$20-30$	3
$30-40$	5
$40-50$	7
$50-60$	3
OR	

Find the mode for the following grouped data:

Class-interval	Frequency
$5-15$	3
$15-25$	4
$25-35$	8
$35-45$	7
$45-55$	3

Qn. Nos.	Value Points			
	Ans. :			
	C-I	f_{i}	x_{i}	$f_{i} x_{i}$
	10-20	2	15	30
	20-30	3	25	75
	30-40	5	35	175
	40-50	7	45	315
	50-60	3	55	165
		$N=20$		$\sum f_{i} x_{i}=760$

> Table
> [Mid points - 01
> finding $f_{i} x_{i}-01$]
> Mean, $\bar{X}=\frac{\sum f_{i} x_{i}}{N}$ OR $\frac{\sum F X}{N}$
> $=\frac{760}{20}$
> $\bar{X}=38$

OR
From the frequency distribution table we find that, $f_{0}=4, f_{1}=8, f_{2}=7, h=10$ and $l=25$

$$
\begin{aligned}
\text { Mode } & =l+\left[\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right] \times h \\
& =25+\left[\frac{8-4}{2(8)-4-7}\right] \times 10 \\
& =25+\left[\frac{4}{16-11}\right] \times 10 \\
& =25+\frac{4}{\hbar_{1}} \times x 0^{2} \\
& =25+8 \\
\text { Mode } & =33
\end{aligned}
$$

Qn. Nos.	Value Points	
40.	During a medical check-up of 50 students of a class, their recorded as follows : Draw "less than type" ogive for the given data :	
Height in cm Number of students (Cumulative frequency) Less than 140 5 Less than 145 10 Less than 150 15 Less than 155 25 Less than 160 40 Less than 165 50		

Ans. :

Qn. Nos.	Value Points
41.Drawing axes Prove that "the lengths of tangents drawn circle are equal". Marking points	
Drawing Ogive	

Marks allotted

Data: ' O ' is the centre of the circle. $P Q$ and $P R$ are tangents drawn from external point ' P.

To Prove : $P Q=P R$
Construction: Join $O P, O Q$ and $O R$.
Proof: In the figure

\(\left.\begin{array}{ll}O Q=O R \& {[radii of same circle]}

O P=O P \& {[common side]}

\triangle O Q P \cong \triangle O R P \& {[RHS]}\end{array}\right\}\)| $1 / 2$ |
| ---: |
| $1 / 2$ |

$$
P Q=P R \quad[\text { CPCT }]
$$

Note : If the theorem is proved as given in the text book, give full marks.

Qn.	Value Points	Marks Nos.

42. Construct two tangents to a circle of radius 3 cm from a point 8 cm away from its centre.

Ans. :

Drawing a circle C_{1} of radius $3 \mathrm{~cm} \quad 1 / 2$
Drawing $O P=8 \mathrm{~cm} \quad 1 / 2$
$\begin{array}{lr}\text { Constructing perpendicular bisector of } O P & 1 \\ \text { Drawing } C_{2} \text { circle } & 1 / 2\end{array}$
Joining $P A$ and $P B \quad 1 / 2$
43. The volume of a solid right circular cylinder is $2156 \mathrm{~cm}^{3}$. If the height of the cylinder is 14 cm , then find its curved surface area.

$$
\text { [Take } \pi=\frac{22}{7} \text {] }
$$

Qn. Nos.	Value Points	Marks allotted
	Ans. :	
	$V=2156 \mathrm{~cm}^{3}$	
	$h=14 \mathrm{~cm}$	
	$r=$?	
	$\mathrm{CSA}=?$	
	Volume of cylinder $=\pi r^{2} h \quad 1 / 2$	
	$2156=\frac{22}{T_{1}} \times r^{2} \times 14^{2}$	
	$r^{2}=\frac{2156}{44}$	
	$r^{2}=49$	
	$r=\sqrt{49}$	
	$r=7 \mathrm{~cm}$ (1/2	
	$\left.\begin{array}{cl} \text { Curved surface area of } \\ \text { cylinder } \end{array}\right\} \begin{array}{ll} =2 \pi r h & 1 / 2 \\ =2 \times \frac{22}{7} \times \not \subset \times 14 & 1 / 2 \end{array}$	
	$=2 \times 22 \times 14$	
	$=616 \mathrm{~cm}^{2} \quad 1 / 2$	3
V.	Answer the following questions: $4 \times 4=16$	
44.	Find the solution of the given pair of linear equations by graphical method :	
	$x+2 y=6$	
	$x+y=5$	

Qn. Nos.	ground. If the height of the tower is 50 m , then find the height building.

OR
As observed from the top of a 75 m high light house from the sealevel, the angles of depression of two ships are 30° and 45°. If one ship is exactly behind the other on the same side of the light house, then find the distance between the two ships.

Ans. :
In $\triangle B D C, \tan 60^{\circ}=\frac{C D}{B D}$

$$
\begin{align*}
& \sqrt{3}=\frac{50}{B D} \\
& B D=\frac{50}{\sqrt{3}} \tag{1}
\end{align*}
$$

In $\triangle A B D, \tan 30^{\circ}=\frac{A B}{B D}$
Ans. :
[Turn over

Construction of given triangle 1
Construction of acute angle with division 1
Drawing parallel lines 1
Obtaining required triangle 1
Marks allotted

4

In the figure $A X B$ and $C Y D$ are the arcs of two concentric circles with centre O. The length of the arc $A X B$ is 11 cm . If $O C=7 \mathrm{~cm}$ and $\angle A O B=30^{\circ}$, then find the area of the shaded region.
[Take $\pi=\frac{22}{7}$]

Qn. Nos.	Value Points	Marks allotted

Ans. :

$$
\begin{aligned}
& \text { Length of the arc }=\frac{\theta}{360^{\circ}} \times 2 \pi r \\
& 11=\frac{3 \sigma^{\circ}}{36 \theta_{12}{ }^{\circ}} \times 22 \times \frac{22^{11}}{7} \times r \\
& 11
\end{aligned} \begin{aligned}
& 21 \\
& r=\frac{11 \times 21}{11} \\
& r=21 \mathrm{~cm}
\end{aligned}
$$

$$
1 / 2
$$

$$
1 / 2
$$

$$
1 / 2
$$

Area of the sector $O A X B=A_{1}=\frac{\theta}{360^{\circ}} \times \pi r^{2}$

$$
\begin{aligned}
& =\frac{30^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 21^{2} \\
& =\frac{1}{12 \mathscr{Z}_{2}} \times \frac{22^{11}}{7_{1}} \times 21^{\not \boldsymbol{\beta}^{1}} \times 21 \\
& =\frac{231}{2} \mathrm{~cm}^{2}
\end{aligned}
$$

Area of the sector $O C Y D=A_{2}=\frac{\theta}{360^{\circ}} \times \pi r^{2}$

$$
\begin{aligned}
& =\frac{30^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 7^{2} \\
& =\frac{1}{12_{6}} \times \frac{22^{11}}{7} \times 7 \times 7 \\
& A_{2}=\frac{77}{6} \mathrm{~cm}^{2}
\end{aligned}
$$

Area of the shaded region $=A_{1}-A_{2}$

$$
\begin{aligned}
& =\frac{231}{2}-\frac{77}{6} \\
& =\frac{693-77}{6} \\
& =\frac{616}{6}
\end{aligned}
$$

Qn.

Value Points	Marks
allotted	

VI.

Answer the following question :
48. Prove that "the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides".

Ans. :

$1 / 2$

Data: $\triangle A B C \sim \triangle P Q R$

$$
\therefore \frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}
$$

To prove : $\frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle P Q R}=\frac{B C^{2}}{Q R^{2}}$
Construction : Draw $A M \perp B C$ and $P N \perp Q R$
Proof : $\frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle P Q R}=\frac{\frac{1}{2} \times B C \times A M}{\frac{1}{2} \times Q R \times P N}$

$$
\begin{equation*}
\frac{\text { Area of } \triangle A B C}{\text { Area of } \triangle P Q R}=\frac{B C}{Q R} \times \frac{A M}{P N} \tag{1}
\end{equation*}
$$

In $\triangle A B M$ and $\triangle P Q N$
$\angle B=\angle Q$

