Chapter-05

Electrochemistry

Marks-5 with option 7

Multiple choice questions (1 Mark)

i) Kohlrausch law is ap	oplicable for			
a) the solution at infinite dilution		b) a concentrated solution		
c) concentrated as well as dilute solution		d) ac	d) aqueous solution	
ii) During electrolysis	of molten NaCl, which of	the following sta	tement is Incorrect?	
a) a pale green Cl ₂ gas is released at anode				
b) molten silvery white sodium is deposited at cathode				
c) decomposition of NaCl into Na metal and Cl ₂ gas				
d) a pale gree	en Cl ₂ gas is released at a	node		
iii) SI unit of conductiv	vity is			
a) Ω^{-1} m ⁻¹	b) Ωcm^{-1}	c) Ω m ⁻¹	d) Ω^{-1} m 2 mol $^{-1}$	
iv) In case of weak elec	ctrolyte the graph \wedge vs \sqrt{c}	is	9	
a) Linear	b) Non linear	c) Straight line passing from origin d) Curved		
v) In construction of St	tandard Hydrogen Electro	de, platinum acts	as	
a) inert electrode		b) positive ion producing electrode		
c) negative ion producing electrode d) donor of electrons				
vi) For hydrogen gas e	electrode E _{H2} is calculated	through Nernst	equation, where E _{H2} is	always
a) 0V	b) 0.0592V	c) -1.	1V d) 1.1	V
vii) When molten ionic	c compound is electrolyze	d a metal is forme	ed at	
a) Negative electrode b) Positive electrode c) Salt bridge d) Electrolyte				
viii) The molar conduc	tivity and conductivity of	AgNO ₃ solution	are 121.4 Ω^{-1} cm ² mol ⁻¹	and $2.428 \times 10^{-3} \Omega^{-1} \text{cm}$
respectively at	25°C. What is molar conc	entration of AgN	O_3 solution:	
a) 0.02M	b) 0.2M	c) 2.0M	d) 2.2M	
ix) A cell constituted b	by two electrodes A (E $^{0}_{A+/}$	$_{A} = 0.35V$) and B	$(E^0_{B+/B} = +0.42V)$ has	value of E ⁰ _{cell} equal to
a) 0.07V	b) -0.07 V	c) -0.	.77V d) 0.7	7 V
x) Calculate E _{cell} for g	alvanic cell with electrode	es Co/Co^{3+} , Mn^{2+}	Mn, $E_{Mn}^0 = -1.18V$, E_C^0	_o =1.82 V.
a) -3 0V	(b) + 3.0V	c) 1 36V	d) 0.268V	

Very short answer questions (1 Mark)

- i) Write SI unit of conductivity.
- ii) What is cell voltage?
- iii) Write a mathematical expression for Standard Cell Potential.
- iv) Write the formula to calculate molar conductivity of the given solution.
- v) Write the chemical composition present in the salt bridge.
- vi) Write the potential produced through the NICAD storage cell.
- vii)Write an equation that shows the relationship between molar conductivity and degree of dissociation of weak electrolyte.
- viii) Write Arrhenius equation.

Short answer questions (Type- I) (2 Marks)

- 1) Draw a neat and labeled diagram of Standard Hydrogen Electrode.
- 2) What are the functions of a salt bridge in a galvanic cell?
- 3) Derive relation between equilibrium constant of reaction(K) and standard cell potential(E_{cell}^0)
- 4) Write applications of Kohlrausch's Law.
- 5) What is the cell constant? Write its SI unit.
- 6) Mention difficulties in setting Standard Hydrogen Electrode.
- 7) What is the mass of copper metal produced at cathode during the passage of 2.03A current through the $CuSO_4$ solution for 1 hour. Molar mass of Cu = 63.5 g mol⁻¹ (Ans:2.405 g)
- 8) Mercury battery provides more constant voltage than any other dry cell; Explain.
- 9) Represent the galvanic cell from following overall cell reaction

$$Cd(s) + Cu^{2+}(aq) \rightarrow Cd^{2+}(aq) + Cu(s)$$

Define: Anode

- 10) How many moles of electrons are required for reduction of 2 moles of Zn²⁺ to Zn? (Ans: 4 moles)
- 11) Calculate standard cell potential of following galvanic cell:

$$Zn/Zn^{2+}(1 \text{ M}) // Pb^{2+}(1 \text{ M})/Pb$$
. If $E^0_{Pb} = 0.126 \text{V}$ and $E^0_{Zn} = -0.763 \text{V}$ (Ans: 0.889V)

- 12) Draw a neat and labeled diagram of Lead accumulator.
- 13) Draw a neat and labeled diagram of Leclanche cell(Dry Cell)

Short answer questions (Type- II) (3 Marks)

- 1) State Kohlrausch law of independent migration of ions. Derive the relationship between Gibbs energy of cell reaction and cell potential.
- 2) Write the main difference between electrolytic conductivity and molar conductivity with respect to concentration. Also write one application of electrochemical series.
- 3) Write three important steps required to determine molar conductivity.
- 4) Draw a neat and well labeled diagram of Standard Hydrogen Electrode. Write one application.
- 5) Define reference electrode. Write two applications of electrochemical series.
- 6) Calculate the voltage of the cell Sn(s) / Sn²⁺(0.02 M) // Ag⁺(0.01 M) / Ag(s) at 25^oC. Given: $E_{Sn}^0 = -0.136V$, $E_{Ag}^0 = 0.800V$ (Ans: 0.8679V)
- 7) Draw a well labeled diagram of a conductivity cell. Write net cell reaction involved in electrolysis of aqueous NaCl.
- 8) Write a mathematical formula for mole ratio. How long will it take to produce 2.415g of Ag metal from its salt solution by passing a current of 3A? Molar mass of Ag= 107.9 gmol⁻¹ (Ans: 720 s or 12 min.)

Long answer questions (4 Marks)

- Why is the Nickel Cadmium cell referred to as a secondary cell? Write working of NICAD storage cells.
 Write its applications.
- 2) Write relation between electrolytic conductivity and molar conductivity. Calculate molar conductivity at zero concentration for CaCl₂ and NaCl. Given: molar ionic conductivities of Ca²⁺, Cl⁻, Na⁺ ions are respectively, 104, 76.4, 50.1 Ω⁻¹cm⁻²mol⁻¹ (Ans:256.8Ω⁻¹cm²mol⁻¹ and 126.5Ω⁻¹cm²mol⁻¹)
- 3) Calculate E^0_{cell} of the following galvanic cell: $Mg(s) / Mg^{2+}(1 \text{ M}) / Ag^{+}(1 \text{ M}) / Ag(s)$ if $E^0_{Mg} = -2.37 \text{V}$ and $E^0_{Ag} = 0.8 \text{V}$. Write cell reactions involved in the above cell. Also mention if cell reaction is spontaneous or not. (Ans: 3.17 V)
- 4) Explain construction, working in terms of cell reactions and the results of electrolysis of fused NaCl.
- 5) Explain Construction of Standard Hydrogen electrode (SHE), write its applications and difficulties in setting.