Multiple choice questions (1 Mark)

i.	An intensive property amongst the following is			
	a) Mass		b) Volun	ne
	c) Number of mole	S	d) Temperat	ure
ii.	The value of 1dm³ ba	r is		
	a) 10 J		$b) 10^2 J$	
	c) 10^3 J		d) 10 ⁻² J	
iii.	The work done in the dm3 bar when 200 mL of ethylene gas and 150 mL of HCl gas were allowed to			
	react at 1 bar pressu	ıre is		
	a) 0.10		b) 0.15	
	c) 0.20		d) 0.2	
iv.	The work done in vacuum when 300 m mole of an ideal gas expands until its volume is increased by			
	2.3 dm ³ at 1 bar pres	sure is		•
	a) Zero		b) One	
	c) Two		d) Three	
v)	For an Isothermal pro	ocess		
	a) W = - Q		b) $\Delta U = W$	
	c) $\Delta U = Q + W$	7	d) $\Delta U = Q$	
vi	For an Isochoric proce	SS		
	a) $\Delta U = 0$		$\mathbf{b)} \ \Delta V = 0$	
1	c) $\Delta P = 0$		d) Q = 0	
vii.	The change in internal energy in a reaction when 2kJ of heat is released by the system and 6 kJ of			
	work is done on the	e system will be		
	a) +3 kJ	b) -4kJ	c) +4 kJ	d) – 8 kJ

Very short answer questions (1 Mark)

- 1) Write the expression to calculate maximum work done when 1 mole of an ideal gas expands isothermally and reversibly from V_1 to V_2 .
- 2) Write the mathematical relation between ΔH and ΔU during formation of one mole of CO_2 under standard conditions.
- 3) Standard enthalpy of formation of water is -286 kJ mol⁻¹. Calculate the enthalpy change for formation of 0.018 kg of water. (Ans: -286kJ)
- 4) Write the expression of the first law of thermodynamics for an isothermal process.
- 5) What is the sign convention when work is done on the system by the surrounding?
- 6) Write the expression showing relation between enthalpy change and internal energy change for gaseous phase reaction
- 7) Calculate enthalpy of formation of HCl if Bond enthalpies of H₂, Cl₂ and HCl are 434 kJ mol⁻¹, 242 kJ mol⁻¹ and 431 kJ mol⁻¹ respectively. (Ans: -93kJ/mol)
- 8) Write the condition of ΔG for Spontaneous reaction.

Short answer questions (Type- I) (2 Marks)

- 1) Define the terms: (i) Standard enthalpy of combustion (ii) Enthalpy of sublimation.
- 2) State and explain Hess's law of constant heat summation.
- 3) Write the features of reversible processes.
- 4) Derive an expression for pressure- volume work.
- 5) The enthalpy change of the following reaction

 $CH_4(g) + Cl_2(g) \rightarrow CH_3Cl(g) + HCl(g), \Delta H^0 = -104 \text{ kJ}.$ Calculate C-Cl bond enthalpy. The bond enthalpies are

Bond C-H Cl-Cl H-Cl
$$\Delta H^0/kJ \text{ mol}^{-1}$$
 414 243 431 (Ans: 330 kJ mol $^{-1}$)

6) Calculate the standard enthalpy of combustion of $CH_4(g)$ if $\Delta_f H^0 (CH_4) = -74.8$ kJ mol⁻¹,

$$\Delta_{\rm f} H^0({\rm CO_2}) = -393.5 \text{ kJ mol}^{-1} \text{ and } \Delta_{\rm f} H^0({\rm H_2O}) = -285.8 \text{ kJ mol}^{-1}$$
 (Ans: -890.3 kJ mol⁻¹)

- 7) Define: a) Extensive property b) Intensive property with examples.
- 8) Write relationship between ΔG and ΔS total

Short answer questions (Type- II) (3 Marks)

- 1) a. Define an isolated system.
 - b. Three moles of an ideal gas are expanded isothermally from 15 dm³ to 20 dm³ at constant external pressure of 1.2 bar, calculate the amount of work in Joules. (Ans: -600J)
- 2) Define enthalpy of fusion. Derive an expression for the maximum work.
- 3) Derive the expression $\Delta H = \Delta U + P\Delta V$. Write the relationship between Q and ΔU for an isochoric process.
- 4) Define standard enthalpy of formation. Derive the relationship between standard enthalpy of reaction $aA + bB \rightarrow cC + dD$ and enthalpies of formation of reactants and products.
- 5) 0.022 kg of CO₂ is compressed isothermally and reversibly at 298 K from initial pressure of 100 kPa when the work obtained is 1200 J, calculate the final pressure. (Ans=263.4kPa)
- 6) Define the following terms:-
 - (i) Enthalpy of vaporization (ii) Standard enthalpy of combustion. Why is work done in vacuum zero

Long answer questions (4 Marks)

- 1)Define the following terms:-
 - (i)Enthalpy of atomization (ii) Extensive properties

Write mathematical statement of first law of thermodynamics for following processes

- a) Isothermal process
- b) adiabatic process.
- 2) Define the following terms: i)Bond Enthalpy ii) Enthalpy of ionization. Calculate the standard enthalpy of the reaction. (Ans = -822.4kJ)

$$2Fe_{(s)} + \frac{3}{2}O_{2(g)} \longrightarrow Fe_{2}O_{3}(s)$$

Given (i)
$$2Al_{(s)} + Fe_2O_{3(s)} \longrightarrow 2Fe_{(s)} + Al_2O_{3(s)}, \quad \Delta_r H^0 = -847.6 \text{ kJ}$$

(ii) $2Al_{(s)} + 3/2 O_2(g) \longrightarrow Al_2O_3(s), \quad \Delta_r H^0 = -1670 \text{ kJ}$

3) The amount of heat evolved when 12 g of CO reacts with NO₂? The reaction is

 $4CO(g) + 2NO_2(g) \rightarrow 4CO_2(g) + N_2(g)$ $\Delta_r H^0 = -1200 \text{ kJ (Ans:128.5 kJ of heat is evolved)}$ Write an application of Hess's law.

Does the following reaction represent a thermochemical equation?

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g) \Delta_rH^0 = -900 \text{ kJ/mol}$$

- 4) Classify the following into intensive and extensive properties. Pressure, volume, mass, temperature.

 Define state function and write two examples of it.
- 5) Write sign conventions of W and Q

Calculate the standard enthalpy of the reaction (Ans: 624.7 kJ)

 $SiO_2(s) + 3C$ (graphite) $\rightarrow SiC(s) + 2CO(g)$ from the following reactions

- i) $Si(s) +O_2(g) \rightarrow SiO2(s)$,
- $\Delta_r H^0 = -911 \text{ kJ}$
- ii) 2C(graphite) $+O_2(g) \rightarrow 2CO(g)$, $\Delta_r H^0 = -221 \text{ kJ}$
- iii) Si (s)+ C (graphite) \rightarrow SiC(s), $\Delta_r H^0 = -65.3 \text{ kJ}$