Multiple choice questions (1 Mark)

i) What is the percentage dissociation of 0.1 M Solution of acetic acid?					
$[k_a(CH_3COOH) = 10^{-5}]$					
a) 0.01%	b) 1%	C)	10%	d) 100%	
ii) For a reaction $HCl_{(aq)} + H_2O_{(1)} \longrightarrow H_3O^+_{(aq)} + C1^{(-)}_{(aq)}$					
Which of the following is a conjugate acid-base pair?					
a) H ₂ O and Cl ⁻		b)]	b) H ₃ O ⁽⁺⁾ and Cl ⁻		
c) $H_3O^{(+)}$ and H_2	d)]	d) HCl and H ₃ O ⁽⁺⁾			
iii) In biochemical system, pH of blood in our body is maintained due to following buffer					
a) NH ₄ OH + NH ₄	,Cl	b)	HCO ₃	+ H ₂ CO ₃	
c) CH ₃ COOH + C	CH ₃ COONa	d)	citric aci	$d + Mg(OH)_2$	
iv) If 'IP' is the ionic product and ' k_{sp} ' is the solubility product, precipitation of					
the compound will occur under the condition when.					
a) IP = k_{sp}		b) IP > 1	₹ _{sp}		
c) IP $< k_{sp}$		d) IP <<	\mathbf{k}_{sp}		
v) NH_4F is a salt of weak acid HF ($k_a = 7.2 \times 10^{-4}$) and weak base NH_4OH					
(K _b = 1.8×10^{-5}), the solution of NH ₄ F will be					
a) slightly acidic		b) slightly	b) slightly basic		
c) strongly basic		d) neutral			
vi) The theory which explain amphoteric nature of water is					
a) Arrhenius theor	y	b)	Lewis tl	neory	
c) Ostwald theory		d)	Bronste	ed - Lowry theory	
vii) The pKb of weak base BOH [Kb(BOH) = 1×10^{-5}] will be					
a) -5	b) 5	c) 1 d	1) 10-5		

Very short answer questions (1 Mark)

- i) Write the name of buffer which is used to maintain pH of 8 to 10 for precipitation of cations of III A group in qualitative analysis
- ii) Write the solubility product of sparingly soluble salt Bi₂S₃
- iii) What is the p^{OH} if the hydrogen ion concentration in solution is 1x 10⁻³ mol dm⁻³ (Ans:11)
- iv) Write the relationship between molar Solubility (S) and solubility product (k_{sp}) for PbI₂
- v) Write any one example of salt derived from weak acid and weak base.
- vi) Write the formula to calculate p^H of buffer solution.
- vii) Indicate the one conjugate acid-base pair in the following reaction.

$$CO_3^{2+}_{(aq)} + H_2O_{(l)} \longrightarrow OH^{(-)} + HCO_3^{(-)}$$

viii) Calculate the P OH of 10-8 M of HCl (Ans:7.0414)

Short answer questions (Type- I) (2 Marks)

- 1) Calculate the p^H and p^{OH} of 0.0001M HCl Solution Ans: (p^H = 4 and p^{OH} = 10)
- 2) The solubility product of BaCl₂ is 4.0 x 10⁻⁸ what will be its molar solubility in mol dm⁻³?

 Ans: ($S = 1x \ 10^{-2} \ mol \ dm^{-3}$)
- 3) Classify the following species into Lewis acids and Lewis bases
 - i) CI (-)
- ii) NH₄
- iii) BCl₃
- iv) NH₃

- 4) Define the following terms i) pH
- ii) pOH
- 5) Define molar solubility. Write its unit.
- 6) Write a solubility product of the following sparingly soluble salts.
 - i) BaSO₄

- ii) AgCl
- 7) Explain Ostwald's dilution law for weak acids.
- 8) Explain Ostwald's dilution law for weak bases.
- 9) Write any four applications of buffer solution

Short answer questions (Type- II) (3 Marks)

- 1) Define buffer solution. Explain its types.
- 2) Write one application for each of the following buffers.
 - i) citrate buffer
- ii) HCO₃ ⁻+ H₂CO₃ iii) NH₄OH + NH₄Cl
- 3) Derive the equation which implies that the degree of dissociation of weak acid is inversely proportional to the square root of its concentration.
- 4) A buffer solution contains 0.3 mol dm⁻³ NH₄OH ($K_b = 1.8 \times 10^{-5}$) and 0.4 mol dm⁻³ of NH₄Cl.

Calculate pOH of the solution.

(Ans: 4.8696)

6) The solubility of AgBr in water is 1.20 x 10⁻⁵ mol dm ⁻³. Calculate the $(Ans:K_{sp} = 1.44 \times 10^{-10})$ solubility product of AgBr.

Long answer questions (4 Marks)

1) Derive the equation $p^{H} + p^{OH} = 14$

Distinguish between strong electrolyte and weak electrolyte

- 2) If 'S' is solubility in mol dm and $\,k_{sp}\,\,$ is the solubility product. Then write the relation between them for the CaF₂ and BaSO₄ Calculate the concentration of H₃O + ion in Soft drink whose P^H is 3.5 (Ans:3.162 x 10 -4 mol/dm³)
- 3) Explain the amphoteric nature of water.

Define a) Solubility product b) Hydrolysis of salt