Multiple choice questions (1 Mark) | i) What is the percentage dissociation of 0.1 M Solution of acetic acid? | | | | | | |---|-----------------------|--|--|----------------------------------|--| | $[k_a(CH_3COOH) = 10^{-5}]$ | | | | | | | a) 0.01% | b) 1% | C) | 10% | d) 100% | | | ii) For a reaction $HCl_{(aq)} + H_2O_{(1)} \longrightarrow H_3O^+_{(aq)} + C1^{(-)}_{(aq)}$ | | | | | | | Which of the following is a conjugate acid-base pair? | | | | | | | a) H ₂ O and Cl ⁻ | | b)] | b) H ₃ O ⁽⁺⁾ and Cl ⁻ | | | | c) $H_3O^{(+)}$ and H_2 | d)] | d) HCl and H ₃ O ⁽⁺⁾ | | | | | iii) In biochemical system, pH of blood in our body is maintained due to following buffer | | | | | | | a) NH ₄ OH + NH ₄ | ,Cl | b) | HCO ₃ | + H ₂ CO ₃ | | | c) CH ₃ COOH + C | CH ₃ COONa | d) | citric aci | $d + Mg(OH)_2$ | | | iv) If 'IP' is the ionic product and ' k_{sp} ' is the solubility product, precipitation of | | | | | | | the compound will occur under the condition when. | | | | | | | a) IP = k_{sp} | | b) IP > 1 | ₹ _{sp} | | | | c) IP $< k_{sp}$ | | d) IP << | \mathbf{k}_{sp} | | | | v) NH_4F is a salt of weak acid HF ($k_a = 7.2 \times 10^{-4}$) and weak base NH_4OH | | | | | | | (K _b = 1.8×10^{-5}), the solution of NH ₄ F will be | | | | | | | a) slightly acidic | | b) slightly | b) slightly basic | | | | c) strongly basic | | d) neutral | | | | | vi) The theory which explain amphoteric nature of water is | | | | | | | a) Arrhenius theor | y | b) | Lewis tl | neory | | | c) Ostwald theory | | d) | Bronste | ed - Lowry theory | | | vii) The pKb of weak base BOH [Kb(BOH) = 1×10^{-5}] will be | | | | | | | a) -5 | b) 5 | c) 1 d | 1) 10-5 | | | | | | | | | | ### Very short answer questions (1 Mark) - i) Write the name of buffer which is used to maintain pH of 8 to 10 for precipitation of cations of III A group in qualitative analysis - ii) Write the solubility product of sparingly soluble salt Bi₂S₃ - iii) What is the p^{OH} if the hydrogen ion concentration in solution is 1x 10⁻³ mol dm⁻³ (Ans:11) - iv) Write the relationship between molar Solubility (S) and solubility product (k_{sp}) for PbI₂ - v) Write any one example of salt derived from weak acid and weak base. - vi) Write the formula to calculate p^H of buffer solution. - vii) Indicate the one conjugate acid-base pair in the following reaction. $$CO_3^{2+}_{(aq)} + H_2O_{(l)} \longrightarrow OH^{(-)} + HCO_3^{(-)}$$ viii) Calculate the P OH of 10-8 M of HCl (Ans:7.0414) ### Short answer questions (Type- I) (2 Marks) - 1) Calculate the p^H and p^{OH} of 0.0001M HCl Solution Ans: (p^H = 4 and p^{OH} = 10) - 2) The solubility product of BaCl₂ is 4.0 x 10⁻⁸ what will be its molar solubility in mol dm⁻³? Ans: ($S = 1x \ 10^{-2} \ mol \ dm^{-3}$) - 3) Classify the following species into Lewis acids and Lewis bases - i) CI (-) - ii) NH₄ - iii) BCl₃ - iv) NH₃ - 4) Define the following terms i) pH - ii) pOH - 5) Define molar solubility. Write its unit. - 6) Write a solubility product of the following sparingly soluble salts. - i) BaSO₄ - ii) AgCl - 7) Explain Ostwald's dilution law for weak acids. - 8) Explain Ostwald's dilution law for weak bases. - 9) Write any four applications of buffer solution ### Short answer questions (Type- II) (3 Marks) - 1) Define buffer solution. Explain its types. - 2) Write one application for each of the following buffers. - i) citrate buffer - ii) HCO₃ ⁻+ H₂CO₃ iii) NH₄OH + NH₄Cl - 3) Derive the equation which implies that the degree of dissociation of weak acid is inversely proportional to the square root of its concentration. - 4) A buffer solution contains 0.3 mol dm⁻³ NH₄OH ($K_b = 1.8 \times 10^{-5}$) and 0.4 mol dm⁻³ of NH₄Cl. Calculate pOH of the solution. (Ans: 4.8696) 6) The solubility of AgBr in water is 1.20 x 10⁻⁵ mol dm ⁻³. Calculate the $(Ans:K_{sp} = 1.44 \times 10^{-10})$ solubility product of AgBr. ## Long answer questions (4 Marks) 1) Derive the equation $p^{H} + p^{OH} = 14$ Distinguish between strong electrolyte and weak electrolyte - 2) If 'S' is solubility in mol dm and $\,k_{sp}\,\,$ is the solubility product. Then write the relation between them for the CaF₂ and BaSO₄ Calculate the concentration of H₃O + ion in Soft drink whose P^H is 3.5 (Ans:3.162 x 10 -4 mol/dm³) - 3) Explain the amphoteric nature of water. Define a) Solubility product b) Hydrolysis of salt