
JEE (Main)-2025 : Phase-1 (29-01-2025)-Morning

PHYSICS

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

akash

Assertion: At the peak of mountain, time period of 1. pendulum increases.

Reason: Time period of pendulum increases with decrease in g.

- (1) Assertion is correct, reason is incorrect
- (2) Assertion is incorrect, reason is correct
- (3) Assertion is incorrect, reason is incorrect
- (4) Assertion is correct, reason is correct

Answer (4)

Sol.
$$T = 2\pi \sqrt{\frac{l}{g}}$$

2. The velocity of a particle moving on a straight line varies

with time as $v = At^2 + \frac{Bt}{C+t}$ where A, B, C are

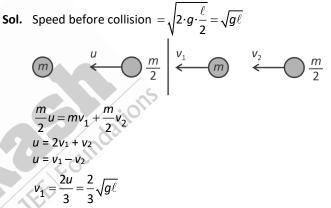
constants. Find the dimensions of ABC.

- (1) L² T⁻²
- (2) L² T⁻¹
- (3) L² T⁻³
- (4) LT^{-3}

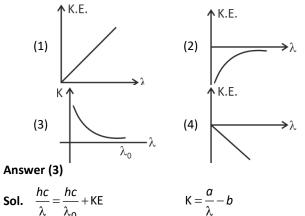
Answer (3)

Sol.
$$[v] = [A][t^2] = \frac{[B][t]}{[C]} = LT^{-1}$$

 $\Rightarrow [A] = LT^{-3}$
 $[B] = LT^{-1}$
 $[C] = T$

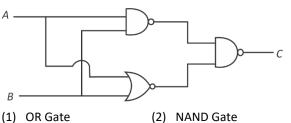

$$[ABC] = L^2 T^{-3}$$

A pendulum of mass $\frac{m}{2}$ is released from given situation, 3. find speed of another pendulum after collision ($\mathcal{O} = 1$)



Answer (2)

(3)


The graph between wavelengths (λ) of incident light and kinetic energy (K.E.) of photoelectrons in photoelectric effect is

JEE (Main)-2025 : Phase-1 (29-01-2025)-Morning

5. Identify the logic gate represented by the circuit shown below.

- (3) AND Gate
- (4) NOR Gate

Answer (1)

Sol. $C = \overline{\left(\overline{AB}\right)} \overline{\left(\overline{A+B}\right)}$ De Morgan Rule

=AB+A+B

 $\overline{\overline{X}}\overline{\overline{Y}} = X + Y$

- = A + B
- i.e. OR Gate
- 6. **Statement-1:** Electromagnetic wave have both energy and momentum.

Statement-2: Rest mass of photon is zero.

- (1) Statement-1 is correct, statement-2 is correct
- (2) Statement-1 is correct, statement-2 is incorrect
- (3) Statement-1 is incorrect, statement-2 is correct
- (4) Statement-1 is incorrect, statement-2 is incorrect

Answer (1)

Sol. Because of radiation pressure, EMW exerts force must carry momentum.

According to special relativity theory, no massive particle can attain speed of light.

 $\frac{1-\cos\alpha}{1+\cos\alpha}$

7. Two projectile were launched from same position simultaneously only same speed on of the projectile was launched at angle $(45 - \alpha)^{\circ}$ and the other at an angle of $(45 + \alpha)^{\circ}$. Find the ratio of maximum height of the projectile.

(1)
$$\frac{1-\sin\alpha}{1+\sin\alpha}$$
 (2) $\frac{1-\sin2\alpha}{1+\sin2\alpha}$

$$(3) \quad \frac{1-\tan\alpha}{1+\tan\alpha} \qquad \qquad ($$

Sol. $\frac{2gh_1 = 4^2 \sin^2(45 - \alpha)}{2gh_2 = 4^2 \sin^2(45 + \alpha)}$ $\Rightarrow \frac{h_1}{h_2} = \frac{\left(\frac{\cos \alpha}{\sqrt{2}} - \frac{\sin \alpha}{\sqrt{2}}\right)^2}{\left(\frac{\cos \alpha}{\sqrt{2}} + \frac{\sin \alpha}{\sqrt{2}}\right)^2}$ $\Rightarrow \frac{h_1}{h_2} = \frac{\cos^2 \alpha + \sin^2 \alpha - 2\sin \alpha \cos \alpha}{\cos^2 \alpha + \sin^2 \alpha + 2\sin \alpha \cos \alpha}$ $\Rightarrow \frac{h_1}{h_2} = \frac{1 - \sin 2\alpha}{1 + \sin 2\alpha}$ 8 A river is flowing with speed 9 km/h

 A river is flowing with speed 9 km/h. Boat is going downstream. Speed of boat in still water is 27 km/h. A person in boat throws a ball upwards with speed 10 m/s. Find range of the ball as seen by an observer at bank of river

(1) 10 m (2) 20 m
(3) 25 m (4)
$$20\sqrt{3}$$
 m

Answer (2)

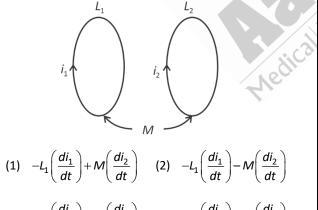
Sol.
$$T = \frac{2u}{g} = \frac{2 \times 10}{10} = 2 \text{ s}$$

 $R = (9 + 27) \frac{5}{18} \times 2$

R = 20 m

- 9. Which of two physical quantities have same dimensions?
 - (1) Angular momentum and Planck's constant
 - (2) Torque and moment of inertia
 - (3) Impulse and surface tension
 - (4) Momentum and work done

Answer (1)



Sol. (1)
$$\frac{L}{h} = \frac{mvr}{Et} = \frac{mv^2}{E} \equiv M^0 L^0 T^0$$

(2)
$$\frac{\overline{L}}{I} = \frac{rF\sin\theta}{mr^2} \equiv M^0 L^0 T^{-2}$$

(3)
$$\frac{I}{s} = \frac{Ft}{F/\ell} \equiv LT$$

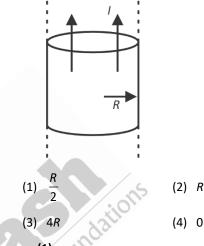
- $(4) \quad \frac{p}{\omega} = \frac{mv}{mv^2} = L^{-1}T$
- 10. If radius of first Bohr's orbit of H-atom is a_0 . Then find the radius of 2nd Bohr's orbit of H-atom.
 - (1) $8a_0$ (2) $4a_0$ (3) $2a_0$ (4) $6\pi a_0$

Answer (2)

- **Sol.** $a = \frac{a_0 n^2}{2}$
 - So, $a(n = 2) = 4a_0$
- 11. Two coils having self-inductance L_1 and L_2 are placed closely such that they have a mutual inductance M. If the carry currents i_1 and i_2 as shown in the figure, then the induced emf in coil 1 is

(3) $-L_1\left(\frac{di_2}{dt}\right) + M\left(\frac{di_1}{dt}\right)$ (4) $-L_1\left(\frac{di_2}{dt}\right) - M\left(\frac{di_1}{dt}\right)$

Answer (2)


JEE (Main)-2025 : Phase-1 (29-01-2025)-Morning

Sol. $\phi_1 = L_1 i_1 + M i_2$

$$\frac{-d\phi_1}{dt} = -L_1\left(\frac{di_1}{dt}\right) - M\left(\frac{di_2}{dt}\right)$$
$$\varepsilon_1 = -L_1\left(\frac{di_1}{dt}\right) - M\left(\frac{di_2}{dt}\right)$$

12. An infinite solid cylindrical wire of radius *R* carries a current *I* uniformly distributed along its area. The distance from

the centre where the magnetic field is equal to $\frac{\mu_0 I}{4\pi R}$ is

Answer (1)

Sol.
$$B_{\text{inside}} = \frac{\mu_0 l r}{2\pi R^2}$$

 $\Rightarrow r = \frac{R}{2}$
 $B_{\text{outside}} = \frac{\mu_0 l}{2\pi r}$

$$\Rightarrow$$
 r = 2R

13. When ball is kept under sea at depth 2.5 km. Find percentage change in it's volume. If bulk modulus of water is 2×10^9 Pa.

(1)	2%	(2)	1.5%
-----	----	----	---	------

(3) 1.25% (4) 2.75%

JEE (Main)-2025 : Phase-1 (29-01-2025)-Morning

Sol.	$\beta = \frac{\Delta P}{\frac{-\Delta V}{V}} \implies \frac{\Delta V}{V} = \frac{\Delta P}{\beta}$
	$=\frac{10^3 \times 10 \times 2500}{2 \times 10^9} \times 100$
	$=\frac{25}{20}$
	= 1.25%

14. Heat given to 0.5 moles of a monoatomic gas at constant pressure is 500 J. Initial temperature of gas was 27°C. Find value of ΔU and ΔT .

(1)	300 J, 48°C	(2)	150 J, 24°C
(3)	180 J, 16°C	(4)	210 J, 18°C

Answer (1)

Sol. At constant pressure,

$$\Delta Q = nC_{p}\Delta T$$

$$500 = \frac{n.5}{2}R\Delta T$$

$$\Delta U = nC_{v}\Delta T = \frac{3}{2}nR\Delta T$$

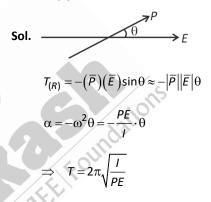
$$= \frac{3}{2} \times 200$$

$$= 300 \text{ J}$$

$$\Delta T = \frac{200 \times 3}{0.5 \times 25}$$

$$\Delta T = 48$$

- 15. Assertion: A negative potential is required to stop the photoelectron.
 - **Reason :** Speed of electron decreases when a negative potential is applied in a photo cell.
 - (1) Assertion is correct but Reason is false
 - (2) Assertion is correct and Reason is also correct
 - (3) Assertion is false but Reason is correct
 - (4) Assertion is false and Reason is also false


Answer (2)

Sol. Conceptual

16. If electric dipole of dipole moment \vec{P} is placed in electric field \vec{E} with $\vec{P} \mid \mid \vec{E}$. It is rotated slightly (and slowly) and released. Find the time period of oscillation of dipole (moment of inertia of dipole is *I*).

(1)
$$T = 2\pi \sqrt{\frac{I}{PE}}$$

(2) $T = \frac{1}{2\pi} \sqrt{\frac{PE}{I}}$
(3) $T = 2\pi \sqrt{\frac{IE}{P}}$
(4) $T = \frac{1}{2\pi} \sqrt{\frac{PI}{E}}$

Answer (1)

- 17. In adiabatic process of closed system, work done by the gas depends explicitly on
 - (1) Change in volume
 - (2) Change in pressure
 - (3) Change in temperature
 - (4) Change in number of moles

Answer (3)

Sol.
$$\Delta \theta = \Delta V + \Delta W \Longrightarrow \Delta W = -\Delta V$$

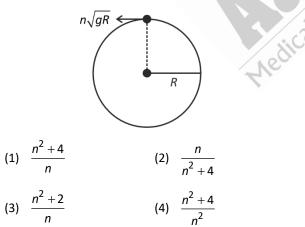
$$W = -\frac{\mu R \Delta T}{\gamma - 1} = -\frac{1}{\gamma - 1} \left(P_2 V_2 - P_1 V_1 \right)$$

Only Change in temperature Both on change in pressure and volume

 Match the correct option for List-I and List-II, where symbols have usual meanings.

	List-I		List-II
(A)	Electric field inside the spherical shell	(i)	$\frac{\sigma}{2\epsilon_0}$
(B)	Electric field just outside the spherical shell	(ii)	$\frac{\sigma}{\varepsilon_0}$
(C)	Electric field inside the charged parallel plate capacitor	(iii)	0
(D)	Electric field of infinite charge sheet	(iv)	$\frac{2\sigma}{\epsilon_0}$

- (1) A-(iii), B-(ii), C-(iv), D-(ii)
- (2) A-(iii), B-(ii), C-(ii), D-(i)
- (3) A-(iii), B-(ii), C-(ii), D-(iv)
- (4) A-(iv), B-(iii), C-(i), D-(ii)


Answer (2)

Answer (4)

19. A particle is able to complete the vertical circular motion with speed $n\sqrt{gR}$ at top-most point. Find the ratio of

KE_(Bottom)

KE_(Top)

JEE (Main)-2025 : Phase-1 (29-01-2025)-Morning

Sol. $V_{\tau} = n\sqrt{gR}$

$$V_{\rm Bottom}^2 = V_{\tau}^2 + 4gR = n^2gR + 4gR$$

$$\frac{\mathsf{KE}_{\mathsf{Bottom}}}{\mathsf{KE}_{\mathsf{Top}}} = \frac{gR(n^2 + 4)}{gRn^2} = \frac{n^2 + 4}{n^2}$$

20.

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. In a hydraulic lift, the two sides have areas $A_1 = 25$ cm² and

 $A_2 = 100 \text{ cm}^2$. If a force of 100 N is applied normally on the

area A_1 , then the force on the area A_2 is _____ N.

Answer (400)

Sol. From Pascal's law

$$\frac{F_1}{A_1} = \frac{F_2}{A_2}$$
 or $\frac{100 \text{ N}}{25 \text{ cm}^2} = \frac{F_2}{100 \text{ cm}^2}$

 \Rightarrow F₂ = 400 N

22. Find magnitude of component of torque about origin in

z-direction when force $\vec{F} = \hat{i} - \hat{j} + \hat{k}$ acts at (1, 1, 1).

Answer (2)

Sol.
$$\vec{\tau}_2 = \hat{k}(-1, -1) = -2\hat{k}\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & +1 & 1 \\ 1 & -1 & 1 \end{vmatrix}$$

23.

#