

JEE MAIN 29 JANUARY 2025 SHIFT 1

PHYSICS QUESTION PAPER WITH ANSWER KEY

Q.No	Questions	Answers
1	Assertion: At the peak of mountain, time period of pendulum increases Reason: Time period of pendulum increases with decrease in g	Assertion is correct, Reason is correct
2	The velocity of a particle moving on a straight line varies with time as $v=At^2 Bt/C+t^1$ where A, B, and C are constants. Find the dimension of ABC.	$L^{2} T^{-3}$
3	A pendulum of mass $m/2$ is released from a given situation. Find the speed of another pendulum after the collision. (e=1)	2/3 √gl
4	The graph between wavelength (λ)of incident light and Kinetic Energy (K.E) of photoelectron in photoelectric effect is	
5	Identify the logic gate represented by circuit shown below.	OR Gate
6	Statement I: Electromagnetic wave have both energy and momentum. Statement II: Rest mass of photon is zero.	Statement I is correct Statement II is incorrect
7	Two projectiles were launched from the same position simultaneously only same speed on of the projectile was launched at angle (45 - α) degree and other at an angle of (45 + α) degree. Find the ratio of maximum height of the projectile.	$\frac{1 - \sin 2\alpha}{1 + \sin 2\alpha}$
8	A river is flowing with speed 9km/hr. Boat is going downstream- speed of boat in still water is 27km/hr. A person in boat throws a ball upwards with speed 10 m/s. Find range of the ball as seen by an observer at bank of river.	20 m
9	Which of two physical quantities have same dimensions?	Angular momentum and Planck's constant
10	If radius of first Bohr's orbit of H-atom is a_0 Then find the radius of 2nd Bohrs orbit of H-atom.	4a ₀

11	Two coils having self-inductance L_1 and L_2 are placed closely such that they have a mutual inductance M. If the carry currents i_1 and i_2 as shown in the figure thane the induced emf in coil 1 is	$-L_1\left(\frac{dl_1}{dt}\right) - M\left(\frac{dl_2}{dt}\right)$
12	An infinite solid cylinder wire of radius R carries a current I uniformly distributed along its area. The distance from the centre where the magnetic field is equal to $\mu_0 I/4\pi R$ is	R/2
13	When ball is kept under seat at depth 2.5km. Find percentage change in its volume. If bulk modulus of water is 2×10^9 Pa.	1.25%
14	Heat given to 0.5 moles of a monoatomic gas at constant pressure is 500J. Initial temperature of gas was 27 Degree Celsius. find value of ΔV and ΔT .	300J, 48 degree Celcius
15	Assertion: A negative potential is required to stop the photoelectron. Reason: Speed of electron decreases when a negative potential is applied in a photo cell.	Assertion is correct Reason is also correct
16	If electric dipole of dipole moment P is placed in electric field E with $P E$. It is rotated slightly (and slowly) and released. Find the time period of oscillation of dipole (moment of inertia of dipole is).	$T=2\pi \sqrt{1/PE}$
17	In adiabatic process of closed system, work done by the gas depends explicitly on	Change in temperature
18	A particle is able to complete the vertical circular motion with speed n \sqrt{gR} at top most point. Find the ratio of ^{KE} (Bottom)/ ^{KE} (Top)	$\frac{n^2 + 4 e^{-1} e^{-1}}{n^2}$
19	Match the correct option for List-I and List-II, where symbols have usual meanings. List-I List-II (A) Electric field inside the spherical shell (i) $\frac{\sigma}{2x_0}$ (B) Electric field just outside the spherical shell (ii) $\frac{\sigma}{e_0}$ (C) Electric field inside the charged parallel plate capacitor (iii) Zero (D) Electric field of infinite charge sheet (iv) $\frac{2\sigma}{e_0}$	A (iii) B (ii) C (ii) D (i)
20	In a hydraulic lift, the two sides have areas $A_1 = 25 \text{ cm}^2$ and $A_2 = 100 \text{ cm}^2$. If a force of 100 N is applied normally on the area A_1 , then the force on the area A_2 is N.	400 N