GATE 2022

GATE 2022 Paper Analysis

Instrumentation Engineering

MCQ	27
NAT	33
MSQ	5

GATE 2022 Examination* (Memory Based) Instrumentation Engineering

Test Date: 6-Feb-2022
Test Time: 2:30 PM
Stream Name: Instrumentation Engineering

Q1. $\frac{d}{d t} y(t)+y(t)=3 x(t-3) U(t-3)$. Find If $\frac{y(s)}{x(s)}$
A) $\frac{3 e^{-\frac{s}{s}}}{s+1}$
B) $\frac{e^{-s+3}}{\mathrm{~s}+1}$
C) $\frac{\mathrm{e}^{-35} \mathrm{~s}+3}{\mathrm{~s}+3}$
D) $\frac{3 e^{-3 s}}{s+1}$
Q.2) If V_{BE} is 0.7 V \& $\mathrm{V}_{C E}=5.2 \mathrm{~V}$. Find B .

GATE 2022

$=I_{L} \max =$?
If knee current of Zener diode is 4 mA , then the maximum value of load current is

Q4. If $x(t)=(t-1)^{2} u(t-1)$. A laplace transform of $x(t)$ is $x(s)$.
Then find $x(1)$
a) e^{2}
b) $2 e$
c) e^{-1}
d) $2 e^{-1}$
Q.5)

a) Divide by 5 counter
b) Divide by 8 counter
c) Divide by 7 counter
d) Dees with as a counter because of dispintcycle

Q6. If $x(t)=x(t) \operatorname{Sin}(2 \pi t)$
a) Non Linear \& Time Variant
b) Linear \& Time Variant
c) Non Linear \& Time Invariant
d) Linear \& Time Invariant

GATE 2022

Q.7)

Find F.
a) $A+B$
b) $A \cdot \bar{B}$
c) $A+\bar{B}$
d) \bar{B}

Q8. In an $A D C$, resolution $=0.01 \mathrm{~V}$ and it converts analog signal b / w. ovto 10 V . The minimum number of bits (in integer) is \qquad

Refer \& Win Exciting Benefits Share your key to Success

Q.9) Find the input power factor for the given circuit?

Q10. In an ADC, ficsolution $=0.01 \mathrm{~V}$ \& it converter analog signal $\mathrm{b} / \mathrm{w} \mathrm{OV}$ to 10 V . The min. no. of bits (integers) is \qquad

a) $\overline{\mathrm{A}+\mathrm{B}}$
b) $\overline{\mathrm{A}}+\overline{\mathrm{B}}$
c) $\overline{\mathrm{A} \cdot \mathrm{B}}$
d) $\bar{A} \cdot \bar{B}$

Q11. Consider a matrix $A=\left[\begin{array}{ccc}2 & 3 & 7 \\ 6 & 4 & 7 \\ 4 & 6 & 14\end{array}\right]$
Which of the following options is/are correct.
a) $|A|=0$
b) $P(A)=3$
c) Rows of A are independent
d) Rank of A is 2

Q12. A bag contains 4 blue and 6 red balls. 3 balls are drawn in succession. The probability that 2 nd and 3 rd balls are red \qquad

GATE 2022

$$
\left[\begin{array}{cc}
4 & 3 \\
9 & -2
\end{array}\right]
$$

Which of the following eigen vector is correct.
$\left[\begin{array}{l}3 \\ 4\end{array}\right]$
$\left[\begin{array}{c}2 \\ -0\end{array}\right]$

Q14. In a series RLC circuit shown in the figure $R_{0}=50 \Omega, L_{0}=1 \mathrm{mH}, C_{0}=10 \mathrm{nf}$. The Q -factor of the circuit is \qquad

Q.15) The transer function of a system is $\frac{(s+1)(s+3)}{(s+5)(s+7)(s+9)}$. On the state space representation of the system, the minimum number of state variable necessary is \qquad .

Video

Visit Now

 Tests

GATE 2022

Q16. The signal flow graph of a system shown the expression for $Y Q / X(Q)$ is

A) $\quad \frac{2 \mathrm{G}_{1}(\mathrm{~s}) \mathrm{G}_{2}(\mathrm{~s})+2 \mathrm{G}_{1}(\mathrm{~S}) \mathrm{G}_{3}(\mathrm{~S})-\mathrm{G}_{1}(\mathrm{~S})}{1+\mathrm{G}_{2}(\mathrm{~S})+\mathrm{G}_{3}(\mathrm{~S})}$
B) $\quad 2 \mathrm{G}_{1}(\mathrm{~S})+\mathrm{G}_{3}(\mathrm{~S})+\frac{\mathrm{G}_{2}(\mathrm{~S})}{1+\mathrm{G}_{2}(\mathrm{~S})}$
C) $\quad \mathrm{G}_{1}(\mathrm{~S})+\mathrm{G}_{2}(\mathrm{~S})-\frac{\mathrm{G}_{2}(\mathrm{~S})}{2+\mathrm{G}_{2}(\mathrm{~S})}$
D) $\frac{2 \mathrm{G}_{1}(\mathrm{~S}) \mathrm{G}_{2}(\mathrm{~S})+2 \mathrm{G}_{1}(\mathrm{~S}) \mathrm{G}_{2}(\mathrm{~S})}{1+\mathrm{G}_{2}(\mathrm{~S})+\mathrm{G}_{2}(\mathrm{~S})}$
Q.17) In a given circuit switch S is closed for a long time and its open at $t=0$.

Consider ideal Qp - Amp, then, find the time (msec) at which the output voltage V_{0} becomes low?

GATE 2022

Q18. Find the output impedence of the given Amplifier is

A) $R_{s} \| 1 / \mathrm{gm}$
B) $R_{S}\left\|R_{L}\right\| 1 / g m$
C) $\left(R_{S}+R_{L}\right) \| 1 / g m$
D) $\frac{R_{L} g m}{1+g m R_{S}}$
Q.19) The circuit is driven by a sinusoidal input resulting in output voltage V_{0}. The frequency (in kHz) -
\qquad at which the voltage gain is od B.

Q20. A photo diode is made up of semi-conductor with an energy band of 1.42 eV and planks constant is $6.626 \times 10^{-34} \mathrm{~J}$. The speed of light is $3 \times 10^{\circ} \mathrm{m} / \mathrm{s}$ and $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$. The cut off wavelength is
\qquad nm .

Q21. In which of the following bridge (s) is the balancing condition frequency independent.
a) Wheatstone bridge
b) Wien bridge
c) Sheering bridge
d) Maxwell bridge

Q22. Hall sensor is based on principle of
a) Photo electric-effect
b) Piezoelectric-effect
c) Lorentz Force
d) Seeback

Q23.

In a given Wheatstone bridge. $\mathrm{R}_{1}=1.5 \mathrm{k} \Omega, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=1 \mathrm{k} \Omega$
Switch is initially open and voltage is observed between CD is $V_{C D}$. When switch is closed the resistance $R 1$ is changes by ΔR, then the sensitivity at $t=0\left(\frac{V}{R_{2}}\right)\left|\frac{\Delta V_{C D}}{\Delta R_{1}}\right|$ is

$$
\frac{6}{S(S-S)}
$$

The closed loop system will be
a) Casual \& Unstable
b) Non-casual \& stable
c) Non-casual \& Unstable
d) Casual and Stable

GATE 2022

Q.25) In a digital comparator having $\mathrm{a}_{1} \mathrm{a}_{0} \& \mathrm{~b}_{1} \mathrm{~b}_{0}$ for condition $\mathrm{A}>\mathrm{B}$ the condition will be:
a) $a_{1} \overline{b_{1}}+a_{0} \overline{b_{1}} \overline{b_{0}}+a_{1} a_{0} \overline{b_{0}}$
b) $\overline{a_{1}} \mathrm{~b}_{1}+\overline{a_{0}} \mathrm{~b}_{1} \overline{b_{0}}+\overline{a_{1}} \overline{a_{0}} \mathrm{~b}_{0}$
c) $\overline{a_{1}} \overline{b_{1}}+\overline{a_{0}} \overline{b_{1}} \mathrm{~b}_{0}+\mathrm{a}_{1} \mathrm{a}_{0} \overline{b_{0}}$
d) $\overline{a_{1}}+\overline{b_{1}}+a_{0} \overline{a_{0}} b_{0} \overline{b_{1}}$

Q26. A signal $x(t)$ is band limited between 100 Hz 8200 Hz . A signal $y(t)=x(2 t-s)$. The statement that also be true.
a) $y(t)$ is band limited b/w $200 \mathrm{~Hz} \& 400 \mathrm{~Hz}$
b) $y(t)$ is not band limited
c) $y(t)$ is band limited between 50 Hz and 100 Hz
d) $y(t)$ is band limited between 100 Hz and 200 Hz
Q.27) A sinusoidal carrier with amplitude A_{c} and frequency f_{c} is amplitude modulated with a message signal $\mathrm{m}(\mathrm{t})$ having frequency $0<\mathrm{f}_{\mathrm{m}}<\mathrm{f}_{\mathrm{c}}$ to generate modulated wave $\mathrm{s}(\mathrm{t})$ given by:
$\mathrm{s}(\mathrm{t})=\mathrm{Ac}(1+\mathrm{m}(\mathrm{t})) \cos 2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{t}$
The message signal that can be retrieved completly using envelope detection is:
a) $m(t)=2 \cos \left(4 \pi f_{c} t\right)$
b) $m(t)=2 \sin \left(4 \pi f_{c} t\right)$
c) $m(t)=0.5 \cos \left(2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{t}\right)$
d) $m(t)=1.5 \sin \left(2 \pi f_{c} t\right)$

Q28. Consider 24 voice signals being transmitted without latency using time division multiplexing. If each signal is sampled at 12 kHz and represented by an 8 -bit word, the bit duration in microsecond is:

Q29. 440v, 8 kw 4 pole 50 Hz star connected induction motor has a full load slip of 0.04 . The rotor speed (in rpm) in full load is \qquad

