Section A: Q. 1 - Q. 10 Carry ONE mark each.
Q. 1
Q. 2 (2)
(S. 3

Q.5 \begin{tabular}{|l|l|}

\hline (A) \& | Which one of the following options is best suited for effecting the |
| :--- |
| transformation? | \\

(B) \& DMSO_{2} \\
(D) \& $\mathrm{Ag}_{2}(\mathrm{Oi}-\mathrm{Pr})_{3}$
\end{tabular}

Q. 7	Among the following, the compound that forms the strongest hydrogen bond is
(A)	HF
(B)	HCl
(C)	HBr
(D)	HI
Q.8	Among the following, the biomolecule with a direct metal-carbon bond is
(A)	coenzyme B_{12}
(B)	nitrogenase
(C)	chlorophyll

Section A: Q. 11 - Q. 30 Carry TWO marks each.

Q.13	The major product formed in the reaction of $(2 S, 3 R)$-2-chloro-3-phenylbutane with NaOEt in EtOH is
(A)	$($ (E)-2-phenyl-but-2-ene
(C)	(Z)-2-phenyl-but-2-ene
(D)	$(2 R, 3 R)$-2-ethoxy-3-phenylbutane

Q. 14

Q.17	The structure types of $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$ and $\mathrm{B}_{10} \mathrm{H}_{14}$, respectively, are
(A)	closo and nido
(B)	nido and arachno
(D)	nido and closo
Q.18 and arachno	
The ground state and the maximum number of spin-allowed electronic	
(D)	${ }^{4} \mathrm{~T}_{1}$ and 3
(B)	${ }^{4} \mathrm{~A}_{2}$ and 3
(C)	${ }^{4} \mathrm{~A}_{2}$ and 2

Q. 19	The correct statement about the geometries of $\mathrm{BH}_{2}{ }^{+}$and $\mathrm{NH}_{2}{ }^{+}$based on valence shell electron pair repulsion (VSEPR) theory is
(A)	both $\mathrm{BH}_{2}{ }^{+}$and $\mathrm{NH}_{2}{ }^{+}$are trigonal planar
(B)	BH_{2}^{+}is linear and NH_{2}^{+}is trigonal planar
(C)	$\mathrm{BH}_{2}{ }^{+}$is trigonal planar and $\mathrm{NH}_{2}{ }^{+}$is linear
(D)	both $\mathrm{BH}_{2}{ }^{+}$and $\mathrm{NH}_{2}{ }^{+}$are linear
Q. 20	The order of increasing CO stretching frequencies in $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-},\left[\mathrm{Cu}(\mathrm{CO})_{4}\right]^{+}$, $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$ and $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is
(A)	$\left[\mathrm{Cu}(\mathrm{CO})_{4}\right]^{+}<\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]<\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}<\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$
(B)	$\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}<\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}<\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]<\left[\mathrm{Cu}(\mathrm{CO})_{4}\right]^{+}$
(C)	$\left[\mathrm{Co}(\mathrm{CO})_{4}\right]<\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}<\left[\mathrm{Cu}(\mathrm{CO})_{4}\right]^{+}<\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
(D)	$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]<\left[\mathrm{Cu}(\mathrm{CO})_{4}\right]^{+}<\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}<\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$

Q.21

Q.22	The stability of adducts $\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{PF}_{3}, \mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{NMe}_{3}, \mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{CO}, \mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{OMe}_{2}$ follows the order
(A)	$\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{OMe}_{2}<\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{CO}<\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{PF}_{3}<\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{NMe}_{3}$
(C)	$\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{PF}_{3}<\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{CO}<\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{NMe}_{3}<\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{OMe}_{2}$
(D)	$\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{PF}_{3}<\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{CO}<\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{PF}_{3}<\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{NMe}_{3}<\mathrm{OMe}_{2}<\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{OMe}_{2}$

Q. $23 \quad$| The spacing between successive rotational energy levels of a diatomic |
| :--- |
| molecule $X Y$ and its heavier isotopic analogue $X^{\prime} Y^{\prime}$ varies with the rotational |
| quantum number, J, as |

| Q.24 | The ratio of the $2 \mathrm{p} \rightarrow 1$ s transition energy in He^{+}to that in the H atom
 is closest to |
| ---: | :--- | :--- |
| (A) | 1 |
| (B) | 2 |
| (D) | 8 |
| | |

Q.26	Capillary W contains water and capillary M contains mercury. The contact angles between the capillary wall and the edge of the meniscus at the air-liquid interface in W and M are θ_{W} and θ_{M}, The contact angles satisfy the conditions			
(A)	$\theta_{W}>90^{\circ}$ and $\theta_{M}>90^{\circ}$	$\theta_{\text {(B) }}$	(D)	$\theta_{W}<90^{\circ}$ and $\theta_{M}<90^{\circ}$
:---	:---	:---		

Q.29 \quad The number of CO stretching bands in the infrared spectrum of $\mathrm{Fe}(\mathrm{CO})_{5}$ is

Q.30	The standard Gibbs free energy change for the reaction $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$ at 2500 K is $+118 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The equilibrium constant for the reaction is [Given: $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$]
(A)	0.994
(C)	3.42×10^{-3}
(D)	292.12

Section B: Q. 31 - Q. 40 Carry TWO marks each.

Q.31 | Among the following, the reaction(s) that favor(s) the formation of the products |
| :--- |
| at $25^{\circ} \mathrm{C}$ is/are |
| (B) |
| (C) |

Q.32	Among the following, the correct statement(s) is/are:
(A)	The first $\mathrm{p} K_{\mathrm{a}}$ of malonic acid is lower than the $\mathrm{p} K_{\mathrm{a}}$ of acetic acid while its second $\mathrm{p} K_{\mathrm{a}}$ is higher than the $\mathrm{p} K_{\mathrm{a}}$ of acetic acid. (C) Both the first and the second $\mathrm{p} K_{\mathrm{a}} \mathrm{s}$ of malonic acid are lower than the $\mathrm{p} K_{\mathrm{a}}$ of of malonic acid is higher than the $\mathrm{p} K_{\mathrm{a}}$ of acetic acid while its acetic acid. (D) Both the first and the second $\mathrm{p} K_{\mathrm{a}} \mathrm{s}$ of malonic acid are higher than the $\mathrm{p} K_{\mathrm{a}}$ of acetic acid.

Q. 33 (A) | The compound(s) that participate(s) in Diels-Alder reaction with |
| :--- |
| maleic anhydride is/are |
| (B) |

Q.34	Among the following, the suitable route(s) for the conversion of benzaldehyde to acetophenone is/are			
(A)	$\mathrm{CH}_{3} \mathrm{COCl}$, anhydrous AlCl_{3}			
(B)	(i) $\mathrm{HS}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}, \mathrm{F}_{3} \mathrm{~B} \cdot \mathrm{OEt}_{2}$; (ii) n-BuLi; (iii) MeI; (iv) $\mathrm{HgCl}_{2}, \mathrm{CdCO}_{3}, \mathrm{H}_{2} \mathrm{O}$	$	$	(DaNH, MeI
:---				
(i) MeMgBr ; (ii) aq. acid; (iii) pyridinium chlorochromate (PCC)				

Q.35

Q.36	The reason(s) for the lower stability of $\mathrm{Si}_{2} \mathrm{H}_{6}$ compared to $\mathrm{C}_{2} \mathrm{H}_{6}$ is/are
(A)	silicon is more electronegative than hydrogen
(C)	Si-Si bond is weaker than $\mathrm{C}-\mathrm{C}$ bond
(D)	the presence of low-lying d-orbitals in silicon

Q.37	For an N-atom nonlinear polyatomic gas, the constant volume molar heat capacity $C_{v, m}$ has the expected value of $3(N-1) R$, based on the principle of equipartition of energy. The correct statement(s) about the measured value of $C_{v, m}$ is/are
(A)	The measured $C_{v, m}$ is independent of temperature.
(B)	The measured $C_{v, m}$ is dependent on temperature.
(C)	The measured $C_{v, m}$ is typically lower than the expected value.
(D)	The measured $C_{v, m}$ is typically higher than the expected value.
(D)	urease
hydrogenase	
(A)	carboxypeptidase
carbonic anhydrase	

Q.43

Section C: Q. 51 - Q. 60 Carry TWO marks each.

Q. 51	The specific rotation of optically pure $(R)-1$-phenylethylamine is +40 (neat, $20^{\circ} \mathrm{C}$). A synthetic sample of the same compound is shown to contain 4:1 mixture of (S) - and (R)-enantiomers. The specific rotation of the neat sample at $20^{\circ} \mathrm{C}$ is \qquad (round off to the nearest integer)
Q. 52	The number of β particles emitted in the nuclear reaction ${ }_{92}^{238} U \rightarrow{ }_{82}^{206} \mathrm{~Pb}$ is \qquad .
	¿uras
Q. 53	Iron is extracted from its ore via the reaction $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$ The volume of CO (at STP) required to produce 1 kg of iron is \qquad liters. (round off to the nearest integer) [Given: Atomic wt. of $\mathrm{Fe}=56$; assume STP to be $0^{\circ} \mathrm{C}$ and 1 atm]

