Section A: Q. 1 - Q. 10 Carry ONE mark each.

Q. 1	When the supply curve S_{x} is backward bending and the demand curve D_{x} is downward sloping as shown in the figure, there are two equilibria M and N, respectively. Which of the following statements is CORRECT?
(A)	Only M is stable equilibrium
(B)	Only N is stable equilibrium
(C)	Both M and N are stable equilibria
(D)	Both M and N are unstable equilibria

Q. 2	Which of the following deficits indicates the true current fiscal position of the Indian
Economy?	
(A)	Revenue Deficit
(C)	Current Account Deficit Deficit
(D)	Primary Deficit

Q.3	Which of the following CORRECTLY defines the relationship between the variances of sample means for simple random samples drawn with and without replacement from a normal population?
(A)	$\frac{\sigma^{2}}{n}>\frac{\sigma^{2}}{n}\left(\frac{N-n}{N-1}\right)$
(B)	$\frac{\sigma^{2}}{n} \leq \frac{\sigma^{2}}{n}\left(\frac{N-n}{N-1}\right)$
(C)	$\frac{\sigma^{2}}{n}<\frac{\sigma^{2}}{n}\left(\frac{N-n}{N-1}\right)$
	$\frac{\sigma^{2}}{n}=\frac{\sigma^{2}}{n}\left(\frac{N-n}{N-1}\right)$

Q. 4	Suppose that one million unemployed persons in a country are receiving Rs. 6000 per month per person as an unemployment allowance. If the government, instead of paying unemployment allowance, hires all of them at the same amount (Rs. 6000 per month per person) and engages them in digging the pits and filling the same pits. What will be the effect on GDP?
(A)	No effect on GDP
(B)	GDP will rise.
(D)	GDP will fall.
	The effect on GDP will be uncertain.

Q. 5	Which amendments to the constitution have provided constitutional status to the rural and urban local bodies in India?
(A)	$80^{\text {th }}$ and $81^{\text {st }}$ Amendments
(B)	$73^{\text {rd }}$ and $74^{\text {th }}$ Amendments
(D)	$71^{\text {nd }}$ and $93^{\text {rd }}$ Amendments $72^{\text {nd }}$ Amendments

Q. 6	Let W be a subspace of a vector space \mathfrak{R}^{3}. Then, which of the following sets of vectors forms a basis of W?
(A)	$(1,2,1)$ and $(1,-2,5)$
(B)	$(1,3,2),(1,-1,0),(4,-1,0)$ and $(3,1,-3)$
(D)	$(1,-2,1,1),(1,2,3)$ and $(2,-1,1)$

Q.7	From the following, who first examined the close negative relationship between the unemployment rate and the output ratio?
(A)	Alban W. Phillips
(B)	James Tobin
(C)	Arthur M. Okun
(D)	Robert M. Solow
Q.8	In the hypothesis testing, which of the following defines the size of power of the test?
(A)	$1-$ (Probability of accepting null hypothesis when it is true)
(B)	$1-$ (Probability of rejectingnull hypothesis when it is true)
(D)	$1+$ (Probability of accepting null hypothesis when it is false)
	1

Q.9	Which of the following is NOT a postulate of the Classical Model of full-employment equilibrium?
(A)	Wage-Price flexibility
(B)	Perfect information about the market
(D)	The price level moves proportionately with the quantity of money.
Q.10	A long-run cost function for a product exhibits economies of scale if
(A)	average cost of production increases when the output increases.
(B)	the production function has decreasing returns to scale.
(C)	average cost of production falls as the output increases.
average cost of production remains constant as the output increases.	
(D)	

Section A: Q. 11 - Q. 30 Carry TWO marks each.

Q. 11	Let $x^{3}+3 y^{2}=4$ for all $x, y \in \mathfrak{R}, y^{\prime}=\frac{d y}{d x}$ and $y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}$. Then
(A)	$x^{2}+y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=0$
(B)	$2 x+y^{\prime \prime}+2\left(y^{\prime}\right)^{2}=0$
(D)	$x+\left(y^{\prime}\right)^{2}=0$

Q.13	Let $f:[0, \infty) \rightarrow \mathfrak{R}$ be a function defined by $f(x)=\frac{x+1}{x+2}$ for all $x \in \mathfrak{R}$. Then f is
(A)	one-one and onto.
(C)	one-one but not onto.
(D)	neither one-one nor onto.

Q.14	An economy is characterized by the Solow model, with the production function $y=\sqrt{k}$, where y is output per worker and k is capital per worker. The steady-state level of output per worker is $y^{s s}=A^{1 /(1-\alpha)}\left(\frac{\gamma}{\delta}\right)^{\alpha /(1-\alpha)}$, where A, γ, δ and α denote productivity, share of output invested (in $\%)$, depreciation rate (in $\%$) and capital's share in income (in fraction), respectively. Suppose that $A=1, k=400, \gamma=50 \%, \delta=5 \%$ and $\alpha=1 / 2$. Then the current output, using the above information, is
(A)	above the steady-state level of output per worker.
(B)	at the steady-state level of output per worker.
(D)	at the Golden Rule level.

Q.15	Which of the following is NOT related to the structural adjustment programmes implemented in India after 1991?
(A)	Deregulation
(C)	Fiscal austerity
(D)	Reduction of subsidies

Q.16	Let a second order difference equation be
(A)	$\left(1+n_{n+2}+4 y_{n}=4 y_{n+1}, \quad n=2,3,4, \ldots, y_{0}=1, y_{1}=4\right.$
(B)	$(1+n) 2^{n}$
(D)	$\left(1+\frac{1}{n}\right) 2^{n}$

Q.17	Suppose that two random samples of sizes n_{1} and n_{2} are selected without replacement from two binomial populations with means $\mu_{1}=n_{1} p_{1}, \mu_{2}=n_{2} p_{2}$ and variances $\sigma_{1}^{2}=n_{1} p_{1} q_{1}, \quad \sigma_{2}^{2}=n_{2} p_{2} q_{2}$, respectively. Let the difference of sample proportions \bar{P}_{1} and \bar{P}_{2} approximate a normal distribution with mean $\left(p_{1}-p_{2}\right)$. Then the standard deviation of the difference of sample proportions \bar{P}_{1} and \bar{P}_{2} is
(A)	$\sqrt{\left(\frac{p_{1} q_{1}}{n_{1}}\right)\left(\frac{N_{1}-n_{1}}{N_{1}-1}\right)+\left(\frac{p_{2} q_{2}}{n_{2}}\right)\left(\frac{N_{2}-n_{2}}{N_{2}-1}\right)}$
(B)	$\sqrt{\left(\frac{p_{1} q_{1}}{n_{1}}\right)+\left(\frac{p_{2} q_{2}}{n_{2}}\right)}$
(D)	$\sqrt{\left(\frac{p_{1} q_{1}-p_{2} q_{2}}{n_{1}+n_{2}}\right)}$
	$\sqrt{\left(\frac{p_{1} q_{1}}{n_{1}+n_{2}}\right)\left(\frac{N_{1}-n_{1}}{N_{1}-1}\right)+\left(\frac{p_{2} q_{2}}{\left.n_{1}+n_{2}\right)\left(\frac{N_{2}-n_{2}}{N_{2}-1}\right)}\right.}$

Q.18	Which of the following statements is NOT correct in the context of quantity theory of money?
(A)	The quantity of money available determines the price level in the economy.
(B)	The growth rate in the quantity of money available determines the inflation rate in the economy.
(C)	The velocity of money must rise with the increase in the quantity of money in the economy.
neutral.	

Q.19	Let the function $f: \mathfrak{R}^{2} \rightarrow \mathfrak{R}$ be $f(x, y)=\frac{x y^{2}}{x^{3}+2 x^{2} y+y^{3}}, f(0,0)=0$. Then
(A)	f is differentiable at $(0,0)$.
(C)	f_{x} does not exist at $(0,0)$.
(D)	f is not continuous at $(0,0)$.

Q.20	Which of the following measures was announced by the Government of India in the year $1994 ?$
(A)	Full convertibility on capital account
(C)	Full convertibility on current account
Constitution of the Narasimham Committee on banking sector reforms	Constitution of the Abid Hussain Committee on trade policies

Q. 21	An analyst at the Green Car Co. Ltd. estimated the following demand function for the electric vehicles it sells: $Q_{E}=0.75-1.5 P_{E}+2.5 P_{F}-0.5 P_{B}+3.2 I$ where $Q_{E}=$ Number of electric vehicles (in thousand per year), $P_{E}=$ Unit price of electric vehicle (Rs. in Lakh), $P_{F}=$ Average unit price of vehicle using fossil fuels (Rs. in Lakh), $P_{B}=$ Unit price of battery used in electric vehicle (Rs. in Lakh), $I=$ Personal disposable income (Rs. in Lakh). Let $P_{E}=$ Rs. 6.5 Lakh, $P_{F}=$ Rs. 4.5 Lakh, $P_{B}=$ Rs. 0.5 Lakh and $I=$ Rs. 10 Lakh. Then the income elasticity of demand $\left(e_{Q_{E} I}\right)$ and the cross price elasticity of demand $\left(e_{Q_{E} P_{F}}\right)$ satisfy
(A)	$0.98 \leq e_{Q_{E} I} \leq 0.99 \text { and } 0.33 \leq e_{Q_{E} P_{F}} \leq 0.34$
(B)	$0.94 \leq e_{Q_{E} I} \leq 0.95$ and $0.45 \leq e_{Q_{E} P_{F}} \leq 0.46$
(C)	$0.98 \leq e_{Q_{E^{I}}} \leq 0.99$ and $0.45 \leq e_{Q_{E} P_{F}} \leq 0.46$
(D)	$0.94 \leq e_{Q_{E} I} \leq 0.95 \text { and } 0.33 \leq e_{Q_{E} P_{F}} \leq 0.34$

Q. 24	Which of the following statements is NOT correct under the IS-LM (Fixed Price) model?
(A)	The LM curve represents the combinations of income and interest rate, where money market is in equilibrium. (B)The IS curve represents the combinations of income and interest rate, where product market (goods and services) is in equilibrium. (C) An increase in money supply raises income and reduces interest rate when the IS curve has negative slope and the LM curve has positive slope. Monetary policy has a relatively weak effect on income when the interest responsiveness of the demand for money is relatively low.

Q.25	The probability of getting head in a toss of a biased coin is $\frac{2}{3}$. Let the coin be tossed three times independently. Then the probability of getting head in the first two tosses and tail in the final toss is
(A)	$\frac{4}{27}$
(B)	$\frac{1}{8}$
(D)	$\frac{2}{27}$

Q.27	Which of the following is NOT correct regarding R-squared Adjusted R-squared $\left(\bar{R}^{2}\right)$? (A) (B) R^{2} is a scale invariant statistic. \bar{R}^{2} is always positive. (C) R^{2} tends to increase if we add an additional explanatory variable. $\bar{R}^{2}=1-\left(1-R^{2}\right)\left(\frac{n-1}{n-k}\right)$, where k is the number of parameters and n is the number of observations.

Q.28	The technical change in the endogenous growth model is endogenized by
(A)	providing incentives to firms to innovate.
(B)	making the saving function dependent on income.
(D)	assuming a perfectly competitive market structure.

Q. 29	Which of the following statements is CORRECT for Game A and Game B?		
	Game A: Mary wants to watch a movie and John is interested in watching a football match. Both wish to be together. The payoff matrix is: John	Game B: The Prisoner's dilemma problem is shown below:	
(A)	In Game A, (Movie, Football) and (Football, Movie) represent Nash equilibrium. In Game B, (Do not confess, Do not confess) is the Nash Equilibrium.		
(B)	In Game B, (Confess, Confess) is not a Nash equilibrium but in Game A, both (Movie, Football) and (Football, Movie) represent Nash equilibrium.		
(C)	In Game B, the Nash equilibrium is (Do not confess, Do not confess).		
(D)	In Game A, both (Movie, Movie) and (Football, Football) represent Nash equilibrium. In Game B, the Nash equilibrium is (Confess, Confess).		

Q.30	The short-run production function of a firm is $Q=200+0.2 L^{2}-0.0004 L^{3}$. If wage rate equals Rs. 140 and the number of labours (L) is 100, then the Marginal Cost and the Average Variable Cost, respectively, are
(A)	5 and 7.78
(C)	6 and 7.78
(D) 6.68	
6 and 6.68	

Section B: Q. 31 - Q. 40 Carry TWO marks each.

Q.31	Let $X \sim N\left(\mu_{X}, \sigma_{X}^{2}\right)$ and $Y \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$. Which of the following is/are NOT correct?
(A)	The area $F(X)=\frac{1}{\sigma_{X} \sqrt{2 \pi}} \int_{-\infty}^{\mu_{X}} e^{-\frac{1}{2}\left(\frac{X-\mu_{X}}{\sigma_{X}}\right)^{2}} d x$ is 1.
(B)	The areas under the normal probability curve between the ordinates at $\mu_{X} \pm 3 \sigma_{X}$ and
(C)	For variable X,
Quartile Deviation : Mean Absolute Deviation : Standard Deviation $\cong \frac{2}{3} \sigma_{X}: \frac{4}{5} \sigma_{X}: \sigma_{X}$	
(D)	If X and Y are independent, then $(X-Y) \sim N\left(\mu_{X}-\mu_{Y}, \sigma_{X}^{2}+\sigma_{Y}^{2}\right)$.

Q. 33	Suppose that the regression model is $Y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\mu_{i}, i=1,2, \ldots, n$. Which of the following null hypotheses could be tested using the F-test?
(A)	$\beta_{1} / \beta_{2}=0$
(B)	$\beta_{0}=0$
(D)	$\beta_{1} \beta_{2}=0$

Q.34	Let f be defined by $f(x)=\|x\|+\left\|\cos \left(\frac{\pi}{2}-x\right)\right\|, x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then
(A)	f is continuous on $\left(-\frac{\pi}{2}, 0\right) \cup\left(0, \frac{\pi}{2}\right)$.
(B)	f is differentiable at $x=0$.
(D)	f is differentiable everywhere except $x=0$.
$x \rightarrow 0$	

Q.35	The real exchange rate is given by $e=E P / P^{\star}$, where e is the price of domestic goods in terms of foreign goods, E is the price of domestic currency in terms of foreign currency, P is the domestic price level, P^{\star} is the foreign price level. If the Indian Rupee depreciates vis-à-vis the Japanese Yen, and the Marshall-Lerner condition holds, then (A) India's imports will increase. (B) (D) India's trade balance will improve. foreign demand for Indian goods will increase.

Q.37	Which of the following statements is/are CORRECT under the Keynesian Cross (Fixed Price) Model?
(A)	The product market and factor market independently determine the full-employment level of output.
(B)	Output is determined in the product market by the aggregate expenditure.
Money market determines the price level, given the quantity of money and the level of	
output.	
Employment is determined in the factor market by the output level determined in the	
product market.	

Q.38	Which of the following functions is/are homogeneous?
(A)	$x \cot ^{-1}\left(\frac{y}{x}\right)$
(C)	$\sqrt{\frac{x}{y}}+\frac{3 x}{y}+7$
(D)	$3 x^{5} y+2 x^{2} y^{4}-3 x^{3} y^{4}$

Q. 39	In the context of Indian agriculture, which of the following statements is/are CORRECT?
(A)	NABARD was established in 1982.
(B)	One of the objectives of setting up of the CACP was to ensure remunerative prices to farmers. (D) The APMC Act is related to institutional credit supply in agriculture.
	Thational Commission on Agriculture was chaired by V. M. Dandekar.

$\left.\begin{array}{|l|l|}\hline \text { Q.40 } & \begin{array}{l}\text { Let a monopolist demand curve be given by } Q=P^{e}, \text { where } Q \text { is output, } P \text { is price, } e \text { is } \\ \text { the price elasticity of demand }(e<-1) \text {, and Marginal Cost }=\text { Average Cost }=\alpha, \text { If } P_{C} \text { and } \\ P_{M} \text { represent the price under perfect competition and monopoly, respectively, then which } \\ \text { of the following is/are NOT correct? } \\ \\ \left(C S_{M} \text { and } C S_{C} \text { represent the consumer surplus under monopoly and perfect competition, }\right. \\ \text { respectively.) }\end{array} \\ \hline \text { (A) } & P_{C}=\alpha\left(\frac{e}{1+e}\right) \\ \hline \text { (C) } & \text { For } e=-2, C S_{M}=C S_{C} . \\ \hline \text { (D) } & \text { For } e \text { closer to }-1, \text { the ratio } C S_{M} / C S_{C} \text { increases. } \\ \hline 1+e\end{array}\right)$

Q. 44	Let $a, b \in \mathfrak{R}$. If $f(x)=a x+b$ is such that $a+b=4$ and $f(x+y)=f(x)+f(y)-2$ for all $x, y \in \mathfrak{R}$, then $\sum_{n=1}^{50} f(n)=$ \qquad (in integer).
Q. 45	The Total Variable Cost (TVC) for a firm is given by TVC $=x^{3}-b x^{2}$. The Total Fixed Cost is 848 . The value of b for which the Marginal Cost is minimum at $x=16$ is \qquad (in integer).
Q. 46	Let the consumption function, tax function, and income identity be given by $C=C_{0}+b(Y-T), T=T_{0}+t Y$, and $Y=C+I_{0}+G_{0}$, respectively, where C_{0}, I_{0}, G_{0}, and T_{0} are autonomous consumption, investment, government expenditure, and tax, respectively. If $b=0.75$ and $t=0.1$, then an increase in G_{0} by Rs. 20 million will increase Y by Rs. \qquad million (round off to 2 decimal places).

Q. 47	Let the system of equations be $\alpha u+w=0, u+\alpha v=0, v+\alpha w=0$, where $\alpha \in \mathfrak{R}$. Then the system has infinite solutions if $\alpha=$ \qquad (in integer).
Q. 48	Assume that the cost function for the $i^{t h}$ firm in an industry is given by $C_{i}=0.25 q_{i}^{2}+2 q_{i}+5, \quad i=1,2, \ldots, 150,$ where C_{i} and q_{i} are cost and output for the $i^{\text {th }}$ firm, respectively. Let the aggregate inverse demand function be $P=10-0.01 Q$, where P is the unit price and Q is the aggregate output. Assuming perfect competition, the equilibrium quantity is \qquad (in integer).

The personal disposable income for the year 2019-20 is Rs. \qquad Lakh Crores (in integer).

Section C: Q. 51 - Q. 60 Carry TWO marks each.

Q. 57	Given the following information related to product and money markets, > Product Market > $C=300+0.8(Y-T)$ > $T=200+0.2(Y)$ > $I_{0}=300 ; G_{0}=400$ Money Market $\frac{M_{o}}{P}=0.4 Y-200 i$ $M_{0}=900 ; P=1(\text { Fixed })$ where $Y=$ Income, $C=$ Consumption, $T=$ Tax, $I_{0}=$ Autonomous Investment, $G_{0}=$ Autonomous Government Expenditure, $M_{0}=$ Nominal Money Demand, $P=$ Price, and $i=$ Interest Rate. The equilibrium level of interest rate (in \%) is \qquad (round off to 2 decimal places).
	くuñ
Q. 58	Let the linear programming problem be $\begin{array}{ll} \text { Maximize } & Z=-0.2 x_{1}+x_{2} \\ \text { subject to } & 2 x_{1}+5 x_{2} \leq 70 \\ & x_{1}+x_{2} \leq 20, \\ & x_{1}, x_{2} \geq 0 . \end{array}$ If $x_{1}=a$ and $x_{2}=b$ is the optimal solution, then $a+b=$ \qquad (in integer).
	x^{2}

Q.59	Let the production function be $Q=\sqrt{L^{2}+K^{2}}$, the unit price of labour (L) and capital (K) be Rs. 30 and Rs. 40, respectively, and the total cost be Rs. 580 . Then the maximum value of Q subject to the cost constraint is ___ (round off to 2 decimal places).
Q.60	In a market, two firms F_{1} and F_{2} are producing homogenous products. The inverse demand function is given by $p=120-0.5\left(q_{1}+q_{2}\right)$, where p is the unit price of the product, and q_{1} and q_{2} are the outputs from F_{1} and F_{2}, respectively. Suppose the cost functions of F_{1} and F_{2} are $C_{1}=20 q_{1}$ and $C_{2}=10+0.5 q_{2}^{2}$, respectively. Then the total profit earned by both the firms assuming a competitive situation is
(in integer).	

