Notation and Terminology

$\mathbb{N}=$ the set of all positive integers.
$\mathbb{Z}=$ the set of all integers.
$\mathbb{Q}=$ the set of all rational numbers.
$\mathbb{R}=$ the set of all real numbers.
$\mathbb{R}^{n}=$ the n-dimensional Euclidean space.
$\mathbb{C}=$ the set of all complex numbers.
$M_{n}(\mathbb{R})=$ the real vector space of all $n \times n$ matrices with entries in \mathbb{R}.
$M_{n}(\mathbb{C})=$ the complex vector space of all $n \times n$ matrices with entries in \mathbb{C}.
$\operatorname{gcd}(m, n)=$ the greatest common divisor of the integers m and n.
$M^{\top}=$ the transpose of the matrix M.
$A-B=$ the complement of the set B in the set A, that is, $\{x \in A: x \notin B\}$.
$\ln x=$ the natural logarithm of x (to the base e).
$|x|=$ the absolute value of x.
$y^{\prime}, y^{\prime \prime}, y^{\prime \prime \prime}=$ the first, second and the third derivatives of the function y, respectively.
$S_{n}=$ the symmetric group consisting of all permutations of $\{1,2, \ldots, n\}$.
$\mathbb{Z}_{n}=$ the additive group of integers modulo n.
$f \circ g$ is the composite function defined by $(f \circ g)(x)=f(g(x))$.
The phrase 'real vector space' refers to a vector space over \mathbb{R}.

Section A: Q. 1 - Q. 10 carry ONE mark each.

Q.3	Let V be the real vector space consisting of all polynomials in one variable with real coefficients and having degree at most 6, together with the zero polynomial. Then which one of the following is true?
(A)	$\{f \in V: f(1 / 2) \notin \mathbb{Q}\}$ is a subspace of V.
(B)	$\{f \in V: f(1 / 2)=1\}$ is a subspace of V.
(C)	$\{f \in V: f(1 / 2)=f(1)\}$ is a subspace of V.
(D)	$\left\{f \in V: f^{\prime}(1 / 2)=1\right\}$ is a subspace of V.
Q.4	Let G be a group of order 2022. Let H and K be subgroups of G of order 337 and 674, respectively. If $H \cup K$ is also a subgroup of G, then which one of the following is FALSE?
(C)	The order of $H \cup K$ is 674. (A) H is a normal subgroup of $H \cup K$.
The order of $H \cup K$ is 1011.	

Q.5	The radius of convergence of the power series	
(A)	4	
(B)	$\sqrt[5]{4}\left(\frac{n^{3}}{4^{n}}\right) x^{5 n}$	
(C)	$\frac{1}{4}$	
(D)	$\frac{1}{5}$	

Q.8	Consider the series
where m and p are real numbers.	
(A)	$m>1$.
(B)	$0<m<1$ and $p>1$.
(D)	$0<m \leq 1$ and $0 \leq p \leq 1$.
	$m=1$ and $p>1$.

Q.9	Let c be a positive real number and let $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by
	$u(x, t)=\frac{1}{2 c} \int_{x-c t}^{x+c t} e^{s^{2}} d s$ for $(x, t) \in \mathbb{R}^{2}$.
(A)	$\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \quad$ on \mathbb{R}^{2}.
(B)	$\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}} \quad$ on \mathbb{R}^{2}.
(C)	$\frac{\partial u}{\partial t} \frac{\partial u}{\partial x}=0 \quad$ on \mathbb{R}^{2}.
(D)	$\frac{\partial^{2} u}{\partial t}=0 \quad$ on \mathbb{R}^{2}.

Section A: Q. 11 - Q. 30 Carry TWO marks each.

Q.11	Consider the open rectangle $G=\left\{(s, t) \in \mathbb{R}^{2}: 0<s<1\right.$ and $\left.0<t<1\right\}$ the map $T: G \rightarrow \mathbb{R}^{2}$ given by
	$T(s, t)=\left(\frac{\pi s(1-t)}{2}, \frac{\pi(1-s)}{2}\right) \quad$ for $(s, t) \in G$
(A)	$\frac{\pi}{4}$
(B)	$\frac{\pi^{2}}{4}$
(C)	$\frac{\pi^{2}}{8}$
(D)	1

Q. 12	Let T denote the sum of the convergent series $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots+\frac{(-1)^{n+1}}{n}+\cdots$ and let S denote the sum of the convergent series $1-\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{6}-\frac{1}{8}+\frac{1}{5}-\frac{1}{10}-\frac{1}{12}+\cdots=\sum_{n=1}^{\infty} a_{n}$ where $a_{3 m-2}=\frac{1}{2 m-1}, \quad a_{3 m-1}=\frac{-1}{4 m-2} \quad$ and $\quad a_{3 m}=\frac{-1}{4 m} \quad$ for $m \in \mathbb{N}$. Then which one of the following is true?
(A)	$T=S \text { and } S \neq 0$
(B)	$2 T=S \text { and } S \neq 0$
(C)	$T=2 S$ and $S \neq 0$.
(D)	$T=S=0$

Q.16	Let $P \in M_{4}(\mathbb{R})$ be such that P^{4} is the zero matrix, but P^{3} is a nonzero matrix. Then which one of the following is FALSE?
(A)	For every nonzero vector $v \in \mathbb{R}^{4}$, the subset $\left\{v, P v, P^{2} v, P^{3} v\right\}$ of the real vector space \mathbb{R}^{4} is linearly independent. (B) The rank of P^{k} is $4-k$ for every $k \in\{1,2,3,4\}$. (D) 0 is an eigenvalue of P. If $Q \in M_{4}(\mathbb{R})$ is such that Q^{4} is the zero matrix, but Q^{3} is a nonzero matrix, then there exists a nonsingular matrix $S \in M_{4}(\mathbb{R})$ such that $S^{-1} Q S=P$.

Q.20	For $P \in M_{5}(\mathbb{R})$ and $i, j \in\{1,2, \ldots, 5\}$, let $p_{i j}$ denote the $(i, j)^{\text {th }}$ entry of P. Let
$S=\left\{P \in M_{5}(\mathbb{R}): p_{i j}=p_{r s}\right.$ for $i, j, r, s \in\{1,2, \ldots, 5\}$ with $\left.i+r=j+s\right\}$.	
(A)	S is a subspace of the vector space over \mathbb{R} of all 5×5 symmetric matrices.
(B)	The dimension of S over \mathbb{R} is 5.
(C)	The dimension of S over \mathbb{R} is 11.
If $P \in S$ and all the entries of P are integers, then 5 divides the sum of all the	
diagonal entries of P.	

Q.21	On the open interval $(-c, c)$, where c is a positive real number, $y(x)$ is an infinitely differentiable solution of the differential equation (A) with the initial condition $y(0)=0$. Then which one of the following is correct? (B) $y(x)$ has a local maximum at the origin. (C) $y(x)$ has a local minimum at the origin. $y(x)$ is strictly increasing on the open interval $(-\delta, \delta)$ for some positive real number δ.
(D)	$y(x)$ is strictly decreasing on the open interval $(-\delta, \delta)$ for some positive real
number δ.	

Q.22	Let $H: \mathbb{R} \rightarrow \mathbb{R}$ be the function given by $H(x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)$ for $x \in \mathbb{R}$.
	Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by
	$f(x)=\int_{0}^{\pi} H(x \sin \theta) d \theta$ for $x \in \mathbb{R}$.
(A)	$x f^{\prime \prime}(x)+f^{\prime}(x)+x f(x)=0$ for all $x \in \mathbb{R}$.
(C)	$x f^{\prime \prime}(x)-f^{\prime}(x)+x f(x)=0$ for all $x \in \mathbb{R}$.
(D)	$x f^{\prime \prime}(x)-f^{\prime}(x)-x f(x)=0$ for all $x \in \mathbb{R}$.

Q.25	For some real number c with $0<c<1$, let $\phi:(1-c, 1+c) \rightarrow(0, \infty)$ be a differentiable function such that $\phi(1)=1$ and $y=\phi(x)$ is a solution of the differential equation
(A) $\quad\left(x^{2}+y^{2}\right) d x-4 x y d y=0$.	
$\left(3(\phi(x))^{2}+x^{2}\right)^{2}=4 x$.	
(B)	$\left(3(\phi(x))^{2}-x^{2}\right)^{2}=4 x$.
(D)	$\left(3(\phi(x))^{2}-x^{2}\right)^{2}=4 \phi(x)$.

Q.26	For a 4×4 matrix $M \in M_{4}(\mathbb{C})$, let \bar{M} denote the matrix obtained from M by replacing each entry of M by its complex conjugate. Consider the real vector space
(A)	where M^{\top} denotes the transpose of M. The dimension of H as a vector space over \mathbb{R} is equal to
(B)	16
(C)	15
(D)	12

Q.27	Let a, b be positive real numbers such that $a<b$. Given that
the value of	
(A)	$\sqrt{\pi}(\sqrt{a}-\sqrt{b})$.
(B)	$\sqrt{\pi}(\sqrt{a}+\sqrt{b})$
(C) $\int_{0}^{N} e^{-t^{2}} d t=\frac{\sqrt{\pi}}{2}$,	
(D)	$-\sqrt{\pi}(\sqrt{a}+\sqrt{b})$.
	$\sqrt{\pi}(\sqrt{b}-\sqrt{a})$.

Section B: Q. 31 - Q. 40 Carry TWO marks each.

Q.31	Let $(-c, c)$ be the largest open interval in \mathbb{R} (where c is either a positive real number or $c=\infty$) on which the solution $y(x)$ of the differential equation exists and is unique. Then which of the following is/are true? (A) (B) (C) $y(x)$ is an odd function on $(-c, c)$. $(y(x))^{2}$ has a local minimum at 0.
$(y(x))^{2}$ has a local maximum at 0.	

Q. 32	Let S be the set of all continuous functions $f:[-1,1] \rightarrow \mathbb{R}$ satisfying the following three conditions: (i) $\quad f$ is infinitely differentiable on the open interval $(-1,1)$, (ii) the Taylor series $f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots$ of f at 0 converges to $f(x)$ for each $x \in(-1,1)$, (iii) $\quad f\left(\frac{1}{n}\right)=0$ for all $n \in \mathbb{N}$. Then which of the following is/are true?
(A)	$f(0)=0$ for every $f \in S$.
(B)	$f^{\prime}\left(\frac{1}{2}\right)=0$ for every $f \in S$
(C)	There exists $f \in S$ such that $f^{\prime}\left(\frac{1}{2}\right) \neq 0$.
(D)	There exists $f \in S$ such that $f(x) \neq 0$ for some $x \in[-1,1]$.

Q. 35	A real-valued function $y(x)$ defined on \mathbb{R} is said to be periodic if there exists a real number $T>0$ such that $y(x+T)=y(x)$ for all $x \in \mathbb{R}$. Consider the differential equation $\begin{equation*} \frac{d^{2} y}{d x^{2}}+4 y=\sin (a x), \quad x \in \mathbb{R} \tag{*} \end{equation*}$ where $a \in \mathbb{R}$ is a constant. Then which of the following is/are true?
(A)	All solutions of (*) are periodic for every choice of a.
(B)	All solutions of (*) are periodic for every choice of $a \in \mathbb{R}-\{-2,2\}$.
(C)	All solutions of (*) are periodic for every choice of $a \in \mathbb{Q}-\{-2,2\}$.
(D)	If $a \in \mathbb{R}-\mathbb{Q}$, then there is a unique periodic solution of (*).
	5

Q. 36	Let M be a positive real number and let $u, v: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be continuous functions satisfying $\sqrt{u(x, y)^{2}+v(x, y)^{2}} \geq M \sqrt{x^{2}+y^{2}}$ for all $(x, y) \in \mathbb{R}^{2}$. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $F(x, y)=(u(x, y), v(x, y)) \quad \text { for }(x, y) \in \mathbb{R}^{2} .$ Then which of the following is/are true?
(A)	F is injective.
(B)	If K is open in \mathbb{R}^{2}, then $F(K)$ is open in \mathbb{R}^{2}.
(C)	If K is closed in \mathbb{R}^{2}, then $F(K)$ is closed in \mathbb{R}^{2}.
(D)	If E is closed and bounded in \mathbb{R}^{2}, then $F^{-1}(E)$ is closed and bounded in \mathbb{R}^{2}.
	5

Q.37	Let G be a finite group of order at least two and let e denote the identity element of G. Let $\sigma: G \rightarrow G$ be a bijective group homomorphism that satisfies the following two conditions: (i) If $\sigma(g)=g$ for some $g \in G$, then $g=e$, (ii) $(\sigma \circ \sigma)(g)=g$ for all $g \in G$. Then which of the following is/are correct?
(A)	For each $g \in G$, there exists $h \in G$ such that $h^{-1} \sigma(h)=g$.
(C)	The map σ satisfies $\sigma(x)=x^{-1}$ for every $x \in G$.
(D)	The order of the group G is an odd number. $x \in G$ such that $x \sigma(x) \neq e$.

Q. 38	Let $\left(x_{n}\right)$ be a sequence of real numbers. Consider the set $P=\left\{n \in \mathbb{N}: x_{n}>x_{m} \text { for all } m \in \mathbb{N} \text { with } m>n\right\} .$ Then which of the following is/are true?
(A)	If P is finite, then $\left(x_{n}\right)$ has a monotonically increasing subsequence.
(B)	If P is finite, then no subsequence of $\left(x_{n}\right)$ is monotonically increasing.
(C)	If P is infinite, then $\left(x_{n}\right)$ has a monotonically decreasing subsequence.
(D)	If P is infinite, then no subsequence of $\left(x_{n}\right)$ is monotonically decreasing.
Q. 39	Let V be the real vector space consisting of all polynomials in one variable with real coefficients and having degree at most 5 , together with the zero polynomial. Let $T: V \rightarrow \mathbb{R}$ be the linear map defined by $T(1)=1$ and $T(x(x-1) \cdots(x-k+1))=1 \quad \text { for } 1 \leq k \leq 5$ Then which of the following is/are true?
(A)	$T\left(x^{4}\right)=15 .$
(B)	$T\left(x^{3}\right)=5 .$
(C)	$T\left(x^{4}\right)=14 .$
(D)	$T\left(x^{3}\right)=3 .$

Q. 42	Consider the function $u: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $u\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}^{4} x_{3}^{2}-x_{1}^{3} x_{3}^{4}-26 x_{1}^{2} x_{2}^{2} x_{3}^{3}$ Let $c \in \mathbb{R}$ and $k \in \mathbb{N}$ be such that $x_{1} \frac{\partial u}{\partial x_{2}}+2 x_{2} \frac{\partial u}{\partial x_{3}}$ evaluated at the point $\left(t, t^{2}, t^{3}\right)$, equals $c t^{k}$ for every $t \in \mathbb{R}$. Then the yalue of k is equal to \qquad _.
Q. 43	Let $y(x)$ be the solution of the differential equation $\frac{d y}{d x}+3 x^{2} y=x^{2}, \quad \text { for } x \in \mathbb{R}$ satisfying the initial condition $y(0)=4$. Then $\lim _{x \rightarrow \infty} y(x)$ is equal to \qquad - (Rounded off to two decimal places)
Q. 44	The sum of the series $\sum_{n=1}^{\infty} \frac{1}{(4 n-3)(4 n+1)}$ is equal to \qquad (Rounded off to two decimal places)
Q. 45	The number of distinct subgroups of \mathbb{Z}_{999} is \qquad

Section C: Q. 51 - Q. 60 Carry TWO marks each.

Q. 53	Let $A=\left(\begin{array}{rr}1 & 1 \\ 0 & 1 \\ -1 & 1\end{array}\right)$ and let A^{\top} denote the transpose of A. Let $u=\binom{u_{1}}{u_{2}}$ and $v=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)$ be column vectors with entries in \mathbb{R} such that $u_{1}^{2}+u_{2}^{2}=1$ and $v_{1}^{2}+v_{2}^{2}+v_{3}^{2}=1$. Suppose $A u=\sqrt{2} v \quad \text { and } \quad A^{\top} v=\sqrt{2} u$ Then $\left\|u_{1}+2 \sqrt{2} v_{1}\right\|$ is equal to \qquad . (Rounded off to two decimal places)
Q. 54	Let $f:[0, \pi] \rightarrow \mathbb{R}$ be the function defined by $f(x)= \begin{cases}(x-\pi) e^{\sin x} & \text { if } 0 \leq x \leq \frac{\pi}{2} \\ x e^{\sin x}+\frac{4}{\pi} & \text { if } \frac{\pi}{2}<x \leq \pi\end{cases}$ Then the value of $\int_{0}^{\pi} f(x) d x$ is equal to \qquad . (Rounded off to two decimal places)

Q. 57	Consider the 4×4 matrix $M=\left(\begin{array}{llll}11 & 10 & 10 & 10 \\ 10 & 11 & 10 & 10 \\ 10 & 10 & 11 & 10 \\ 10 & 10 & 10 & 11\end{array}\right)$. Then the value of the determinant of M is equal to \qquad
Q. 58	Let σ be the permutation in the symmetric group S_{5} given by $\sigma(1)=2, \quad \sigma(2)=3, \quad \sigma(3)=1, \quad \sigma(4)=5, \quad \sigma(5)=4 .$ Define $N(\sigma)=\left\{\tau \in S_{5}: \sigma \circ \tau=\tau \circ \sigma\right\} .$ Then the number of elements in $N(\sigma)$ is equal to \qquad -
Q. 59	Let $f:(-1,1) \rightarrow \mathbb{R}$ and $g:(-1,1) \rightarrow \mathbb{R}$ be thrice continuously differentiable functions such that $f(x) \neq g(x)$ for every nonzero $x \in(-1,1)$. Suppose $f(0)=\ln 2, \quad f^{\prime}(0)=\pi, \quad f^{\prime \prime}(0)=\pi^{2}, \quad \text { and } \quad f^{\prime \prime \prime}(0)=\pi^{9}$ and $g(0)=\ln 2, \quad g^{\prime}(0)=\pi, \quad g^{\prime \prime}(0)=\pi^{2}, \quad \text { and } \quad g^{\prime \prime \prime}(0)=\pi^{3} .$ Then the value of the limit $\lim _{x \rightarrow 0} \frac{e^{f(x)}-e^{g(x)}}{f(x)-g(x)}$ is equal to \qquad . (Rounded off to two decimal places)

Q. 60 If $f:[0, \infty) \rightarrow \mathbb{R}$ and $g:[0, \infty) \rightarrow[0, \infty)$ are continuous functions such that $\int_{0}^{x^{3}+x^{2}} f(t) d t=x^{2}$ and $\int_{0}^{g(x)} t^{2} d t=9(x+1)^{3}$ for all $x \in[0, \infty)$,
then the value of

$$
f(2)+g(2)+16 f(12)
$$

is equal to \qquad . (Rounded off to two decimal places)

