	Special Instructions / Useful Data	
	Special Instructions / Useful Data	
R	The set of real numbers	
\mathbb{R}^n	$\{(x_1, x_2, \dots, x_n) : x_i \in \mathbb{R}, i = 1, 2, \dots, n\}, n = 2, 3, \dots$	
$\frac{1}{\ln x}$	Natural logarithm of x , $x > 0$	
det(M)	Determinant of a square matrix M	
I_n	$n \times n$ identity matrix, $n = 2, 3, 4,$	
E ^c	Complement of a set E	
P(E)	Probability of an event <i>E</i>	
$P(E \mid F)$	Conditional probability of an event E given the occurrence of the event F	
E(X)	Expectation of a random variable X	
Var(X)	Variance of a random variable X	
U(a,b)	Continuous uniform distribution on the interval $(a, b), -\infty < a < b < \infty$	
$Exp(\lambda)$	Exponential distribution with the probability density function, for $\lambda > 0$,	
	$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0\\ 0, & \text{otherwise} \end{cases}$	
2		
$\frac{N(\mu,\sigma^2)}{\Phi(\lambda)}$	Normal distribution with mean μ and variance $\sigma^2, \mu \in \mathbb{R}, \sigma > 0$	
$\frac{\Phi(\cdot)}{2}$	The cumulative distribution function of $N(0, 1)$ distributed random variable	
$\frac{\chi_n^2}{E}$	Central chi-square distribution with n degrees of freedom, $n = 1, 2,$	
F _{m,n}	Snedecor's central F-distribution with (m, n) degrees of freedom, m = 1.2	
t	m, n = 1, 2, A constant such that $P(X > t_{n,\alpha}) = \alpha$, where X has central Student's	
$t_{n,\alpha}$	<i>t</i> -distribution with <i>n</i> degrees of freedom, $n = 1, 2,; \alpha \in (0, 1)$	
	4-	
	$\Phi(1.645) = 0.95, \Phi(0.355) = 0.6387$	
	$t_{8,0.0185} = 2.5$	
	15.0 28-	
	1.0 B	
	SA	
Jà		
Solution and the solution of t		
Y		
2		
R		

Section A	: Q.1 – Q.10 Carry ONE mark each.
Q.1	Let $\{a_n\}_{n\geq 1}$ be a sequence of non-zero real numbers. Then which one of the following statements is true?
(A)	If $\left\{\frac{a_{n+1}}{a_n}\right\}_{n\geq 1}$ is a convergent sequence, then $\{a_n\}_{n\geq 1}$ is also a convergent sequence
(B)	If $\{a_n\}_{n\geq 1}$ is a bounded sequence, then $\{a_n\}_{n\geq 1}$ is a convergent sequence
(C)	If $ a_{n+2} - a_{n+1} \le \frac{3}{4} a_{n+1} - a_n $ for all $n \ge 1$, then $\{a_n\}_{n\ge 1}$ is a Cauchy sequence
(D)	If $\{ a_n \}_{n\geq 1}$ is a Cauchy sequence, then $\{a_n\}_{n\geq 1}$ is also a Cauchy sequence

Horizan Anti-

Q.2	Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = \begin{cases} \lim_{h \to 0} \frac{(x+h)\sin(\frac{1}{x}+h) - x\sin\frac{1}{x}}{h}, & x \neq 0\\ 0, & x = 0. \end{cases}$ Then which one of the following statements is NOT true?	6405
(A)	$f\left(\frac{2}{\pi}\right) = 1$	
(B)	$f\left(\frac{1}{\pi}\right) = \frac{1}{\pi}$	
(C)	$f\left(-\frac{2}{\pi}\right) = -1$	
(D)	f is not continuous at $x = 0$	

Maning Contractions of the second sec

Q.3	Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by $f(x) = \det \begin{pmatrix} 1+x & 9 & 9 \\ 9 & 1+x & 9 \\ 9 & 9 & 1+x \end{pmatrix}.$ Then the maximum value of f on the interval [9, 10] equals
(A)	118
(B)	112
(C)	114
(D)	116
	333399 33399 3 3 3 3 3 3 3 3 3 3 3 3 3

Q.4	Let A and B be two events such that $0 < P(A) < 1$ and $0 < P(B) < 1$.
	Then which one of the following statements is NOT true?
(A)	If $P(A B) > P(A)$, then $P(B A) > P(B)$
(B)	If $P(A \cup B) = 1$, then A and B cannot be independent
(C)	If $P(A B) > P(A)$, then $P(A^c B) < P(A^c)$
(D)	If $P(A B) > P(A)$, then $P(A^{c} B^{c}) < P(A^{c})$
, or	A A A A A A A A A A A A A A A A A A A

Q.5	If $M(t)$, $t \in \mathbb{R}$, is the moment generating function of a random variable, then which one of the following is NOT the moment generating function of any
	random variable?
(A)	$\frac{5e^{-5t}}{1-4t^2}M(t), \ t < \frac{1}{2}$
(B)	$e^{-t}M(t), t \in \mathbb{R}$
(C)	$\frac{1+e^t}{2(2-e^t)}M(t), \ t < \ln 2$
(D)	$M(4t), t \in \mathbb{R}$

Q.6	Let X be a random variable having binomial distribution with parameters
	$n (> 1)$ and $p (0 . Then E \left(\frac{1}{1+X}\right) equals$
(A)	$\frac{1 - (1 - p)^{n+1}}{(n+1)p}$
(B)	$\frac{1 - p^{n+1}}{(n+1)(1-p)}$
(C)	$\frac{(1-p)^{n+1}}{n(1-p)}$
(D)	$\frac{1-p^n}{(n+1)p}$
3%	25

Q.7	Let (X, Y) be a random vector having the joint probability density function $f(x, y) = \begin{cases} \frac{\sqrt{2}}{\sqrt{\pi}} e^{-2x} e^{-\frac{(y-x)^2}{2}}, & 0 < x < \infty, -\infty < y < \infty \\ 0, & \text{otherwise.} \end{cases}$ Then $E(Y)$ equals
(A)	$\frac{1}{2}$
(B)	2
(C)	
(D)	

Horizan Anti-

Q.8	Let X_1 and X_2 be two independent and identically distributed discrete random variables having the probability mass function $f(x) = \begin{cases} \left(\frac{1}{2}\right)^x, & x = 1, 2, 3,\\ 0, & \text{otherwise.} \end{cases}$
	(0, otherwise.) Then $P(\min\{X_1, X_2\} \ge 5)$ equals
(A)	$\frac{1}{256}$
(B)	$\frac{1}{512}$
(C)	$\frac{1}{64}$
(D)	<u>9</u> 256

Q.9	Let $X_1, X_2,, X_n$ $(n \ge 2)$ be a random sample from $Exp\left(\frac{1}{\theta}\right)$ distribution,
	where $\theta > 0$ is unknown. If $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, then which one of the following
	statements is NOT true?
(A)	\overline{X} is the uniformly minimum variance unbiased estimator of θ
(B)	\overline{X}^2 is the uniformly minimum variance unbiased estimator of θ^2
(C)	$\frac{n}{n+1}\overline{X}^2$ is the uniformly minimum variance unbiased estimator of θ^2
(D)	$Var(E(X_n \overline{X})) \leq Var(X_n)$
	WDIAN BIST

Horizan Anti-

Q.10	Let $X_1, X_2,, X_n$ $(n \ge 3)$ be a random sample from a $N(\mu, \sigma^2)$ distribution, where $\mu \in \mathbb{R}$ and $\sigma > 0$ are both unknown. Then which one of
	the following is a simple null hypothesis?
(A)	$H_0: \mu < 5, \ \sigma^2 = 3$
(B)	$H_0: \mu = 5, \ \sigma^2 > 3$
(C)	$H_0: \mu = 5, \ \sigma^2 = 3$
(D)	$H_0: \mu = 5$

Section A: Q.11 – Q.30 Carry TWO marks each.		
Q.11	$\lim_{n \to \infty} \frac{6}{n+2} \left\{ \left(2 + \frac{1}{n}\right)^2 + \left(2 + \frac{2}{n}\right)^2 + \dots + \left(2 + \frac{n-1}{n}\right)^2 \right\} \text{ equals}$	
(A)	38	
(B)	36	
(C)	32	
(D)	30	
loi,	jo	

0.10	
Q.12	Let $f: \mathbb{R}^2 \to \mathbb{R}$ be the function defined by
	$f(x,y) = \begin{cases} x^2 \sin \frac{1}{x} + y^2 \cos y, & x \neq 0\\ 0, & x = 0. \end{cases}$
	(0, x = 0.
	Then which one of the following statements is NOT true?
(A)	f is continuous at (0,0)
(B)	The partial derivative of f with respect to x is not continuous at $(0,0)$
(C)	The partial derivative of f with respect to y is continuous at $(0, 0)$
(D)	f is not differentiable at $(0,0)$

Maning Contractions of the second sec

Q.13	Let $f: [1, 2] \to \mathbb{R}$ be the function defined by $f(t) = \int_{1}^{t} \sqrt{x^2 e^{x^2} - 1} dx.$ Then the arc length of the graph of f over the interval $[1, 2]$ equals
(A)	$e^2 - \sqrt{e}$
(B)	$e - \sqrt{e}$
(C)	$e^2 - e$
(D)	$e^2 - 1$

Horis Contractions and the second sec

JAM 2022	MATHEMATICAL STATISTICS - MS
Q.14	Let $F: [0, 2] \to \mathbb{R}$ be the function defined by $F(x) = \int_{x^2}^{x+2} e^{x [t]} dt,$ where [t] denotes the greatest integer less than or equal to t. Then the value of the derivative of F at $x = 1$ equals
(A)	13 10 Ja
(B)	$e^3 - e^2 + 2e$
(C)	$e^3 - 2e^2 + e$
(D)	$e^3 + 2e^2 + e$

Horizan Anti-

Q.15	Let the system of equations $ \begin{array}{rcl} x + ay + z &=& 1\\ 2x + 4y + z &=& -b\\ 3x + y + 2z &=& b + 2 \end{array} $
	have infinitely many solutions, where a and b are real constants. Then the value of $2a + 8b$ equals
(A)	-11
(B)	-10
(C)	-13
(D)	-14

Marine Contraction of the second

Q.16	Let $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$. Then the sum of all the elements of A^{100} equals	Code a
(A)	101	22.
(B)	103	
(C)	102	
(D)	100	

Q.17	Suppose that four persons enter a lift on the ground floor of a building. There are seven floors above the ground floor and each person independently chooses her exit floor as one of these seven floors. If each of them chooses the topmost floor with probability $\frac{1}{3}$ and each of the remaining floors with an equal probability, then the probability that no two of them exit at the same floor
	equals
(A)	200 729
(B)	220 729
(C)	240 729
(D)	<u>180</u> 729

Master Alter Alter

	LE /
Q.18	A year is chosen at random from the set of years {2012, 2013,, 2021}. From the chosen year, a month is chosen at random and from the chosen month,
	a day is chosen at random. Given that the chosen day is the 29 th of a month,
	the conditional probability that the chosen month is February equals
(A)	279 9965
(B)	289 9965
(C)	269 9965
(D)	259 9965

Horizan Andrewski Andrewsk

	A
Q.19	Suppose that a fair coin is tossed repeatedly and independently. Let X denote the number of tosses required to obtain for the first time a tail that is immediately preceded by a head. Then $E(X)$ and $P(X > 4)$, respectively, are
(A)	4 and $\frac{5}{16}$
(B)	4 and $\frac{11}{16}$
(C)	6 and $\frac{5}{16}$
(D)	6 and $\frac{11}{16}$

Horizan Anti-

	.2./
Q.20	Let <i>X</i> be a random variable with the moment generating function
	$M(t) = \frac{1}{(1-4t)^5}, t < \frac{1}{4}.$
	Then the lower bounds for $P(X < 40)$, using Chebyshev's inequality and
	Markov's inequality, respectively, are
(A)	$\frac{4}{5}$ and $\frac{1}{2}$
(B)	$\frac{5}{6}$ and $\frac{1}{2}$
(C)	$\frac{4}{5}$ and $\frac{5}{6}$
(D)	$\frac{5}{6}$ and $\frac{5}{6}$

Maria Maria

Q.21	In a store, the daily demand for milk (in litres) is a random variable having
	$Exp(\lambda)$ distribution, where $\lambda > 0$. At the beginning of the day, the store
	purchases $c (> 0)$ litres of milk at a fixed price $b (> 0)$ per litre. The milk
	is then sold to the customers at a fixed price $s (> b)$ per litre. At the end of
	the day, the unsold milk is discarded. Then the value of c that maximizes the
	expected net profit for the store equals
(A)	$-\frac{1}{\lambda}\ln\left(\frac{b}{s}\right)$
(B)	$-\frac{1}{\lambda}\ln\left(\frac{b}{s+b}\right)$
(C)	$-\frac{1}{\lambda}\ln\left(\frac{s-b}{s}\right)$
(D)	$-\frac{1}{\lambda}\ln\left(\frac{s}{s+b}\right)$

Rest and the set of th

Q.22	Let X_1, X_2 and X_3 be three independent and identically distributed random
	variables having $U(0, 1)$ distribution. Then $E\left[\left(\frac{\ln X_1}{\ln X_1 X_2 X_3}\right)^2\right]$ equals
	200
(A)	$\frac{1}{6}$
(B)	
(C)	
(D)	$\frac{1}{4}$

And the state of t

	. P	10
Q.23	Let (X, Y) be a random vector having bivariate normal distribution with parameters $E(X) = 0$, $Var(X) = 1$, $E(Y) = -1$, $Var(Y) = 4$ and $\rho(X, Y) = -\frac{1}{2}$, where $\rho(X, Y)$ denotes the correlation coefficient between X and Y. Then $P(X + Y > 1 2X - Y = 1)$ equals	14 12 020
	A and T. Then $T(X + T > T 2X - T - T)$ equals	
(A)	$\Phi\left(-\frac{1}{2}\right)$	
(B)	$\Phi\left(-\frac{1}{3}\right)$	
(C)	$\Phi\left(-\frac{1}{4}\right)$	
(D)	$\Phi\left(-\frac{4}{3}\right)$	

Hone States

Q.24	Let $\{X_n\}_{n\geq 1}$ be a sequence of independent and identically distributed random variables having the common probability density function $f(x) = \begin{cases} \frac{2}{x^3}, & x \geq 1\\ 0, & \text{otherwise.} \end{cases}$ If $\lim_{n \to \infty} P\left(\left \frac{1}{n}\sum_{i=1}^n X_i - \theta\right < \epsilon\right) = 1$ for all $\epsilon > 0$, then θ equals	estro Chil
(A)	4	
(B)	2	
(C)	ln 4	
(D)	ln 2	

Manual Ma

	25/0
Q.25	Let 0.2, 1.2, 1.4, 0.3, 0.9, 0.7 be the observed values of a random sample of
	size 6 from a continuous distribution with the probability density function
	$f(x) = \begin{cases} 1, & 0 < x \le \frac{1}{2} \\ \frac{1}{2\theta - 1}, & \frac{1}{2} < x \le \theta \\ 0, & \text{otherwise,} \end{cases}$
	where $\theta > \frac{1}{2}$ is unknown. Then the maximum likelihood estimate and the
	method of moments estimate of θ , respectively, are
(A)	$\frac{7}{5}$ and 2
(B)	$\frac{47}{60}$ and $\frac{32}{15}$
(C)	$\frac{7}{5}$ and $\frac{32}{15}$
(D)	$\frac{7}{5}$ and $\frac{47}{60}$
No.	
MS	24/52

	. All	10.
Q.26	For $n = 1, 2, 3,,$ let the joint moment generating function of (X, Y_n) be	5° 78
	$M_{X,Y_n}(t_1,t_2) = e^{\frac{t_1^2}{2}}(1-2t_2)^{-\frac{n}{2}}, t_1 \in \mathbb{R}, t_2 < \frac{1}{2}.$	AS.
	If $T_n = \frac{\sqrt{n} X}{\sqrt{Y_n}}$, $n \ge 1$, then which one of the following statements is true?	
(A)	The minimum value of n for which $Var(T_n)$ is finite is 2	
(B)	$E(T_{10}^3) = 10$	
(C)	$Var(X+Y_4) = 7$	
(D)	$\lim_{n \to \infty} P(T_n > 3) = 1 - \frac{\sqrt{2}}{\sqrt{\pi}} \int_0^3 e^{-\frac{t^2}{2}} dt$	

Marine Con Anti-

	2
Q.27	Let $X_{(1)} < X_{(2)} < \cdots < X_{(9)}$ be the order statistics corresponding to a
	random sample of size 9 from $U(0, 1)$ distribution. Then which one of the
	following statements is NOT true?
(A)	$E\left(\frac{X_{(9)}}{1-X_{(9)}}\right)$ is finite
(B)	$E(X_{(5)}) = 0.5$
(C)	The median of $X_{(5)}$ is 0.5
(D)	The mode of $X_{(5)}$ is 0.5
	ADDAN BISTING

the states and the second

	· P
Q.28	Let $X_1, X_2,, X_{16}$ be a random sample from a $N(4\mu, 1)$ distribution and
	Y_1, Y_2, \dots, Y_8 be a random sample from a $N(\mu, 1)$ distribution, where
	$\mu \in \mathbb{R}$ is unknown. Assume that the two random samples are independent.
	If you are looking for a confidence interval for μ based on the statistic
	$8\overline{X} + \overline{Y}$, where $\overline{X} = \frac{1}{16} \sum_{i=1}^{16} X_i$ and $\overline{Y} = \frac{1}{8} \sum_{i=1}^{8} Y_i$, then which one of the
	following statements is true?
(A)	There exists a 90% confidence interval for μ of length less than 0.1
(B)	There exists a 90% confidence interval for μ of length greater than 0.3
(C)	$\left[\frac{8\overline{X}+\overline{Y}}{33}-\frac{1.645}{2\sqrt{66}}, \frac{8\overline{X}+\overline{Y}}{33}+\frac{1.645}{2\sqrt{66}}\right]$ is the unique 90% confidence interval for μ
(D)	μ always belongs to its 90% confidence interval

Marine Contraction of the second seco

	. All
Q.29	Let X_1, X_2, X_3, X_4 be a random sample from a distribution with the probability mass function
	$f(x) = \begin{cases} \theta^{x} (1-\theta)^{1-x}, & x = 0, 1\\ 0, & \text{otherwise,} \end{cases}$
	where $\theta \in (0, 1)$ is unknown. Let $0 < \alpha \le 1$. To test the hypothesis
	$H_0: \theta = \frac{1}{2}$ against $H_1: \theta > \frac{1}{2}$, consider the size α test that rejects H_0 if and
	only if $\sum_{i=1}^{4} X_i \ge k_{\alpha}$, for some $k_{\alpha} \in \{0, 1, 2, 3, 4\}$. Then for which one of
	the following values of α , the size α test does NOT exist?
(A)	$\frac{1}{16}$
(B)	$\frac{1}{4}$
(C)	$\frac{11}{16}$
(D)	$\frac{5}{16}$

Q.30	Let X_1 , X_2 , X_3 , X_4 be a random sample from a Poisson distribution with	e 25
	unknown mean $\lambda > 0$. For testing the hypothesis	15
	$H_0: \lambda = 1$ against $H_1: \lambda = 1.5$,	£
	let β denote the power of the test that rejects H_0 if and only if $\sum_{i=1}^4 X_i \ge 5$.	
	Then which one of the following statements is true?	
(A)	$\beta > 0.80$	
(B)	$0.75 < \beta \le 0.80$	
(C)	$0.70 < \beta \le 0.75$	
(D)	$0.65 < \beta \le 0.70$	

Maria Maria

Section B	: Q.31 – Q.40 Carry TWO marks each.
Q.31	Let $\{a_n\}_{n \ge 1}$ be a sequence of real numbers such that $a_n = \frac{1}{3^n}$ for all $n \ge 1$. Then which of the following statements is/are true?
(A)	$\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ is a convergent series
(B)	$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (a_1 + a_2 + \dots + a_n) \text{ is a convergent series}$
(C)	The radius of convergence of the power series $\sum_{n=1}^{\infty} a_n x^n$ is $\frac{1}{3}$
(D)	$\sum_{n=1}^{\infty} a_n \sin \frac{1}{a_n}$ is a convergent series

Manuelland Manuelland

	The second se
Q.32	Let $f: \mathbb{R}^2 \to \mathbb{R}$ be the function defined by
	$f(x, y) = 8(x^2 - y^2) - x^4 + y^4.$
	Then which of the following statements is/are true?
(A)	f has 9 critical points
(B)	f has a saddle point at (2, 2)
(C)	f has a local maximum at $(-2, 0)$
(D)	f has a local minimum at $(0, -2)$

Q.33	If $n \ge 2$, then which of the following statements is/are true?
(A)	If A and B are $n \times n$ real orthogonal matrices such that
	det(A) + det(B) = 0, then $A + B$ is a singular matrix
(B)	If A is an $n \times n$ real matrix such that $I_n + A$ is non-singular, then
	$I_n + (I_n + A)^{-1}(I_n - A)$ is a singular matrix
(C)	If A is an $n \times n$ real skew-symmetric matrix, then $I_n - A^2$ is a non-
	singular matrix
(D)	If A is an $n \times n$ real orthogonal matrix, then $det(A - \lambda I_n) \neq 0$ for all
~	$\lambda \in \{x \in \mathbb{R} : x \neq \pm 1\}$
Sol	A CONTRACTOR OF THE OF

Q.34	Let $\Omega = \{1, 2, 3,\}$ be the sample space of a random experiment and suppose that all subsets of Ω are events. Further, let <i>P</i> be a probability	ortee
	function such that $P(\{i\}) > 0$ for all $i \in \Omega$. Then which of the following	12º
	statements is/are true?	
(A)	For every $\epsilon > 0$, there exists an event A such that $0 < P(A) < \epsilon$	
(B)	There exists a sequence of disjoint events $\{A_k\}_{k\geq 1}$ with $P(A_k) \geq 10^{-6}$ for	
	all $k \ge 1$	
(C)	There exists $j \in \Omega$ such that $P(\{j\}) \ge P(\{i\})$ for all $i \in \Omega$	
(D)	Let $\{A_k\}_{k\geq 1}$ be a sequence of events such that $\sum_{k=1}^{\infty} P(A_k) < \infty$.	
	Then for each $i \in \Omega$ there exists $N \ge 1$ (which may depend on i)	
	such that $i \notin \bigcup_{k=N}^{\infty} A_k$	

	JE /	
Q.35	A university bears the yearly medical expenses of each of its employees up to a maximum of Rs. 1000. If the yearly medical expenses of an employee exceed Rs. 1000, then the employee gets the excess amount from an insurance policy up to a maximum of Rs. 500. If the yearly medical expenses of a randomly selected employee has $U(250, 1750)$ distribution and Y denotes the amount the employee gets from the insurance policy, then which of the following statements is/are true?	6,66. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
(A)	$E(Y) = \frac{500}{3}$	
(B)	$P(Y > 300) = \frac{3}{10}$	
(C)	The median of Y is zero	
(D)	The quantile of order 0.6 for Y equals 100	

Horizanda Allanda Alla

r	· P	10
Q.36	Let X and Y be two independent random variables having $N(0, \sigma_1^2)$ and	* %
	$N(0, \sigma_2^2)$ distributions, respectively, where $0 < \sigma_1 < \sigma_2$. Then which of the	, <u>f</u> 5.
	following statements is/are true?	the second
(A)	X + Y and $X - Y$ are independent	
(B)	$2X + Y$ and $X - Y$ are independent if $2\sigma_1^2 = \sigma_2^2$	
(C)	X + Y and $X - Y$ are identically distributed	
(D)	$X + Y$ and $2X - Y$ are independent if $2\sigma_1^2 = \sigma_2^2$	

And the state of t

		0.
Q.37	Let (X, Y) be a discrete random vector. Then which of the following statements is/are true?	
(A)	If X and Y are independent, then X^2 and $ Y $ are also independent.	
(B)	If the correlation coefficient between X and Y is 1, then $P(Y = aX + b) = 1$ for some $a, b \in \mathbb{R}$	
(C)	If X and Y are independent and $E[(XY)^2] = 0$, then $P(X = 0) = 1$ or $P(Y = 0) = 1$	
(D)	If $Var(X) = 0$, then X and Y are independent	

Horizan Anti-

	2º / a
Q.38	Let X_1 , X_2 and X_3 be three independent and identically distributed random
	variables having $N(0, 1)$ distribution. If
	$U = \frac{2X_1^2}{(X_2 + X_3)^2}$ and $V = \frac{2(X_2 - X_3)^2}{2X_1^2 + (X_2 + X_3)^2}$,
	then which of the following statements is/are true?
(A)	U has $F_{1,1}$ distribution and V has $F_{1,2}$ distribution
(B)	U has $F_{1,1}$ distribution and V has $F_{2,1}$ distribution
(C)	U and V are independent
(D)	$\frac{1}{2}V(1+U)$ has $F_{2,3}$ distribution

Horison Julies and Jul

		0
Q.39	Let X_1 , X_2 , X_3 , X_4 be a random sample from a continuous distribution with	
	the probability density function $f(x) = \frac{1}{2} e^{- x-\theta }$, $x \in \mathbb{R}$, where $\theta \in \mathbb{R}$ is	60
	unknown. Let the corresponding order statistics be denoted by	
	$X_{(1)} < X_{(2)} < X_{(3)} < X_{(4)}$. Then which of the following statements is/are	
	true?	
(A)	$\frac{1}{2}(X_{(2)} + X_{(3)})$ is the unique maximum likelihood estimator of θ	
(B)	$(X_{(1)}, X_{(2)}, X_{(3)}, X_{(4)})$ is a sufficient statistic for θ	
(C)	$\frac{1}{4}(X_{(2)} + X_{(3)})(X_{(2)} + X_{(3)} + 2)$ is a maximum likelihood estimator of	
	$\theta(\theta+1)$	
(D)	$(X_1X_2X_3, X_1X_2X_4)$ is a complete statistic	

Masser Alter Alter

	.25	[] a
Q.40	Let $X_1, X_2,, X_n$ $(n > 1)$ be a random sample from a $N(\mu, 1)$ distribution,	otto
	where $\mu \in \mathbb{R}$ is unknown. Let $0 < \alpha < 1$. To test the hypothesis $H_0: \mu = 0$	1/2
	against $H_1: \mu = \delta$, where $\delta > 0$ is a constant, let β denote the power of the	T.
	size α test that rejects H_0 if and only if $\frac{1}{n}\sum_{i=1}^n X_i > c_{\alpha}$, for some constant	5
	c_{α} . Then which of the following statements is/are true?	
(A)	For a fixed value of δ , β increases as α increases	
(B)	For a fixed value of α , β increases as δ increases	
(C)	For a fixed value of δ , β decreases as α increases	
(D)	For a fixed value of α , β decreases as δ increases	

Horizan Andrews Andrew

Section	C: Q.41 – Q.50 Carry ONE mark each.
Q.41	Let $\{a_n\}_{n\geq 1}$ be a sequence of real numbers such that $a_{1+5m} = 2$, $a_{2+5m} = 3$, $a_{3+5m} = 4$, $a_{4+5m} = 5$, $a_{5+5m} = 6$, $m = 0, 1, 2,$ Then $\limsup_{n\to\infty} a_n + \liminf_{n\to\infty} a_n$ equals
0.42	Let $f: \mathbb{D} \to \mathbb{D}$ be a function such that

Q.42	Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that
	$20(x - y) \le f(x) - f(y) \le 20(x - y) + 2(x - y)^2$
	for all $x, y \in \mathbb{R}$ and $f(0) = 2$. Then $f(101)$ equals
	24 3 25

Q.43	Let A be a 3×3 real matrix such that $det(A) = 6$ and $adj A = \begin{pmatrix} 1 & -1 & 2 \\ 5 & 7 & 1 \\ -1 & 1 & 1 \end{pmatrix}$,
	where <i>adj A</i> denotes the adjoint of <i>A</i> . Then the trace of <i>A</i> equals (round off to 2 decimal places)
	A A A A A A A A A A A A A A A A A A A

Q.44 Let X and Y be two independent and identically distributed random variables having U(0, 1) distribution. Then $P(X^2 < Y < X)$ equals ______ (round off to 2 decimal places)

Q.45	Consider a sequence of independent Bernoulli trials, where $\frac{3}{4}$ is the probability
	of success in each trial. Let X be a random variable defined as follows: If the
	first trial is a success, then X counts the number of failures before the next
	success. If the first trial is a failure, then X counts the number of successes
	before the next failure. Then $2E(X)$ equals
	5 <u>E</u> (3) 2000/2018



to the second

Q.47	Let (X, Y) be a random vector having the joint moment generating function
	$M(t_1, t_2) = \left(\frac{1}{2} e^{-t_1} + \frac{1}{2} e^{t_1}\right)^2 \left(\frac{1}{2} + \frac{1}{2} e^{t_2}\right)^2, (t_1, t_2) \in \mathbb{R}^2.$
	Then $P(X + Y = 2)$ equals (round off to 2 decimal places)

Q.48	Let X_1 and X_2 be two independent and identically distributed random
	variables having χ_2^2 distribution and $W = X_1 + X_2$. Then $P(W > E(W))$
	equals (round off to 2 decimal places)

Let $2.5, -1.0, 0.5, 1.5$ be the observed values of a random sample of size 4
from a continuous distribution with the probability density function
$f(x) = \frac{1}{8} e^{- x-2 } + \frac{3}{4\sqrt{2\pi}} e^{-\frac{1}{2}(x-\theta)^2}, \qquad x \in \mathbb{R},$
where $\theta \in \mathbb{R}$ is unknown. Then the method of moments estimate of θ
equals (round off to 2 decimal places)

Q.50 Let $X_1, X_2, ..., X_{25}$ be a random sample from a $N(\mu, 1)$ distribution, where $\mu \in \mathbb{R}$ is unknown. Consider testing of the hypothesis $H_0: \mu = 5.2$ against $H_1: \mu = 5.6$. The null hypothesis is rejected if and only if $\frac{1}{25} \sum_{i=1}^{25} X_i > k$, for some constant k. If the size of the test is 0.05, then the probability of type-II error equals ______ (round off to 2 decimal places)

Section	C: Q.51 – Q.60 Carry TWO marks each.
Q.51	Let $f : \mathbb{R}^2 \to \mathbb{R}$ be the function defined by $f(x, y) = x^2 - 12y$. If M and m be the maximum value and the minimum value, respectively, of the function f on the circle $x^2 + y^2 = 49$, then $ M + m $ equals

Co

Q.52	The value of $\int_0^2 \int_0^{2-x} (x+y)^2 e^{\frac{2y}{x+y}} dy dx$
	equals (round off to 2 decimal places)
doi.	John John John John John John John John

	. All a
Q.53	Let $A = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 0 & 1 \\ 2 & 1 & 1 \end{pmatrix}$ and let $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ be an eigenvector corresponding to
	the smallest eigenvalue of A, satisfying $x_1^2 + x_2^2 + x_3^2 = 1$. Then the value of
	$ x_1 + x_2 + x_3 $ equals (round off to 2 decimal places)
	5 / 2° of

Q.54	Five men go to a restaurant together and each of them orders a dish that is
	different from the dishes ordered by the other members of the group. However,
	the waiter serves the dishes randomly. Then the probability that exactly one of
	them gets the dish he ordered equals (round off to 2 decimal
	places)
	5 33337 5

Q.55	Let X be a random variable having the probability density function
	$f(x) = \begin{cases} ax^2 + b, & 0 \le x \le 3\\ 0, & \text{otherwise,} \end{cases}$
	where <i>a</i> and <i>b</i> are real constants, and $P(X \ge 2) = \frac{2}{3}$.
	Then $E(X)$ equals (round off to 2 decimal places)
	Solution and the solution of t

1000 C

1 L
A vaccine, when it is administered to an individual, produces no side effects
with probability $\frac{4}{5}$, mild side effects with probability $\frac{2}{15}$ and severe side effects
with probability $\frac{1}{15}$. Assume that the development of side effects is independent
across individuals. The vaccine was administered to 1000 randomly selected
individuals. If X_1 denotes the number of individuals who developed mild side
effects and X_2 denotes the number of individuals who developed severe side
effects, then the coefficient of variation of $X_1 + X_2$ equals
(round off to 2 decimal places)

Q.57 Let $\{X_n\}_{n \ge 1}$ be a sequence of independent and identically distributed random variables having U(0, 1) distribution. Let $Y_n = n \min\{X_1, X_2, ..., X_n\}$, $n \ge 1$. If Y_n converges to Y in distribution, then the median of Y equals ______ (round off to 2 decimal places)

Q.58	Let $X_{(1)} < X_{(2)} < X_{(3)} < X_{(4)} < X_{(5)}$ be the order statistics based on a
	random sample of size 5 from a continuous distribution with the probability
	density function
	$f(x) = \begin{cases} \frac{1}{x^2}, & 1 < x < \infty \\ 0, & \text{otherwise.} \end{cases}$
	(0, otherwise.
	Then the sum of all possible values of $r \in \{1, 2, 3, 4, 5\}$ for which $E(X_{(r)})$
	is finite equals
	Y A
2	

Q.59 Consider the linear regression model $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, i = 1, 2, ..., 6, where β_0 and β_1 are unknown parameters and ϵ_i 's are independent and identically distributed random variables having N(0, 1) distribution. The data on (x_i, y_i) are given in the following table. 4.5 3.0 3.5 1.0 2.0 2.5 χ_i 3.5 5.4 2.0 3.0 4.2 5.0 y_i If $\widehat{\beta_0}$ and $\widehat{\beta_1}$ are the least squares estimates of β_0 and β_1 , respectively, based on the above data, then $\widehat{\beta_0} + \widehat{\beta_1}$ equals (round off to 2 decimal places)

Q.60	Let $X_1, X_2,, X_9$ be a random sample from a $N(\mu, \sigma^2)$ distribution, where
	$\mu \in \mathbb{R}$ and $\sigma > 0$ are unknown. Let the observed values of $\overline{X} = \frac{1}{9} \sum_{i=1}^{9} X_i$
	and $S^2 = \frac{1}{8} \sum_{i=1}^{9} (X_i - \overline{X})^2$ be 9.8 and 1.44, respectively. If the likelihood
	ratio test is used to test the hypothesis $H_0: \mu = 8.8$ against $H_1: \mu > 8.8$, then
	the <i>p</i> -value of the test equals (round off to 3 decimal places)
	164

South and a start of the start