Section A: Q. 1 - Q. 10 Carry ONE mark each.

Q. 1	The equation $z^{2}+\bar{z}^{2}=4$ in the complex plane (where \bar{z} is the complex conjugate of z) represents
(A)	Ellipse
(B)	Hyperbola
(C)	Circle of radius 2
(D)	Circle of radius 4
Q. 2	A rocket $\left(S^{\prime}\right)$ moves at a speed $\frac{c}{2} m / s$ along the positive x -axis, where c is the speed of light. When it crosses the origin, the clocks attached to the rocket and the one with a stationary observer (S) located at $x=0$ are both set to zero. If S observes an event at (x, t), the same event occurs in the S^{\prime} frame at
(A)	$x^{\prime}=\frac{2}{\sqrt{3}}\left(x-\frac{c t}{2}\right) \text { and } t^{\prime}=\frac{2}{\sqrt{3}}\left(t-\frac{x}{2 c}\right)$
(B)	$x^{\prime}=\frac{2}{\sqrt{3}}\left(x+\frac{c t}{2}\right) \text { and } t^{\prime}=\frac{2}{\sqrt{3}}\left(t-\frac{x}{2 c}\right)$
(C)	$x^{\prime}=\frac{2}{\sqrt{3}}\left(x-\frac{c t}{2}\right) \text { and } t^{\prime}=\frac{2}{\sqrt{3}}\left(t+\frac{x}{2 c}\right)$
(D)	$x^{\prime}=\frac{2}{\sqrt{3}}\left(x+\frac{c t}{2}\right) \text { and } t^{\prime}=\frac{2}{\sqrt{3}}\left(t+\frac{x}{2 c}\right)$

Q.3	Consider a classical ideal gas of N molecules in equilibrium at temperature T Each molecule has two energy levels, $-\epsilon$ and ϵ. The mean energy of the gas is
(A)	0
(B)	$N \epsilon \tanh \left(\frac{\epsilon}{k_{B} T}\right)$
(D)	$\frac{\epsilon}{2}$
Q. $4 \epsilon \tanh \left(\frac{\epsilon}{k_{B} T}\right)$	
(D)	$\left(\frac{\partial T}{\partial V}\right)_{P}$
At a temperature T, let β and κ denote the volume expansivity and isothermal	
(B)	$\left(\frac{\partial P}{\partial V}\right)_{T}$
(A)	$\left(\frac{\partial P}{\partial T}\right)_{V}$
compressibility of a gas, respectively. Then $\frac{\beta}{\kappa}$ is equal to	
	$\left(\frac{\partial T}{\partial P}\right)_{V}$

Q. 5	The resultant of the binary subtraction $1110101-0011110$ is
(A)	1001111
(B)	1010111
(C)	1010011
(D)	1010001
Q.6	Consider a particle trapped in a three-dimensional potential well such that $U(x, y, z)=0$ for $0 \leq x \leq a, 0 \leq y \leq a, 0 \leq z \leq a$ and $U(x, y, z)=\infty$ everywhere else. The degeneracy of the $5^{\text {th }}$ excited state is (D) (B)
(C)	6
	1

Q. 8	Consider a two-dimensional force field $\vec{F}(x, y)=\left(5 x^{2}+a y^{2}+b x y\right) \hat{x}+\left(4 x^{2}+4 x y+y^{2}\right) \hat{y} .$ If the force field is conservative, then the values of a and b are
(A)	$a=2$ and $b=4$
(B)	$a=2$ and $b=8$
(C)	$a=4$ and $b=2$
(D)	$a=8$ and $b=2$
Q. 9	Consider an electrostatic field \vec{E} in a region of space. Identify the INCORRECT statement.
(A)	The work done in moving a charge in a closed path inside the region is zero
(B)	The curl of \vec{E} is zero
(C)	The field can be expressed as the gradient of a scalar potential
(D)	The potential difference between any two points in the region is always zero

Q. 10	Which one of the following figures correctly depicts the intensity distribution for Fraunhofer diffraction due to a single slit? Here, \boldsymbol{x} denotes the distance from the centre of the central fringe and \boldsymbol{I} denotes the intensity.
(B)	

Section A: Q. 11 - Q. 30 Carry TWO marks each.

Q. 13	The current through a series $R L$ circuit, subjected to a constant $e m f \mathcal{E}$, obeys $L \frac{d i}{d t}+i R=\varepsilon$. Let $L=1 \mathrm{mH}, R=1 \mathrm{k} \Omega$ and $\varepsilon=1 \mathrm{~V}$. The initial condition is $i(0)=0$. At $t=1 \mu s$, the current in mA is
(A)	$1-2 e^{-2}$
(B)	$1-2 e^{-1}$
(C)	$1-e^{-1}$
(D)	$2-2 e^{-1}$
Q. 14	An ideal gas in equilibrium at temperature T expands isothermally to twice its initial volume. If $\Delta S, \Delta U$ and ΔF denote the changes in its entropy, internal energy and Helmholtz free energy respectively, then
(A)	$\Delta S<0, \Delta U>0, \Delta F<0$
(B)	$\Delta S>0, \Delta U=0, \Delta F<0$
(C)	$\Delta S<0, \Delta U=0, \Delta F>0$
(D)	$\Delta S>0, \Delta U>0, \Delta F=0$

Q.15	In a dilute gas, the number of molecules with free path length $\geq x$ is given by $N(x)=N_{0} e^{-x / \lambda, ~ w h e r e ~} N_{0}$ is the total number of molecules and λ is the mean free path. The fraction of molecules with free path lengths between λ and 2λ is
(A)	$\frac{1}{e}$
(B)	$\frac{e}{e-1}$
(C)	$\frac{e^{2}}{e-1}$
(D)	$\frac{e-1}{e^{2}}$

Q. 18	A planet of mass m moves in an elliptical orbit. Its maximum and minimum distances from the Sun are R and r, respectively. Let G denote the universal gravitational constant, and M the mass of the Sun. Assuming $M \gg m$, the angular momentum of the planet with respect to the center of the Sun is
(A)	$m \sqrt{\frac{2 G M R r}{(R+r)}}$
(B)	$m \sqrt{\frac{G M R r}{2(R+r)}}$
(C)	$m \sqrt{\frac{G M R r}{(R+r)}}$
(D)	$2 m \sqrt{\frac{2 G M R r}{(R+r)}}$

Q. 19	Consider a conical region of height h and base radius R with its vertex at the origin. Let the outward normal to its base be along the positive z-axis, as shown in the figure. A uniform magnetic field, $\vec{B}=B_{0} \hat{z}$ exists everywhere. Then the magnetic flux through the base $\left(\Phi_{b}\right)$ and that through the curved surface of the cone $\left(\Phi_{c}\right)$ are
(D)	

Q.20	Consider a thin annular sheet, lying on the $x y$-plane, with R_{1} and R_{2} as its inner and outer radii, respectively. If the sheet carries a uniform surface-charge density σ and spins about the origin O with a constant angular velocity $\vec{\omega}=\omega_{0} \hat{z}$ then, the total current flow on the sheet is
(A)	$\frac{2 \pi \sigma \omega_{0}\left(R_{2}{ }^{3}-R_{1}{ }^{3}\right)}{3}$
(B)	$\sigma \omega_{0}\left(R_{2}{ }^{3}-R_{1}{ }^{3}\right)$
(C)	$\frac{\pi \sigma \omega_{0}\left(R_{2}{ }^{3}-R_{1}{ }^{3}\right)}{3}$
(D)	$\frac{2 \pi \sigma \omega_{0}\left(R_{2}-R_{1}\right)^{3}}{3}$

Q.21	A radioactive nucleus has a decay constant λ and its radioactive daughter nucleus has a decay constant 10λ. At time $t=0, N_{0}$ is the number of parent nuclei and there are no daughter nuclei present. $N_{1}(t)$ and $N_{2}(t)$ are the number of parent and daughter nuclei present at time $\quad t$, The ratio $N_{2}(t) / N_{1}(t)$ is restively.
(A)	$\frac{1}{9}\left[1-e^{-9 \lambda t}\right]$
(B)	$\frac{1}{10}\left[1-e^{-10 \lambda t}\right]$
(C)	$\left[1-e^{-10 \lambda t}\right]$
(D)	$\left[1-e^{-9 \lambda t}\right]$

Q.22	A uniform magnetic field $\vec{B}=B_{0} \widehat{z}$, where $B_{0}>0$ exists as shown in the figure. A charged particle of mass m and charge $q(q>0)$ is released at the origin, in the $y z$-plane, with a velocity \vec{v} directed at an angle $\theta=45^{\circ}$ with respect to the positive z-axis. Ignoring gravity, which one of the following is TRUE.
(A)	The initial acceleration $\vec{a}=\frac{q v B_{0}}{\sqrt{2} m} \hat{x}$
(B)	The initial acceleration $\vec{a}=\frac{q v B_{0}}{\sqrt{2} m} \hat{y}$
(D)	The particle moves in a circular path

Q.23	For an ideal intrinsic semiconductor, the Fermi energy at 0 K
(A)	lies at the top of the valence band
(B)	lies at the bottom of the conduction band
(C)	lies at the center of the bandgap
(D)	lies midway between center of the bandgap and bottom of the conduction band

Q.24	A circular loop of wire with radius R is centered at the origin of the $x y$-plane. The magnetic field at a point within the loop is, $\vec{B}(\rho, \phi, z, t)=k \rho^{3} t^{3} \hat{z}$, where k is a positive constant of appropriate dimensions. Neglecting the effects of any current induced in the loop, the magnitude of the induced emf in the loop at time t is
(A)	$\frac{6 \pi k t^{2} R^{5}}{5}$
(B)	$\frac{5 \pi k t^{2} R^{5}}{6}$
(C)	$\frac{3 \pi k t^{2} R^{5}}{2}$
(D)	$\frac{\pi k t^{2} R^{5}}{2}$

Q. 25	For the given circuit, $R=125 \Omega, R_{L}=470 \Omega, V_{z}=9 V$, and $I_{z}^{\max }=65 \mathrm{~mA}$. The minimum and maximum values of the input voltage ($V_{i}^{\min }$ and $V_{i}^{\max }$) for which the Zener diode will be in the 'ON' state are
(A)	$V_{i}^{\min }=9.0 \mathrm{~V} \text { and } V_{i}^{\max }=11.4 \mathrm{~V}$
(B)	$V_{i}^{\text {min }}=9.0 \mathrm{~V}$ and $V_{i}^{\text {max }}=19.5 \mathrm{~V}$
(C)	$V_{i}^{\text {min }}=11.4 \mathrm{~V}$ and $V_{i}^{\text {max }}=15.5 \mathrm{~V}$
(D)	$V_{i}^{\min }=11.4 \mathrm{~V} \text { and } V_{i}^{\max }=19.5 \mathrm{~V}$

Q. 26	A square laminar sheet with side a and mass M, has mass per unit area given by $\sigma(x)=\sigma_{0}\left[1-\frac{x}{a}\right]$, (see figure). Moment of inertia of the sheet about y-axis is
(A)	$\frac{M a^{2}}{2}$
(B)	$\frac{M a^{2}}{4}$
(C)	$\frac{M a^{2}}{6}$
(D)	$\frac{M a^{2}}{12}$

Q.27	A particle is subjected to two simple harmonic motions along the x and y axes, described by $x(t)=a \sin (2 \omega t+\pi)$ and $y(t)=2 a \sin (\omega t)$. The resultant motion is given by
(A)	$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{4 a^{2}}=1$
(B)	$x^{2}+y^{2}=1$
(C)	$y^{2}=x^{2}\left(1-\frac{x^{2}}{4 a^{2}}\right)$
(D)	$x^{2}=y^{2}\left(1-\frac{y^{2}}{4 a^{2}}\right)$
(D)	$\sqrt{U V}$
(B)	$\sqrt{\frac{U}{V}}$
(A)	For a certain thermodynamic system, the internal energy $U=P V$ and P is
(C)	$\sqrt{\frac{V}{U}}$
proportional to T^{2}. The entropy of the system is proportional to	

| Q.29 |
| :--- | :--- | :--- |
| (A) |
| The dispersion relation for certain type of waves is given by $\omega=\sqrt{k^{2}+a^{2}}$ |
| where k is the wave vector and a is a constant. Which one of the following |
| sketches represents v_{g}, the group velocity? |

Q.30	Consider a binary number with m digits, where m is an even number. This binary number has alternating 1 's and 0 's, with digit 1 in the highest place value. The decimal equivalent of this binary number is
(A)	$2^{m}-1$
(B)	$\frac{\left(2^{m}-1\right)}{3}$
(C)	$\frac{\left(2^{m+1}-1\right)}{3}$
(D)	$\frac{2}{3}\left(2^{m}-1\right)$

Section B: Q. 31 - Q. 40 Carry TWO marks each.

Q.31	Consider the 2×2 matrix $M=\left(\begin{array}{ll}0 & a \\ a & b\end{array}\right)$, where $a, b>0$. Then,
(A)	M is a real symmetric matrix
(B)	One of the eigenvalues of M is greater than b
(C)	One of the eigenvalues of M is negative
(D)	Product of eigenvalues of M is b
Q.32	In the Compton scattering of electrons, by photons incident with wavelength λ,
(A)	$\frac{\Delta \lambda}{\lambda}$ is independent of λ
(B)	$\frac{\Delta \lambda}{\lambda}$ increases with decreasing λ
(C)	$\frac{\Delta \lambda}{\lambda}$ increases with increasing angle of deflection of the photon
photon	
(Dere is no change in photon's wavelength for all angles of deflection of the	

Q. 33	The figure shows a section of the phase boundary separating the vapour (1) and liquid (2) states of water in the $P-T$ plane. Here, C is the critical point. μ_{1}, v_{1} and s_{1} are the chemical potential, specific volume and specific entropy of the vapour phase respectively, while μ_{2}, v_{2} and s_{2} respectively denote the same for the liquid phase. Then
(A)	$\mu_{1}=\mu_{2}$ along AB
(B)	$v_{1}=v_{2}$ along AB
(C)	$s_{1}=s_{2}$ along AB
(D)	$v_{1}=v_{2}$ at the point C

Q. 34	A particle is executing simple harmonic motion with time period T. Let x, v and a denote the displacement, velocity and acceleration of the particle, respectively, at time t. Then,
(A)	$\frac{a T}{x}$ does not change with time
(B)	$(a T+2 \pi v)$ does not change with time
(C)	x and v are related by an equation of a straight line
(D)	v and a are related by an equation of an ellips
Q. 35	A linearly polarized light beam travels from origin to point A $(1,0,0)$. At the point A, the light is reflected by a mirror towards point $\mathrm{B}(1,-1,0)$. A second mirror located at point B then reflects the light towards point $C(1,-1,1)$. Let $\hat{n}(x, y, z)$ represent the direction of polarization of light at (x, y, z).
(A)	If $\hat{n}(0,0,0)=\hat{y}$, then $\hat{n}(1,-1,1)=\hat{x}$
(B)	If $\hat{n}(0,0,0)=\hat{z}$, then $\hat{n}(1,-1,1)=\hat{y}$
(C)	If $\hat{n}(0,0,0)=\hat{y}$, then $\hat{n}(1,-1,1)=\hat{y}$
(D)	If $\hat{n}(0,0,0)=\hat{z}$, then $\hat{n}(1,-1,1)=\hat{x}$

Q.36	Let (r, θ) denote the polar coordinates of a particle moving in a plane. If \hat{r} and $\hat{\theta}$ represent the corresponding unit vectors, then
(A)	$\frac{d \hat{r}}{d \theta}=\hat{\theta}$
(B)	$\frac{d \hat{r}}{d r}=-\hat{\theta}$
(C)	$\frac{d \hat{\theta}}{d \theta}=-\hat{r}$
(D)	$\frac{d \hat{\theta}}{d r}=\hat{r}$
Q.37	The electric field associated with an electromagnetic radiation is given by
$E=a\left(1+\cos \omega_{1} t\right) \cos \omega_{2} t$. Which of the following frequencies are present in	
(D)	ω_{2}
(B)	$\omega_{1}+\omega_{2}$
(C)	$\frac{\omega_{1}}{}$$\omega_{1}$

Q. 38	A string of length L is stretched between two points $x=0$ and $x=L$ and the endpoints are rigidly clamped. Which of the following can represent the displacement of the string from the equilibrium position?
(A)	$x \cos \left(\frac{\pi x}{L}\right)$
(B)	$x \sin \left(\frac{\pi x}{L}\right)$
(C)	$x\left(\frac{x}{L}-1\right)$
(D)	$x\left(\frac{x}{L}-1\right)^{2}$
Q. 39	The Boolean expression $Y=\overline{P Q} \mathrm{R}+\mathrm{Q} \bar{R}+\bar{P} Q R+P Q R$ simplifies to
(A)	$\bar{P} R+Q$
(B)	$P R+\bar{Q} O$
(C)	$P+R$
(D)	$Q+R$

Q. 40	For an n-type silicon, an extrinsic semiconductor, the natural logarithm of normalized conductivity (σ) is plotted as a function of inverse temperature. Temperature interval-I corresponds to the intrinsic regime, interval-II corresponds to saturation regime and interval-III corresponds to the freeze-out regime, respectively. Then
(A)	the magnitude of the slope of the curve in the temperature interval-I is proportional to the bandgap, E_{g}
(B)	the magnitude of the slope of the curve in the temperature interval-III is proportional to the ionization energy of the donor, E_{d}
(C)	in the temperature interval-II, the carrier density in the conduction band is equal to the density of donors
(D)	in the temperature interval-III, all the donor levels are ionized

Section C: Q. 41 - Q. 50 Carry ONE mark each.

Q. 41	The integral $\iint\left(x^{2}+y^{2}\right) d x d y$ over the area of a disk of radius 2 in the $x y$ plane is $__\pi$.
Q. 42	$V_{s}=0.6 \mathrm{~V}$, then the output current I_{0} is

Q. 43	For an ideal gas, AB and CD are two isothermals at temperatures T_{1} and $T_{2}\left(T_{1}>\right.$ T_{2}), respectively. AD and BC represent two adiabatic paths as shown in figure. Let V_{A}, V_{B}, V_{C} and V_{D} be the volumes of the gas at $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D respectively. If $\frac{V_{C}}{V_{B}}=2$, then $\frac{V_{D}}{V_{A}}=$ \qquad .
	5 8 5
Q. 44	A satellite is revolving around the Earth in a closed orbit. The height of the satellite above Earth's surface at perigee and apogee are 2500 km and 4500 km , respectively. Consider the radius of the Earth to be 6500 km . The eccentricity of the satellite's orbit is \qquad (Round off to 1 decimal place).
Q. 45	Three masses $m_{1}=1, m_{2}=2$ and $m_{3}=3$ are located on the x-axis such that their center of mass is at $x=1$. Another mass $m_{4}=4$ is placed at x_{0} and the new center of mass is at $x=3$. The value of x_{0} is \qquad .

Q. 46	A normal human eye can distinguish two objects separated by 0.35 m when viewed from a distance of 1.0 km . The angular resolution of eye is \qquad seconds (Round off to the nearest integer).
Q. 47	A rod with a proper length of 3 m moves along x-axis, making an angle of 30° with respect to the x-axis. If its speed is $\frac{c}{2} m / s$, where c is the speed of light, the change in length due to Lorentz contraction is \qquad m (Round off to 2 decimal places). $\left[\right.$ Use $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$]
Q. 48	Consider the Bohr model of hydrogen atom. The speed of an electron in the second orbit $(n=2)$ is \qquad $\times 10^{6} \mathrm{~m} / \mathrm{s}$ (Round off to 2 decimal places). [Use $\left.h=6.63 \times 10^{-34} J s, e=1.6 \times 10^{-19} C, \epsilon_{0}=8.85 \times 10^{-12} C^{2} m^{2} / N\right]$
Q. 49	Consider a unit circle C in the $x y$ plane with center at the origin. The line integral of the vector field, $\vec{F}(x, y, z)=-2 y \hat{x}-3 z \hat{y}+x \hat{z}$, taken anticlockwise over C is \qquad π.

Q.50	Consider a p-n junction at $T=300 \mathrm{~K}$. The saturation current density at reverse bias is $-20 \mu A / \mathrm{cm}^{2}$. For this device, a current density of magnitude $10 \mu A / \mathrm{cm}^{2}$ is realized with a forward bias voltage, V_{F}. The same magnitude of current density can also be realized with a reverse bias voltage, V_{R}. The value of $\left\|V_{F} / V_{R}\right\|$ is__ (Round off to 2 decimal places).

Q. 54	Consider an electron with mass m and energy E moving along the x-axis towards a finite step potential of height U_{0} as shown in the figure. In region $1(x<0)$, the momentum of the electron is $p_{1}=\sqrt{2 m E}$. The reflection coefficient at the barrier is given by $R=\left(\frac{p_{1}-p_{2}}{p_{1}+p_{2}}\right)^{2}$, where p_{2} is the momentum in region 2 . If, in the limit $E \gg U_{0}, R \approx \frac{U_{0}^{2}}{n E^{2}}$, then the integer n is \qquad .
	25 2nans
Q. 55	A current density for a fluid flow is given by, $\vec{J}(x, y, z, t)=\frac{8 e^{t}}{\left(1+x^{2}+y^{2}+z^{2}\right)} \hat{x}$ At time $t=0$, the mass density $\rho(x, y, z, 0)=1$. Using the equation of continuity, $\rho(1,1,1,1)$ is found to be \qquad (Round off to 2 decimal places).
Q. 56	The work done in moving a $-5 \mu C$ charge in an electric field $\vec{E}=(8 r \sin \theta \hat{r}+4 r \cos \theta \hat{\theta}) \mathrm{V} / \mathrm{m}$, from a point $A(r, \theta)=\left(10, \frac{\pi}{6}\right)$ to a point $B(r, \underline{\theta})=\left(10, \frac{\pi}{2}\right)$, is \qquad $\mathrm{m} J$.

END OF THE QUESTION PAPER

