section A	: Q.1 – Q.10 Carry ONE mark each.
Q.1	The equation $z^2 + \overline{z}^2 = 4$ in the complex plane (where \overline{z} is the complex
	conjugate of z) represents
(A)	Ellipse
(B)	Hyperbola
(C)	Circle of radius 2
(D)	Circle of radius 4
Q.2	A rocket (S') moves at a speed $\frac{c}{2}$ m/s along the positive x-axis, where c is the
	speed of light. When it crosses the origin, the clocks attached to the rocket and
	the one with a stationary observer (S) located at $x = 0$ are both set to zero. If S
	observes an event at (x, t) , the same event occurs in the S' frame at
(A)	$x' = \frac{2}{\sqrt{3}} \left(x - \frac{ct}{2} \right)$ and $t' = \frac{2}{\sqrt{3}} \left(t - \frac{x}{2c} \right)$
(B)	$x' = \frac{2}{\sqrt{3}} \left(x + \frac{ct}{2} \right)$ and $t' = \frac{2}{\sqrt{3}} \left(t - \frac{x}{2c} \right)$
(C)	$x' = \frac{2}{\sqrt{3}} \left(x - \frac{ct}{2} \right)$ and $t' = \frac{2}{\sqrt{3}} \left(t + \frac{x}{2c} \right)$
(D)	$x' = \frac{2}{\sqrt{3}} \left(x + \frac{ct}{2} \right)$ and $t' = \frac{2}{\sqrt{3}} \left(t + \frac{x}{2c} \right)$
,0,12	A Starter Star

Q.3	Consider a classical ideal gas of <i>N</i> molecules in equilibrium at temperature <i>T</i> . Each molecule has two energy levels, $-\epsilon$ and ϵ . The mean energy of the gas is
	Lach molecule has two chergy levels, e and e. The mean energy of the gas is
(A)	0
(B)	$N\epsilon \tanh\left(\frac{\epsilon}{k_BT}\right)$
(C)	$-N\epsilon \tanh\left(\frac{\epsilon}{k_BT}\right)$
(D)	$\frac{\epsilon}{2}$
Q.4	At a temperature T, let β and κ denote the volume expansivity and isothermal
	compressibility of a gas, respectively. Then $\frac{\beta}{\kappa}$ is equal to
(A)	$\left(\frac{\partial P}{\partial T}\right)_V$
(B)	$\left(\frac{\partial P}{\partial V}\right)_T$
(C)	$\left(\frac{\partial T}{\partial P}\right)_V$
(D)	$\left(\frac{\partial T}{\partial V}\right)_P$
50%	AS .

Q.5	The resultant of the binary subtraction 1110101 – 0011110 is
(A)	1001111
(B)	1010111
(C)	1010011
(D)	1010001
	NUMERON COLOR
Q.6	Consider a particle trapped in a three-dimensional potential well such that $U(x, y, z) = 0$ for $0 \le x \le a$, $0 \le y \le a$, $0 \le z \le a$ and $U(x, y, z) = \infty$ everywhere else. The degeneracy of the 5 th excited state is
(A)	1
(B)	3
(C)	6 2023 1 00 R
(D)	9
	5 5 5 S
Join,	Solution 100 100 100 100 100 100 100 100 100 10

5/36

Q.7	A particle of mass m and angular momentum L moves in space where its potential energy is	0, 56
	$U(r) = kr^2$ (k > 0) and r is the radial coordinate.	£
	If the particle moves in a circular orbit, then the radius of the orbit is	
(A)	$\left(\frac{L^2}{mk}\right)^{\frac{1}{4}}$	
(B)	$\left(\frac{L^2}{2mk}\right)^{\frac{1}{4}}$	
(C)	$\left(\frac{2L^2}{mk}\right)^{\frac{1}{4}}$	
(D)	$\left(\frac{4L^2}{mk}\right)^{\frac{1}{4}}$	
	202 10 200	
, oit,		

Q.8	Consider a two-dimensional force field
	$\vec{F}(x,y) = (5x^2 + ay^2 + bxy)\hat{x} + (4x^2 + 4xy + y^2)\hat{y}.$
	If the force field is conservative, then the values of <i>a</i> and <i>b</i> are
(A)	a = 2 and $b = 4$
(B)	a = 2 and $b = 8$
(C)	a = 4 and $b = 2$
(D)	a = 8 and $b = 2$
Q.9	Consider an electrostatic field \vec{E} in a region of space. Identify the INCORRECT statement.
(A)	The work done in moving a charge in a closed path inside the region is zero
(B)	The curl of \vec{E} is zero
(C)	The field can be expressed as the gradient of a scalar potential
(D)	The potential difference between any two points in the region is always zero
	Sur Contraction
Ŭ,	

Section A	: Q.11 – Q.30 Carry TWO marks each.
Q.11	The function $f(x) = e^{\sin x}$ is expanded as a Taylor series in x , around $x = 0$, in the form $f(x) = \sum_{n=0}^{\infty} a_n x^n$. The value of $a_0 + a_1 + a_2$ is
(A)	0
(B)	
(C)	52
(D)	5
	ADDAN INSTITUTE
2.12	Consider a unit circle <i>C</i> in the <i>xy</i> plane, centered at the origin. The value of the integral $\oint [(\sin x - y)dx - (\sin y - x)dy]$ over the circle <i>C</i> , traversed anticlockwise, is
(A)	
(B)	2π
(C)	3π
(D)	4π
oli),	A AN
3/2	

Q.13	The current through a series RL circuit, subjected to a constant <i>emf</i> \mathcal{E} , obeys
	$L\frac{di}{dt} + iR = \mathcal{E}$. Let $L = 1 mH$, $R = 1 k\Omega$ and $\mathcal{E} = 1 V$. The initial condition
	is $i(0) = 0$. At $t = 1 \mu s$, the current in mA is
(A)	$1 - 2e^{-2}$
(B)	$1 - 2e^{-1}$
(C)	$1 - e^{-1}$
(D)	$2 - 2e^{-1}$
Q.14	An ideal gas in equilibrium at temperature <i>T</i> expands isothermally to twice its initial volume. If ΔS , ΔU and ΔF denote the changes in its entropy, internal energy and Helmholtz free energy respectively, then
(A)	$\Delta S < 0, \Delta U > 0, \Delta F < 0$
(B)	$\Delta S > 0, \Delta U = 0, \Delta F < 0$
(C)	$\Delta S < 0, \Delta U = 0, \Delta F > 0$
(D)	$\Delta S > 0, \Delta U > 0, \Delta F = 0$
	Sun Series
Join,	A A A A A A A A A A A A A A A A A A A

Q.15	In a dilute gas, the number of molecules with free path length $\geq x$ is given by $N(x) = N_0 e^{-x/\lambda}$, where N_0 is the total number of molecules and λ is the mean free path. The fraction of molecules with free path lengths between λ and 2λ is
(A)	
(B)	$\frac{e}{e-1}$
(C)	$\frac{e^2}{e-1}$
(D)	$\frac{e-1}{e^2}$
	ADDIAN INSTITUTE

Protocol data to the second data

Q.16	Consider a quantum particle trapped in a one-dimensional potential well in the
	region $[-L/2 < x < L/2]$, with infinitely high barriers at $x = -L/2$ and
	$x = L/2$. The stationary wave function for the ground state is $\psi(x) =$
	$\sqrt{\frac{2}{L}}\cos\left(\frac{\pi x}{L}\right)$. The uncertainties in momentum and position satisfy
(A)	$\Delta p = \frac{\pi \hbar}{L}$ and $\Delta x = 0$
(B)	$\Delta p = \frac{2\pi\hbar}{L} \text{ and } 0 < \Delta x < \frac{L}{2\sqrt{3}}$
(C)	$\Delta p = \frac{\pi \hbar}{L} \text{ and } \Delta x > \frac{L}{2\sqrt{3}}$
(D)	$\Delta p = 0$ and $\Delta x = \frac{L}{2}$
	V C C C C C C C C C C C C C C C C C C C
Q.17	Consider a particle of mass m moving in a plane with a constant radial speed \dot{r}
Q.17	Consider a particle of mass m moving in a plane with a constant radial speed \dot{r} and a constant angular speed $\dot{\theta}$. The acceleration of the particle in (r, θ) coordinates is
Q.17 (A)	and a constant angular speed $\dot{\theta}$. The acceleration of the particle in (r, θ)
Q.17 (A) (B)	and a constant angular speed $\dot{\theta}$. The acceleration of the particle in (r, θ) coordinates is
(A)	and a constant angular speed $\dot{\theta}$. The acceleration of the particle in (r, θ) coordinates is $2r\dot{\theta}^2 \hat{r} - \dot{r}\dot{\theta}\hat{\theta}$

Q.18	A planet of mass m moves in an elliptical orbit. Its maximum and minimum
	distances from the Sun are R and r , respectively. Let G denote the universal
	gravitational constant, and M the mass of the Sun. Assuming $M >> m$, the
	angular momentum of the planet with respect to the center of the Sun is
(A)	$m_{\sqrt{\frac{2GMRr}{(R+r)}}}$
(B)	$m\sqrt{\frac{GMRr}{2(R+r)}}$
(C)	$m\sqrt{\frac{GMRr}{(R+r)}}$
(D)	$2m\sqrt{\frac{2GMRr}{(R+r)}}$
	S S S S S S S S S S S S S S S S S S S

Q.21	A radioactive nucleus has a decay constant λ and its radioactive daughter nucleus has a decay constant 10λ . At time $t = 0$, N_0 is the number of parent nuclei and there are no daughter nuclei present. $N_1(t)$ and $N_2(t)$ are the number of parent and daughter nuclei present at time t , respectively. The ratio $N_2(t)/N_1(t)$ is
(A)	$\frac{1}{9} \left[1 - e^{-9\lambda t} \right]$
(B)	$\frac{1}{10} \left[1 - e^{-10\lambda t} \right]$
(C)	$\left[1-e^{-10\lambda t}\right]$
(D)	$\left[1-e^{-9\lambda t}\right]$

Residences and the second seco

Q.23	For an ideal intrinsic semiconductor, the Fermi energy at 0 <i>K</i>	00
(A)	lies at the top of the valence band	ps.
(B)	lies at the bottom of the conduction band	
(C)	lies at the center of the bandgap	
(D)	lies midway between center of the bandgap and bottom of the conduction band	
	North Contraction of the second	

Q.24	A circular loop of wire with radius R is centered at the origin of the xy-plane. The magnetic field at a point within the loop is, $\vec{B}(\rho, \phi, z, t) = k\rho^3 t^3 \hat{z}$, where k is a positive constant of appropriate dimensions. Neglecting the effects of any
	current induced in the loop, the magnitude of the induced <i>emf</i> in the loop at time <i>t</i> is
(A)	$\frac{6\pi kt^2 R^5}{5}$
(B)	$\frac{5\pi kt^2 R^5}{6}$
(C)	$\frac{3\pi kt^2 R^5}{2}$
(D)	$\frac{\pi k t^2 R^5}{2}$
	60

Resident Anti-

Q.27	A particle is subjected to two simple harmonic motions along the x and y axes,
-	described by $x(t) = a \sin(2\omega t + \pi)$ and $y(t) = 2a \sin(\omega t)$. The resultant
	motion is given by
	5 3
(A)	$x^2 y^2$
	$\frac{x^2}{a^2} + \frac{y^2}{4a^2} = 1$
	2 2
(B)	$x^2 + y^2 = 1$
	N/ H LS
(C)	$2 \qquad 2 \left(1 \qquad x^2\right)$
	$y^2 = x^2 \left(1 - \frac{x^2}{4a^2} \right)$
	Starting & C
(D)	$x^2 = y^2 \left(1 - \frac{y^2}{4a^2} \right)$
	$x^2 = y^2 \left(1 - \frac{1}{4a^2} \right)$
	23332
	ADDIAN DISTINUTION
Q.28	For a certain thermodynamic system, the internal energy $U = PV$ and P is
-	
	proportional to T^2 . The entropy of the system is proportional to
	proportional to T^2 . The entropy of the system is proportional to
(A)	
(A)	proportional to T^2 . The entropy of the system is proportional to UV
(A) (B)	
(B)	
(B)	
(B)	
(B) (C)	

Q.30	Consider a binary number with m digits, where m is an even number. This binary number has alternating 1's and 0's, with digit 1 in the highest place value. The decimal equivalent of this binary number is
(A)	2 ^m - 1
(B)	$\frac{(2^m-1)}{3}$
(C)	$\frac{(2^{m+1}-1)}{3}$
(D)	$\frac{2}{3}(2^m-1)$
	ADDIAN INSTITUTE

Horizan Anti-

Section B	e: Q.31 – Q.40 Carry TWO marks each.	, 1997.
Q.31	Consider the 2 × 2 matrix $M = \begin{pmatrix} 0 & a \\ a & b \end{pmatrix}$, where $a, b > 0$. Then,	Del La
(A)	<i>M</i> is a real symmetric matrix	
(B)	One of the eigenvalues of <i>M</i> is greater than <i>b</i>	
(C)	One of the eigenvalues of <i>M</i> is negative	
(D)	Product of eigenvalues of <i>M</i> is <i>b</i>	
Q.32	In the Compton scattering of electrons, by photons incident with wavelength λ ,	
(A)	$\frac{\Delta\lambda}{\lambda}$ is independent of λ	
(B)	$\frac{\Delta\lambda}{\lambda}$ increases with decreasing λ	
(C)	there is no change in photon's wavelength for all angles of deflection of the photon	
(D)	$\frac{\Delta\lambda}{\lambda}$ increases with increasing angle of deflection of the photon	
X	No the	
loi,	All so and so	

Q.33 The figure shows a section of the phase boundary separating the vapour (1) and liquid (2) states of water in the P-T plane. Here, C is the critical point. μ_1 , ν_1 and s_1 are the chemical potential, specific volume and specific entropy of the vapour phase respectively, while μ_2 , ν_2 and s_2 respectively denote the same for the liquid phase. Then Р liquid В vapour Α 7 (A) $\mu_1 = \mu_2$ along AB $v_1 = v_2$ along AB (B) (C) $s_1 = s_2$ along AB $v_1 = v_2$ at the point C (D) A Marine Car

12

Q.34	A particle is executing simple harmonic motion with time period T . Let x , v and a denote the displacement, velocity and acceleration of the particle, respectively,
	at time t. Then,
(A)	$\frac{aT}{x}$ does not change with time
(B)	$(aT + 2\pi\nu)$ does not change with time
(C)	x and v are related by an equation of a straight line
(D)	v and a are related by an equation of an ellipse
Q.35	A linearly polarized light beam travels from origin to point A $(1,0,0)$. At the point A, the light is reflected by a mirror towards point B $(1, -1, 0)$. A second mirror
	located at point B then reflects the light towards point C $(1, -1, 0)$. A second mintor
	$\hat{n}(x, y, z)$ represent the direction of polarization of light at (x, y, z) .
(A)	If $\hat{n}(0, 0, 0) = \hat{y}$, then $\hat{n}(1, -1, 1) = \hat{x}$
(B)	If $\hat{n}(0, 0, 0) = \hat{z}$, then $\hat{n}(1, -1, 1) = \hat{y}$
(C)	If $\hat{n}(0, 0, 0) = \hat{y}$, then $\hat{n}(1, -1, 1) = \hat{y}$
(D)	If $\hat{n}(0, 0, 0) = \hat{z}$, then $\hat{n}(1, -1, 1) = \hat{x}$
14	No.
Sol	A Starter and a

	Le la
Q.36	Let (r, θ) denote the polar coordinates of a particle moving in a plane. If \hat{r} and $\hat{\theta}$
	represent the corresponding unit vectors, then
(A)	$\frac{d\hat{r}}{d\theta} = \hat{\theta}$
(B)	dr
	$\frac{d\hat{r}}{dr} = -\hat{\theta}$
(C)	$\frac{d\hat{\theta}}{d\theta} = -\hat{r}$
(D)	dê
	$\frac{d\hat{\theta}}{dr} = \hat{r}$
	ADDAN INSTITUTE
Q.37	The electric field associated with an electromagnetic radiation is given by
Q.37	$E = a(1 + cos\omega_1 t)cos\omega_2 t$. Which of the following frequencies are present in
	the field?
(A)	ω_1
(B)	$\omega_1 + \omega_2$
(C)	$ \omega_1 - \omega_2 $
	5 2
	ω_2
(D)	

Q.38	A string of length L is stretched between two points $x = 0$ and $x = L$ and the endpoints are rigidly clamped. Which of the following can represent the	970
	displacement of the string from the equilibrium position?	L5.
	3 3	X
(A)	$x\cos\left(\frac{\pi x}{L}\right)$	
(B)	$x\sin\left(\frac{\pi x}{L}\right)$	
(C)	$x\left(\frac{x}{L}-1\right)$	
(D)	$x\left(\frac{x}{L}-1\right)^2$	
	ANDIAN RESTRICT	
Q.39	The Boolean expression $Y = \overline{PQ}R + Q\overline{R} + \overline{P}QR + PQR$ simplifies to	
(A)	$\overline{P}R + Q$	
(B)	$PR + \overline{Q}$	
(C)	P+R	
(D)	Q+R	
	Sin Bo	
lin,	AN AN	

Q.40 For an *n*-type silicon, an extrinsic semiconductor, the natural logarithm of normalized conductivity (σ) is plotted as a function of inverse temperature. Temperature interval-I corresponds to the intrinsic regime, interval-II corresponds to saturation regime and interval-III corresponds to the freeze-out regime, respectively. Then ln(σ) Π III Ι 1 T (A) the magnitude of the slope of the curve in the temperature interval-I is proportional to the bandgap, E_a (B) the magnitude of the slope of the curve in the temperature interval-III is proportional to the ionization energy of the donor, E_d in the temperature interval-II, the carrier density in the conduction band is equal (C) to the density of donors in the temperature interval-III, all the donor levels are ionized (D)

Section	C: Q.41 – Q.50 Carry ONE mark each.
Q.41	The integral $\iint (x^2 + y^2) dx dy$ over the area of a disk of radius 2 in the xy plane is $\\pi$.
Q.42	For the given operational amplifier circuit $R_1 = 120 \ \Omega$, $R_2 = 1.5 \ k\Omega$ and $V_s = 0.6 \ V$, then the output current I_0 ismA.

1.1

PH

12

Q.46	A normal human eye can distinguish two objects separated by 0.35 m when viewed from a distance of 1.0 km. The angular resolution of eye isseconds (Round off to the nearest integer).	1 4 13 me
Q.47	A rod with a proper length of 3 <i>m</i> moves along <i>x</i> -axis, making an angle of 30^{0} with respect to the <i>x</i> -axis. If its speed is $\frac{c}{2}$ <i>m/s</i> , where <i>c</i> is the speed of light, the change in length due to Lorentz contraction ism (Round off to 2 decimal places). [Use $c = 3 \times 10^{8} m/s$]	
Q.48	Consider the Bohr model of hydrogen atom. The speed of an electron in the second orbit $(n = 2)$ is × 10 ⁶ m/s (Round off to 2 decimal places). [Use $h = 6.63 \times 10^{-34}$ Js, $e = 1.6 \times 10^{-19}$ C, $\epsilon_0 = 8.85 \times 10^{-12}$ C ² m ² /N]	
	30- 32	
Q.49	Consider a unit circle <i>C</i> in the <i>xy</i> plane with center at the origin. The line integral of the vector field, $\vec{F}(x, y, z) = -2y\hat{x} - 3z\hat{y} + x\hat{z}$, taken anticlockwise over <i>C</i> is	
	1.5 2.5 2.5	
	ACTIN	

Q.50	Consider a p-n junction at $T = 300 K$. The saturation current density at reverse
	bias is $-20 \mu A/cm^2$. For this device, a current density of magnitude
	$10 \mu A/cm^2$ is realized with a forward bias voltage, V_F . The same magnitude of
	current density can also be realized with a reverse bias voltage, V_R . The value of
	$ V_F/V_R $ is (Round off to 2 decimal places).
	5 2 2

Adding to the second to the se

Q.51Consider the second order ordinary differential equation, $y'' + 4y' + 5y = y(0) = 0$ and $y'(0) = 1$, then the value of $y(\pi/2)$ is (Round to 3 decimal places).Q.52A box contains a mixture of two different ideal monoatomic gases, 1 and equilibrium at temperature T. Both gases are present in equal proportions atomic mass for gas 1 is m, while the same for gas 2 is $2m$. If the rms spectrum a gas molecule selected at random is $v_{rms} = x \sqrt{\frac{k_BT}{m}}$, then x is	0
equilibrium at temperature <i>T</i> . Both gases are present in equal proportions atomic mass for gas 1 is <i>m</i> , while the same for gas 2 is $2m$. If the <i>rms</i> spectra gas molecule selected at random is $v_{rms} = x \sqrt{\frac{k_B T}{m}}$, then <i>x</i> is	
equilibrium at temperature <i>T</i> . Both gases are present in equal proportions atomic mass for gas 1 is <i>m</i> , while the same for gas 2 is $2m$. If the <i>rms</i> spectra gas molecule selected at random is $v_{rms} = x \sqrt{\frac{k_B T}{m}}$, then <i>x</i> is	
(Round off to 2 decimal places).	. The
Constant lines	
Q.53 A hot body with constant heat capacity 800 J/K at temperature 925 K is dro gently into a vessel containing 1 kg of water at temperature 300 K an combined system is allowed to reach equilibrium. The change in the total en ΔS is J/K (Round off to 1 decimal place). [Take the specific heat capacity of water to be 4200 J/kg K. Neglect any le	d the tropy
heat to the vessel and air and change in the volume of water.]	

	k
Q.57	A pipe of $1 m$ length is closed at one end. The air column in the pipe resonates at
	its fundamental frequency of 400 Hz. The number of nodes in the sound wave
	formed in the pipe is
	5 3
	[Speed of sound = $320 m/s$]
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Q.58	The critical angle of a crystal is 30°. Its Brewster angle is degrees (Round
	off to the nearest integer).
	0/32
	North States
Q.59	In an LCR series circuit, a non-inductive resistor of 150Ω , a coil of $0.2 H$
	inductance and negligible resistance, and a 30 μ <i>F</i> capacitor are connected across
	an ac power source of 220 V, 50 Hz. The power loss across the resistor isW
	(Round off to 2 decimal places).
	.62
Q.60	A charge q is uniformly distributed over the volume of a dielectric sphere of
	radius a. If the dielectric constant $\epsilon_r = 2$, then the ratio of the electrostatic energy
	stored inside the sphere to that stored outside is (Round off to 1 decimal
	place).
	S/1.5 15
	SA
	END OF THE QUESTION PAPER
č	
Ö	Æ
2	2 m

END OF THE QUESTION PAPER