Please Copy The Following Things Correctly On The OMR Sheet And Blacken The Corresponding Circles.

020363

Booklet Series C

		Dooriet ochico o
Booklet No	Subject Code:	01 (For Mathematics)
OMR Sheet No		02 (For Biology)
ENTRANCE EV	MINATION 2049	

Roll No.....Name of the Centre....

		No.		The state of the s	A Day	-		
١	-4	nation	- 4-	46-	P	ام ة أم س	mha	-

Name of the candidate:

- There are 200 questions in all, out of which 50 questions are on Mental Aptitude, 50 questions are on Physics, 50 questions are on Chemistry and 50 questions are on Mathematics / Biology.
- 2. Questions in Mental Aptitude, Physics and Chemistry are compulsory for all. Out of Mathematics and Biology Sections, you are requested to answer any one.

Duration of the Test: Two hours

No. of questions: Mental Aptitude-50, Physics-50, Chemistry-50, Mathematics or Biology-50.

Method of Answering the Questions:

In this test, for each question four suggested answers are given, of which only ONE is correct. You are to find out the correct answer and indicate your choice by blackening the corresponding circle on the OMR sheet. For example, if for question No. 1 the correct answer is (C) then blacken as shown below.

Question 1.

USE BLACK BALL POINT PEN ONLY FOR MARKING YOUR ANSWER ON THE OMR SHEET

P. Zase Dog Chin Fellowing Taings Correctly On The OMR Sheet.

And Blacken The Corresponding Circles.

020363

Booklet Series C

Subject Codes: @1 (For Mathematical)

Oz (Ear Stolegy)

ENTENCE EXAMINATIONS 2048

Name of the oscial feet and the second feet an

Significant of the Lawrence of the Committee of the Commi

instruction testine Candidates:

There are 116 quest as an ab out of a son but questions are out Marital Aprillation The questions are on Physical Displaying are on Chamistry and 50 transitions on outstation as less Abiology.

The Strong in Applied Application Projectes and Channially are computed to make all Dut of Mathematics and Circletty Declar at you are required to make an application of the companies.

Duralloff of the Test of Two hours

vo. of questions. Market, entures 50, Physics-50, Chemistry-50, Mathematics or

Helford of Amswering the Questions

In this test for uson question four suggested answers are given, of which only ONE is correct. You are to find out the correct answer and indicate your choice by blackening the corresponding on the OMR shoet. For example, if for question No. It the correct answer is (C) than blacken as signwin trains.

The appo

USE BLACK BALL POINT PEN ONLY FOR MARKING YOUR ANSWER ON THE OMR SHEET

MENTAL APTITUDE Questions: 50

Direction for questions 1 - 5:

Read the following information to answer the given questions.

- i) There is a group of five persons A, B, C, D and E.
- ii) One of them is a horticulturist, one is a physicist, one is a journalist, one is an industrialist and one is an advocate.
- iii) Three of them A, C and advocate prefer tea to coffee and two of them B and the journalist prefer coffee to tea.
- iv) The industrialist and D and A are friend of one another but two of these prefer coffee to tea.
- v) The horticulturist is C's brother.

Questions:

1.	Who is a hortic	culturist ?		
	(A) A	(B) B	(C) C	(D) E
2.	Who is an indu	ustrialist?	ALFAIRS	
	(A) E	(B) C	(C) B	(D) D
3.	Which of the fo	llowing groups inc	ludes a person who like	es tea but is not an advocate
	(A) ACE	(B) DE	(C) BD	
	(7.) 7.02	(5) 51	(0) 00	(D) BCD
4.	Who is a physi		(0) BB	(D) BCD
4.	JIK 2		(C) D	(D) E
	Who is a physi (A) A	cist ?	(C) D	1/1/21

(C) 60

(A) 70

6. If BAT = 40, AT = 20 then CAT will be equal to

(B) 50

(D) 30

Direction for questions 7 - 16:

In the problem Figures, the first two figures bear a definite relationship with each other, and the third figure bears the same relation with one of the four figures given as Answer Figures, marked (A), (B), (C) and (D). Indicate the correct answer.

Questions:

PROBLEM FIGURES

ANSWER FIGURES

14.

15.

16.

17. If + means \div , \times means \cdot , \div means \times and \cdot means +, then $8 + 6 \times 4 \div 3 - 4 = ?$

Direction for questions 18 - 20:

In each of the following questions, four groups of letters are given; three of them are alike in a certain way while one is different. Choose the ODD one.

Questions:

- 18. (A) FIL
- (B) RUX
- (C) ILO
- (D) LOQ

- 19. (A) AZBY
- (B) PTQS
- (C) CWDV
- (D) GQHF

- 20. (A) NEXFL
- (B) LANCP
- (C) FRGSP
- (D) ZGPKU

21. In a row of 60, A is standing at 10th from the right end, how many places should A move left ward to become 23rd from the left end?

- (A) 25
- (B) 26
- (C) 27

(D) 28

Direction for questions 22 - 25:

Each question is followed by two statements (1) and (2).

Indicate

- (A) if Statement (1) ALONE is sufficient, but Statement (2) alone is not sufficient
- (B) if Statement (2) ALONE is sufficient, but Statement (1) alone is not sufficient
- (C) if BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient
- (D) if statements (1) and (2) TOGETHER are NOT sufficient

Questions:

22. If
$$\frac{x+y}{z} > 0$$
, is $x < 0$?

- (1) x < y
- (2) z < 0
- 23. If p is the perimeter of rectangle Q, what is the value of p?
 - (1) Each diagonal of rectangle Q has length 10.
 - (2) The area of rectangle Q is 48.
- 24. In a school, 300 students study Hindi or Urdu or both. If 100 of these students do not study Hindi, how many of these students study both Hindi and Urdu?
 - (1) Of the 300 students, 200 study Hindi or both languages.
 - (2) A total of 240 of the students study Urdu.
- 25. If m is an integer, is m odd?
 - (1) $\frac{m}{2}$ is NOT an even integer.
 - (2) m-3 is an even integer.

move left ward to become 23th from the

7 = 4 - 8 - 4 - 9 + 8

Direction for questions 18-20:

26. Pointing to a photograph, a woman says, "This man's son's sister is my mother-in-law". How is the woman's husband related to the man in the photograph? (A) Grandson (B) Son (C) Son-in-law (D) Nephew

Direction for questions 27 - 30:

In each of the following questions, a pair of words is given. You are to study the relation existing between them and then find out from the given alternatives, the pair of words that bears the same relation between them and indicate that on the answer sheet.

Questions:

- 27. Fatigue: Resting
 - (A) Overweight: Dieting
 - (C) Sporadic: Infrequent
- 28. Triangle: Quadrilateral
 - (A) Cube: Trifold
 - (C) Trident: Trapezium
- 29. Numismatist: Coins (A) Philatelist: Stamps
 - (C) Cartographer: Maps

- (B) Square: Rectangle (D) Pentagon: Hexagon

(B) Ward: Comfortable

(D) Elevated: Exalted

- (B) Jeweller: Jewels
- (D) Geneticist: Chromosomes

- 30. Textile: Mill
 - (A) Eggs: Hen (B) Coal: Mine
- (C) Food : Agriculture (D) Brick : Kiln
- 31. Rahim moves 20 metres in East direction and then turns to his left and then moves 15 metres and then he turns to his right and moves 25 metres. After this he turns to his right and moves 15 metres. Now how far is he from his starting point?
 - (A) 0 metre
- (B) 40 metres
- (C) 45 metres
- (D) 50 metres

Direction for questions 32 - 34:

The numbers in each series proceed according to a certain rule. Your task is to find out the rule according to which the numbers are arranged and find out the number which can fill in the LAST blank with the "?" mark from among the suggested answers.

Questions:

- 32. 301 291 282 274 (A) 265 (B) 268 (C) 270 (D) 267 4 81 16 6561 64 (B) 243 (C) 256 (D) None of these 34. 4 10 18 34 66 (A) 100 (B) 130 (C) 88 (D) 99 GO ON TO THE NEXT PAGE OU 18

- 35. If the first day of the year (other than the leap year) was Friday, then which will be the last day of that year?
 - (A) Monday
- (B) Friday
- (C) Saturday
- (D) Sunday

Direction for questions 36 - 45:

In each of the following questions there are figures. Three of them are similar in some respect while one is different. Select the figure which is DIFFERENT.

Questions:

PROBLEM FIGURES

PROBLEM FIGURES

46. If 'man' is called 'girl', 'girl' is called 'boy', 'boy' is called 'lady', 'lady' is called 'butler' and 'butler' is called 'player', who will serve in restaurant?

(A) Player

(B) Butler

(C) Boy

(D) Lady

Direction for questions 47 - 49:

All the 30 students of a class took a test on Mathematics and a test on English. The todaying table shows the result:

Subject	Passed	Failed
Mathematics	25	5
English	22	8

Two students failed both in Mathematics and English.

Ques	tions							
47.	How	many student	s failed in only	one subject	?			
	(A)	28	(B) 25	(C)	22	(D)	9	
48.	How	many student	s passed in at le	east one su	bject?			
	(A)	28	(B) 25	(C)	22	(D)	9	
49.	How	many student	s passed in bot	h the subjec	ets?			
	(A)	28	(B) 25	(C)	22	(D)	19	
50.	If in		uage, TIGER is	coded as F	RIGET, how	is 'CROV	VN' coded in	that
		NROWC	(B) NOWRC	(C)	RRWCO	(D)	NOWCR	
		I VET						
		9						
			1./6					

PHYSICS Question: 50

51.	3 mo	ol of a monator e of v for the r	nic ga	s ($v = 5/3$) is rewill be	mixed wit	h 1 mol of		gas (v =	
		9/11	(B)		(C)	12/7		15/7	A .00
52.	Time abov	e period of a si ve the surface	imple of the	pendulum on earth is T ₂ , h	the surfa nere R is	ce of the	earth is T ₁ a	and at a	height R tio T ₁ /T ₂
CIFIC	(A)	in a bish oik	(B)	√2 3.0000000	(C)	4	(D)	2 Siluation A Same	
53.	freq	en a force F ₁ uency is 8 Hz. requency beco	Now	on a particle, if both the for	frequence ces act s	y is 6 Hz simultane	and when ously in sam	a force le direct	F ₂ acts, ion, then
		20 Hz		14 Hz	(C)	10 Hz	(D)	2 Hz	
54.		en a fundamer elength of the				pipe of ler	igth I, open	at both	ends, the
	(A)		(B)		- (C)	1/2	(D)	41	NIA - 880
55.	and	ource of sound an observer is ween the sour	statio	onary betwee	n the sou	noving wit rce and th	h a velocity ne wall. Whe	n the ob	serveris
	(A)	hear beats				hear no	peats		
	(C) (D)	not get any s get the soun		ame frequenc	cy a vi		of to egnished the control of the co		
56.	Ifa	charge q is pla	aced a	t the centre o	of the line	joining tw	o equal cha	rges Q	such that
	the	system is in e	quilib	rium, then the	value o	q is		egang a	
		Q/2		-Q/2		-Q/4	(D) (O) (B)	Lo	(A)
57.	If a	linear isotrop	ic die	lectric is plac	ced in ar	electric	field of stre	ngth E,	then the
	1	arisation P is			18 V	invorcel	proportion	ai to E	
	(A) (C)			al to √E			proportional		
					h.				DF
GC	ON	TO THE NEX	TPAC	GE	Ol	J 18 () 0		9

58.	Three resistances P, Q, R each carms of a Wheatstone's bridge of parallel to S the bridge gets balar	circuit. When a resistance	of 6 Ω is connected in
	(A) 2 Ω (B) 3 Ω	(C) 6 Ω	(D) 1 Ω
59.	A heater coil is cut into two equal The heat generated will now be	parts and only one part is	now used in the heater.
	(A) one fourth (B) halved	(C) doubled	(D) four times
60.	An electric bulb marked as 50 W present power of the bulb is	/-200 V is connected acro	s a 10 pointe period of a s
	(A) 37.5 W (B) 25 W	(C) 12.5 W	(D) 10 W
61.	A circular coil carrying a certain the coil is now rewound so as through it. The new magnetic fiel	to have 3 turns and the	etic field B ₀ at its centre. same current is passed
	(A) $B_0/9$ (B) $9B_0$	(C) B ₀ /3	(D) 3B ₀
62.	A straight wire of length 2 m ca uniform magnetic field of 0.15 T i applied force on the wire will be	making an angle of 45 ⁰ wit	this wire is placed in a the the magnetic field, the
	(A) 1.5 N (B) 3√2 N	stational N E (C) (C)	(D) 3/√2 N
63.	Nickel shows ferromagnetic pro increased beyond Curie tempera		e. If the temperature is
	(A) anti-ferromagnetism (C) diamagnetism	(B) paramagneti (D) no magnetic	
64.	The rate of change of current of self-inductance of the coil in hen		an emf of 5 V. Then the
	(A) 0.5 (B) 0.25	(C) 1.0	(D) 1.25
65.	The phase difference between the following CANNOT be the constitution		emf is $\pi/2$. Which of the
caria.	(A) L, C (B) L alone	(C) C alone	(D) R, L
66.		15 V supply draws a cuenergy lost as heat in one	rrent of 5 A and yields
	(A) 0.54 (B) 5.4	(C) 54	(D) 540
10	OU 18 8 C	GO ON	TO THE NEXT PAGE

67.	electromagnetic wave propagating in vac	cuun	is equal to	
	(A) the speed of light in vacuum(C) the ratio of magnetic permeability to	(B) the	reciprocal of speed of light in va- electric susceptibility of vacuum	cuum
	(D) unity nert are all energy is to suit		If the error in measurement of	-37
68.	The ratio of the speed of an object to the in the case of a convex mirror is	spe		ion m
	(A) $-1/m^2$ (B) m^2	(C)	-m. gnols prillev (D); 1/mhsq A	.8%
69.	An air bubble is contained inside water. It	t bel	aves as a new Compile to the content	
	(A) concave lens m rot (O)		convex lens	
THE STATE OF THE S	(C) neither concave nor convex	(D)	None of these	
70.	An eye specialist prescribes spectacles	havi	ng a combination of a convey le	.61
	focal length 40 cm in contact with a conca this lens combination will be	ve le	ens of focal length 25 cm. The pov	ns of ver of
N chi	(A) +1.5 D (B) +1.5 D (B)	(C)	+6.67 D and (D) -6.67 D	.08
71.	Two monochromatic light waves of amplit	udes	A and 2A interfering at a point ha	ave a
enil	phase difference of 60 ⁰ . The intensity at to (A) 3 A ² (B) 5 A ²	hat p	7 A ² are grible (D) 9 A ²	18
2.	Photoelectric emission occurs only when minimum	the	incident light has more than a ce	rtain
	(A) power (B) wavelength	(C)	intensity (D) frequency	
3.	If the kinetic energy of a free electron doubthe factor muono as more alos (8)	oles,	its de Broglie wavelength change	s by
	(A) 1/√2 author a(B) √2 area (C)	(C)		
4.	The decimal equivalent of the binary number	per (1 1 0 1 0, 1 0 1) _e is	
			26.625 (D) 26.265	
5. w o	Application of a forward bias to a p-n junct (A) widens the depletion zone	tion	A perticle is projected from the	
	(B) increases the potential difference acr	oss	the depletion zone	
	(C) increases the number of donors on th(D) increases the electric field in the depl	ne n-	side	
90.4	ON TO THE NEXT PAGE	OLL	10 0 0 0	

7

76.	of mass are	or is into at muudi		l units, then the dimension	าร
	(A) FV-1T-1	(B) FVT-1	(C) FV-1T	(D) FVT-2	
77.		neasurement of radi volume of the sphere		%, then the error in the	ne
	(A) 2%	(B) 4% 0 below 9	(C) 6%	(D) 8%	
78.	from O at a time		$27t-t^3$, where tis in sec	x(in meters) of the partic conds. The distance of the	
	(A) 81 m	(B) 91 m o		anel (D) 111 m (A)	
79.			t and dot product of	two vectors is 1/√3. The	
to sey	(A) 30 ⁰ 13 29 11	gr. (B) 45 ⁰ ene ava	(C) 60 ⁰	(D) 120 ⁰	
80.	same velocity. T	he impulse experienc	wall with velocity V a ed by the body is	and bounces back with the	
		(B) 1.5 MV		(D) Zero	
81.		ding on a plane, the		ss if the plane is incline	d,
metu.		ffective mass decreas o-efficient of friction d		ormal force decreases	-
	(D) for an angle	e of inclination θ, fricti	on is inversely propo	rtional to tanθ	
82.	If a body travels (A) is zero (C) acts along i	along a circular path		ts circumference	
83.				mass is related with time	2 1
	as $x = t^2/4$ meter (A) 3 J	. Work done by the fo	orce in 2 sec. is (C) 9 J	(D) 12 J	
84.	the horizontal. Its	ected from the ground s kinetic energy at the		E at an angle of 60 ⁰ wi	th
	(A) E/√2	(B) E/2	(C) E/4	(D) E/8	
		epietion zone	glactric field in the de		

85.	Pow m.s	er required to	raise a ma	ss of 120		ertically upwards	at a	a velocity of 4.5
	(A)		(B) 5.3 kW		(C)		, ,	11.2 kW
86.	mass (A) (C)	ody falling vert ses. The centre lighter piece	of mass of e vertical ve	wards unde the two part elocity at th	ts tak (B)	avity breaks in t ken together shifts heavier piece he of breaking	wo ps hor	parts of unequal izontally towards
87.	(A)	a pressure ac	ts on the bo	dy	(B)	constant if an external force no external torqu	acts	s on the body
88.	Mom (A)		(B) 1/4 mr ²		(C)	nd radius r about mr ²	(D)	2mr ²
89. 0 els	acce	leration due to	on of the e gravity of a	arth cease body at the	s all e equ (B)	on a sudden, th	nen i	the value of the
90.	of ra			locities v ₁ a	and v	are revolving around v_2 respectively. In $v_1 > v_2$	this (D)	$v_1/r_1 = v_2/r_2$
91.	mate		s stretched will be	by a stress	S wi	ction A has Your	ng's nit. Th	modulus Y of its ne stored energy
92.	Whic	ch of the follow	ing works o	n Pascal's	law?		ets.	
	(A)	Sprayer	(B) Hydrai	ulic lift	(C)	Barometer	(D)	Venturimeter
93.	Surfa (A)		a water drop (B) <i>r</i> ²	of radius	rwill (C)	be directly propo		al to 1/ r

	(C) $F \alpha 1/\eta$ and $F \alpha 1/v$	(D)	$F \alpha 1/\eta$ and $F \alpha$	V	
Isupe	Apparent weight of a body	immoreod in water	at 20°C is W.	When temperatu	ire is
95.	increased to 40°C, the app	arent weight becom	es W2. In this ca	ase many (M)	
	(A) for different solids W ₂	may be greater tha	n or less than W	(U) depends (U)	
	(B) W2 is always equal to	W ₁	hit nonzontally	(D) does not s	
	(C) W₂ is always less tha(D) W₂ is always greater	n vv ₁	universi s. to multi	Angular momen	
	od ert no stos sotot ismen	ens (8)	acts on the boo	(A) a pressure	
96.	An ideal gas is expanding su of the gas is	uch that $pT^2 = constant$	nt. The coefficier	nt of volume expai	nsion
	(A) 1/T be at the (B) 2/T	for boom seem (C)	3/Traluction to a	(D) 4/TimoM	
	(D) 2mc ²	(C) mr ²	Am A (8)	(A) Jamie (A)	
97.	During boiling water at 100	OC, what will be its	specific heat?	(D) Infinite	Ž.
	(A) zero ned (B) 0.5	on the sesse (C)	otion of the etc	(D) Infinite	
00	If the temperature of a blace	noteupe on to who	T to 2T how ma	ny times will its ra	ate of
98.		nosb (C)	. 10 2 1, 110 11 110	(C) increase	
	(A) 16 (B) 8	(C)	4	(D) 2	
	volving around the earth in a	m ₂ (m ₁ >m ₂) are re	masses m, eno	Two satellites of	
99.	In a given process of an id	eal gas, $dW = 0$ an	d dQ < 0. Then	for the gas	
	(A) the temperature will o		(B) V ₁ < V ₂	$S^{V} = J^{V}$ (A)	
	(B) the volume will increa(C) the pressure will remain	ase	ssa hae I dinad		10
811 10 Of 118	(D) the temperature will i	ncrease			
	(D) the temperature will t	norease	ed Illw en	density in the wi	
100.	Even Carnot engine CANI	NOT give 100% effi	ciency, because	we CANNOT	
	(A) eliminate friction	(B)	prevent radiation	on	
	(C) reach absolute zero	temperature (D)	find ideal source	ces en la norter reventa (A)	92,
					98 e
	actly proportional to			FACINITION AND AND AND	
				(1) FE	

OU 18 C

14

GO ON TO THE NEXT PAGE

94. A spherical ball is falling with a uniform velocity v through a viscous medium of coefficient of viscosity $\eta.$ If the viscous force acting on the spherical ball is F then (A) F α η and F α 1/v WH 8 (C) (B) F α η and F α v WH 8 (A)

CHEMISTRY Question: 50

al, the number of Chions

Volley edit to the follow

Net has face centered units after lon is

101.	Inco	mplete combu		of gasoline produ		ecinios primorios reinios (EF)		Ma (A)
	(A)	CO ₂	(B)	CO consultation of the con	(C)	SO ₂	(D)	NO ₂
102.	Caus	se of byssinos	is dis	nativolor en los seases		in the second		THE ORDER
	(A)	fly-ash	(B)	cement particles	(C)	cotton fibre	(D)	lead particles
103.	Whic	ch one is NOT	favo	ourable for S _N 1 rea	action	nortulga ylūs		
	(A)	Polar solvent		OT give precipital	(B)	Strong nucleop	hile	o tolder all
				(C) HCl				
104./	Con	sider the follow	wing	reaction:	lom '	corregio de des ou		
	Dho	Zn dust	C	H_3Cl $y. AICl_3$ Y $(i) Alkalin$ $(ii) I$	e KMn	0, 7 2 > 8/	110	PH (A)
	riic	distillation A	anh	y. AlCl ₃ (ii) 1	1 ₃ 0 [⊕]	1H > 1H >	sM >	
	The	product Z is		no abnegab r		n energy of a rea		
		Benzaldehyo				Benzene	siedi	net (A)
	300000	Benzoic acid				Toluene		
105.			arbox	cylic acids directly	into	alcohols	(D)	All of those
		LiAIH ₄		Na + C ₂ H ₅ OH				All Of these
106.				aldehyde with anil	ine, t	he product forme	ed is	
	(A)	Schiff's base	dold:			Carbylamine None of these		
107.	Con	nplete hydroly D-fructose	SIS O	f cellulose yields	(C)	D-glucose	(D)	L-glucose
	(A)	D-Huciose	(0)	are and the state				
108.		nomers of Bur	Rute	are adiene	(B)	Butadiene		
	(A)	Isoprene and			(D)	Vinyl chloride	and S	Sulphur
109.		emical name o				of the system inc		
109.		Methyl Benz			(B)	Ethyl Salicylat	е	
	(C)	Acetylsalicy	lic ac	cess is which bis	(D)) Hydroxybenzo	ic ac	id
	1			bibloA (8)		espand the		
				ong GU (G)		Besspiral a proc	to Hi	

110.	Which of the following crystal systems doe (A) Orthorhombic (B) Tetragonal (
111.	contact with a Na+ ion is	
	(A) 4 (B) 6 (C) 8 (D) 10
112.	Which of the following concentration units (A) Molarity (B) Normality (does NOT depend on têmperature? C) Mole fraction (D) Formality
113.	At a given temperature, which one of the fo vapour pressure?	ollowing solutions would have the highest
	(A) 0.1 m glucose solution (C) 0.1 m CaCl ₂ solution (
114.	Which one of the following does NOT give (A) HI (B) HBr (precipitate on reaction with lead acetate? C) HCI (D) HF
115.	K+ in infinite dilute aqueous solution is	onductances of the ions H+, Li+, Na+ and B) K+< Na+< Li+< H+
	(C) Li+< Na+< K+< H+	D) Li+< K+< H+< Na+
116.	The activation energy of a reaction depend (A) temperature (B) initial concentration of the reactant (C) effective collisions among the reactar (D) nature of the reactants	bios olganes (O)
117.		ore opening the cork because it B) is a corrosive liquid D) exerts high vapour pressure
118.	Which of the following substances form a c (A) Glucose (B) Urea (colloidal solution in water? C) BaSO ₄ (D) Starch
119.	Adsorption of a gas on a solid surface is at (A) change in free energy of the system in (B) enthalpy of the system increases (C) entropy of the system increases (D) enthalpy of the system decreases	공기 이번 이번 전에서 10 점에 하게 적으로 하는데 하는데 하는데 보고 있다고 보고 있다.
120.		which O ₂ is used instead of air is B) Acidic Bessemer's process D) LD process
16	OU 18 C	GO ON TO THE NEXT PAGE

12	 The ore that does NOT contain alumin (A) Fluorspar (B) Feldspar 	nium is (C) Cryolite (D) Mica
124	(A) Nitrogen trioxide (C) Dinitrogen tetroxide	s is ionic ? (B) Nitrogen pentoxide (D) Nitric oxide
123	(D) Diack F	e photosensitive substance in Xerox machines (C) Se (D) Te
124	 Fe²⁺ can be differentiated from Fe³⁺ w (A) BaCl₂ (B) AgNO₃ 	ith the help of
125	 The salt of the d-block element that is bleaching powder is 	used as a catalyst in the dissociation of the
	(A) Ni (B) CO (C)	(C) V (D) Cr (M) (A)
126	1 7 1 Gragorum remocyanide	ion is (B) Phenolphthalein (C) EDTA
127.	When 800 g of a 40% solution by weight The percentage composition of the rem (A) 20.0% (B) 25.0%	was cooled, 100 g of solute was precipitated. aining solution is (C) 31.4% (D) 50.0%
128.		52 g is added to 100 ml of 0.1N H ₂ SO ₄ . The
129,	An anion X ³ - has 36 electrons and 45 element X?	(C) Acidic (D) Amphoteric neutrons. What is the mass number of the
	(A) 81 (B) 84	(C) 78 (D) 88
130.	If two particles are associated with sa wavelength (λ) of these particles is (A) directly proportional to the velocity (B) inversely proportional to the velocity (C) independent of mass and velocity	ame kinetic energy, then the de-Broglie's
131.	The increasing order of the first ionisation (A) $F < S < P < B$ (C) $B < P < S < F$	enthalpies of the elements B, P, S and F is (B) P < S < B < F (D) B < S < P < F
		F1 (B) F1 (A)

132.	In th	e relation, Ele	ectronegativ	$vity = \frac{0.359}{r^2}$	Zeft	+ 0.744, r is		nóul F - (A)
	(A) (C)	Metallic radio		es is ionic ? (B) · N (D) N		lonic radius Covalent radius	e fo sen t oger	122, Which of th (A) Nitrog Minist (C) .
133.	(A)	NH ₃ (a)	(B) PH ₃	8 (0)	(C)	p ² hybrid orbitals CH ₃ +	(D)	SbH ₃
134. 989	The (A)	molecule with CH ₂ Cl ₂	(B) CH3C	t dipole mor	(C)	is CHCl ₃		CCI ₄
135.		dimension of MLT	coefficient	of viscosity				mLT ⁻² (A)
136.	mas (A)	s of SO ₂ pres	ent in the fl	ask will be	(B)	d by SO ₂ under s equal to that of one-third of O ₂	rigia	
137.	are A	reversible prod $\Delta S_1 \& \Delta S_2 \text{ res}$ $\Delta S_1 + \Delta S_2 > 0$ $\Delta S_1 + \Delta S_2 = 0$	pectively, th	nen	(B)	opy of the system $\Delta S_1 + \Delta S_2 < 0$ $\Delta S_1 + \Delta S_2 \ge 0$		l its surroundings
138.	The	volume of a ga	as is reduce	ed to half fro	m its	original volume.	The	specific heat wil
	(A)		a tariW a		(B)	remain constant increase four tin	(B)	Res. An anion
139. a'eilgi	conc and	entration of B C were found	which was to be equa	1.5 times th	at of the		idiec	I using an initia oncentration of A
	(A)	0.32	(B) 2.73		(C)	4.0	(D)	8.17
	wher	xture containing 50% of the real pressure of	mixture has	reacted. If	ration P is	1 : 3 is allowed the pressure at	to a equi	attain equilibrium librium, then the
) 国际	(A)	P/2	(B) P/3	H (D)	(C)	P/5	(D)	P/9
141.		ation number		phosphoric	acid	is		ng katagang
	(A)	+1	(B) +3		(C)	+4	(D)	+5

142.	The amount of H ₂ O ₂ required for decol (A) 1.5 mol (B) 2.0 mol	ourising 1 mol of KMnC) ₄ in an acid solution i (D) 3.0 mol
143.			
	(A) Haber's process (C) Wood process	(B) Silicon process (D) Bosch process	
144.	Which of the followings does NOT get (A) Cu ²⁺ (B) Fe ³⁺	reduced by H ₂ in its aq	The second second
45.	The compound which is used to extinguis	ish fire caused by comb	oustion of alkali metals
	(A) CCI ₄ (B) Sand	(C) Water	(D) Kerosene
46.	The compound whose aqueous solutio (A) BaSO ₄ (B) BaO	n is called 'baryta wate (C) BaCO ₃	r' is (A) (D) Ba(OH) ₂
47.	The optically active alkane of lowest m (A) 3-methylhexane (C) 2-methylhexane	olecular mass which is (B) 2, 3-dimethylper (D) 2, 5-dimethylper	also chiral is
48.	(A) C-H < C-O < C-C < C=C	C follow the sequence (B) C-H < C=C < C- (D) C-O < C-H < C-H	
49.	Nitrobenzene is prepared from benzene the nitrating mixture, nitric acid acts as	e by using conc. HNO.	and conc. H ₂ SO ₄ . In
50.	In strong acidic and alkaline medium, respectively	p-aminophenol exists i	n (X) and (Y) forms
	$ \begin{array}{c} O^{\theta} \\ OH^{\theta} \\ NH_{2} \end{array} $ $ \begin{array}{c} OH^{\theta} \\ NH_{2} \end{array} $	b notion	155 The function of (A) an even to (C) a periodic
	Thus, in acidic and alkaline medium, ele (A) a, c (B) a, d	ectrophilic substitution c	occurs at (D) b, d All All

MATHEMATICS Question: 50

151. The lines
$$\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$$
 and $\frac{x-1}{-2} = \frac{y-2}{-4} = \frac{3-z}{6}$ are

- (A) coincident (B) skew (C) intersecting

152. The intercept made by the plane $\vec{r} \cdot \vec{n} = q$ on the x-axis is

- (A) $\frac{q}{\hat{i}.\hat{n}}$ (B) $\frac{\hat{i}.\hat{n}}{q}$ (C) $-\frac{\hat{i}.\hat{n}}{q}$ (D) $\frac{q}{|\vec{n}|}$

153. Value of λ such that the line $\frac{x-1}{2} = \frac{y-1}{3} = \frac{z-1}{\lambda}$ is perpendicular to normal to the plane $\vec{r} \cdot (2\hat{i} + 3\hat{j} + 4\hat{k}) = 0$ is world 0.0 but 0.0 14-0 to entitle bross

- (A) $-\frac{13}{4}$ (B) $-\frac{17}{4}$ (C) 4 (D) $-\frac{11}{4}$

In the expansion of $(1 + x)^n$, the binomial co-efficients of three consecutive terms are respectively 220, 495 and 792. The value of n is

- (A) 10 (X) of eta (B) 11 document (C) 12 leads best (D) 13 de of

155. The function of $f(x) = \log \left(x + \sqrt{x^2 + 1}\right)$ is

(A) an even function

(B) an old function

(C) a periodic function

(D) neither an even nor an odd function

If $A = \{x : x = 4n + 1, 2 \le n \le 5\}$, then the number of subsets of A is

- (A) 16
- (B) 15

(C) 4

(D) None of these

- If $f: \mathbb{R} \to \mathbb{R}$ satisfies f(x+y) = f(x) + f(y) for all $x, y, \in \mathbb{R}$ and f(1) = 7, then $\sum_{i=1}^{n} f(r_i)$ is

 - (A) $\frac{7n}{2}$ (B) $\frac{7(n+1)}{2}$ (C) 7n(n+1) (D) $\frac{7n(n+1)}{2}$
- 158. If $|Z^2-1|=|Z|^2+1$ then Z lies on
 - (A) the real axis

(B) the imaginary axis

(A) $-4 < x \le 0$ (B) 0 < x < 1

 $n \le \left(\frac{n+1}{2}\right)^n$ holds is

(C) a circle

- doing (D) an ellipse vision issuems of T col
- The value of $\frac{4(\cos 75^{\circ} + i \sin 75^{\circ})}{0.4(\cos 30^{\circ} + i \sin 30^{\circ})}$ is

- (A) $\frac{\sqrt{2}}{10}(1+i)$ (B) $\frac{\sqrt{2}}{10}(1-i)$ (C) $\frac{10}{\sqrt{2}}(1+i)$ (D) $\frac{10}{\sqrt{2}}(1+i)$
- 150. The value of $\sum_{k=1}^{10} \left(\sin \frac{2k\pi}{11} + i \cos \frac{2k\pi}{11} \right)$ is 2 rebro isolited and 3.

- If the roots of the quadratic equation $x^2 + px + q = 0$ are $\tan 30^\circ$ and $\tan 15^\circ$ respectively, then the value of 2 + q p is

- (B) 1 (C) 3 (D) 2 \$\frac{2}{2}\left{pol}\((0)\) | 1-\frac{2}{2}\left{pol}\((0)\) (B) (B)
- 162. If (1-p) is a root of quadratic equation $x^2 + px + (1-p) = 0$, then the roots are

(D) log. (1)

- (A) 0, 1 (B) -1, 1 (C) 0, -1 (D) -1, 2

164.	The largest interval for which $x^{12} - x^9 +$	$-x^4 - x + 1 > 0$ is	158
	(A) $-4 < x \le 0$ (B) $-0 < x < 1$ (a) $-4 < x \le 0$ (B) $-0 < x < 1$	(C) $-100 < x < 100$ (D) $0 < x < \infty$	
165.	The smallest positive integer n for which	(C) a circle	
	$n! < \left(\frac{n+1}{2}\right)^n$ holds is	$4(\cos 75^{\circ} + 1\sin 75^{\circ})$	
153 \	(A) 1 (B) 2	TO(C) 3 + 00 200) 4.0 (D) 4	159
166.	The number of integral solutions of x ² -	+ $y^2 = x^2 y^2 i \frac{1}{100}$ (A)	
	(A) 0 (B) 1	(C) infinite (D) None of the	se
167.	How many ways are there to arrange th in alphabetical order?	e letters in the word GARDEN with the vo	wels
	(A) 120 (B) 240 (C)	(C) 360 (D) 480 (A)	
		upto ∞ is equal to p and to atom and it	161
	(A) 2 log _e 2 (B) log _e 2-1		
	$(x^2 + px + (1 - p) = 0$, then the roots are $(0) \cdot 0$, $(0) \cdot 1$.	If $(1-p)$ is a root of quadratic equation (A) 0, 1 (B) -1 , 1	162.
22	OU 18 81 CO	GO ON TO THE NEXT PAG	GE)

163. Solution of the inequation $4^{-x+0.5} - 7.2^{-x} < 4$, $x \in \mathbb{R}$ is

(A) $(-2, \infty)$ (B) $(2, \infty)$ (C) $\left(2, \frac{7}{2}\right)$ (D) None of these

Let a₁, a₂, a₃..... cannot be terms of an A.P. (a ± ,0) era exquire na to ipot ent ... 271

If
$$\frac{a_1 + a_2 + \dots + a_p}{a_1 + a_2 + \dots + a_q} = \frac{p^2}{q^2}$$
, $p \neq q$ then $\frac{a_6}{a_{21}}$ equals

- (B) $\frac{2}{7}$
- (C) $\frac{11}{41}$
- State which of the following is total number of relations from set A = [

 $\frac{\chi^2}{16} + \frac{y^2}{26} = 1$ (B)

- If the slope of the line joining the points A(x, 2) and B(6, -8) is $-\frac{5}{4}$, then x = ?

- State w g c(Q) the following E- (Q) at to f (C)
- The equation of the perpendicular bisector of the line joining the points A (2, 3) and B (6, -9) is
 - (A) x + 2y 6 = 0

(B) x - 2y - 6 = 0

- (C) x + 2y + 6 = 0 inclination and to coint (D) x 2y + 6 = 0 or $-x^2 = 10$.
- 172. If A (-1, 3) and B (α, β) be the extremities of the diameter of the circle $x^2 + y^2 - 6x + 5y - 7 = 0$, then
 - (A) $\alpha = -7$, $\beta = 8$

(B) $\alpha = 7$, $\beta = -8$ 941 and nevial Subject to the constraints

(C) $\alpha = -6$, $\beta = 7$

- (D) $\alpha = 6$, $\beta = -7$
- The optimum solution of the LPP is 173. If the parabola $y^2 = 4ax$ passes through the point P(3, 2), then the length of its latus rectum is $(8) \times = 0, y = \frac{1}{2}$ $= V \cdot 0 = x \cdot (A)$
- $(B) \sqrt{\frac{2}{3}} = \times (C)$ (C) $\frac{4}{3}$
- $0 = (D) \frac{1}{4} = x^{-1}(0)$
- 174. One focus of hyperbola is at (0, 4) and the length of its transverse axis is 6. The equation of the hyperbola is to euley muminim bine to euley mumixem (A)
 - (A) $\frac{x^2}{7} \frac{y^2}{9} = 1$ (B) $\frac{y^2}{9} \frac{x^2}{7} = 1$ (C) $\frac{y^2}{4} \frac{x^2}{9} = 1$ (D) None of the
- (D) None of these

GO ON TO THE NEXT PAGE

OU 18 87 CO

175.		oci of an ellips ellipse is	se are	$(0, \pm 6)$ and t	he lengt	h of its min	or axis is	16. The equation
	(A) -	$\frac{x^2}{16} + \frac{y^2}{36} = 1$	(B)	$\frac{x^2}{36} + \frac{y^2}{64} = 1$	(C)	$\frac{x^2}{100} + \frac{y^2}{64}$	=1 (D)	$\frac{x^2}{64} + \frac{y^2}{100} = 1$

176. State which of the following is total number of relations from set A = {1, 2, 3, 4} to set B = (d, e) is-(C) 28 (B) 26 (A) 24

stone of the line joining the points A(x, 2) and B(6, -8) is Let $A = \{a, b, c, d\}$ and $f: A \rightarrow A$ be defined by, f(a) = d, f(b) = a, f(c) = b and f(d) = c. State which of the following is equal to $f^1(b)$?

- (A) {a}
- (B) (b)
- (C) {o}
- (D) {d}

178. If the binary operation on Z is defined by $a*b = a^2-b^2+ab+4$, then the value of (2*3)*4 is (D) -55 (C) 55 (B) 33 (A) 233

179. If $\sin^{-1} x - \cos^{-1} x = \frac{\pi}{6}$, state which of the following is the value of x?

- (A) 1 (B) $\frac{1}{2}$ (C) $\frac{1}{\sqrt{2}}$ (D) $\frac{\sqrt{3}}{2}$

180. Given the LPP, Min. Z = 3x - y, Subject to the constraints $2x + 3y \ge 1$ \(\tau = 4 \tau = 0 \) and $x, y \ge 0$ The optimum solution of the LPP is

- (A) $x = 0, y = \frac{1}{2}$
- If the parabola $y' = 4\pi x$ passes through the point P(3, 2), then the length of its latus (B) $x = 0, y = \frac{1}{3}$
 - (C) $x = \frac{1}{3}, y = 0$
- (D) $x = \frac{1}{2}, y = 0$

181. In a linear programming problem, the equation 2x + 3y =12 in two unknowns has number of solutions equal to

- (A) maximum value of and minimum value of
- (B) a particular value of and
- (C) Infinite

(D) None of these

Let A be a square matrix of order 3x3, then KA is equa	KA is equal to	, then	matrix of order	a square	be a	Let A	
--	----------------	--------	-----------------	----------	------	-------	--

- (A) K|A| (B) $K^2|A|$ (C) $K^3|A|$ (D) 3K|A|

The system of equations

190. The slope of the tangent to the ellipse
$$\frac{x^2}{2} + \frac{x}{2} = 1$$
 at the $y + z = \alpha + 1$.

$$x + \alpha y + z = \alpha - 1$$

$$x + y + \alpha z = \alpha - 1$$

has no solution, if α is $\alpha = \alpha - 1$ (a) $\alpha = \alpha - 1$ (b) $\alpha = \alpha - 1$ (c) $\alpha = \alpha - 1$

- (B) not -2 (C) either -2 or 1 (D) -2

Matrix A =
$$\begin{bmatrix} 1 & 0 & -k \\ 2 & 1 & 3 \\ k & 0 & 1 \end{bmatrix}$$
 is invertible for

- (A) k=1 (B) k=-1 (C) all real k (D) None of these

$$\text{matrix A} = \begin{bmatrix} 3 & 2 & 4 \\ 1 & 2 & -1 \\ 0 & 1 & 1 \end{bmatrix} \text{ and } A^{-1} = \frac{1}{k} \text{ adj A, then k is}$$

- (B) -7
- (C) 1/7
- The mean and the variance of a binomial distribution are 4 and 2 respectively. Then the probability of 2 successes is
- (B) $\frac{219}{256}$

- FP(A \cup B) = 0.8 and P(A \cap B) = 0.3, then P(A') + P(B') equals to
 - (A) 0.9
- (B) 0.7
- (C) 0.5
- (D) 0.3
- The value of f at x = 0 so that function $f(x) = \frac{2^x 2^{-x}}{x}$, $x \ne 0$, is continuous at x = 0,
 - (A) 0
- (B) log2
- (C) log4 (D) e⁴

190.	The slope of the ta	angent to the ellipse	$\frac{x^2}{a^2} + \frac{y}{b}$	$\frac{2}{2}$ =1 at the point	(a $\cos \theta$, b $\sin \theta$) is
		(B) $\frac{b}{a} \cot \theta$			
191.	A function $f(x)$ is dedecreasing in a \leq	efined in a $< x < b$ and $x \le b$ when	a ≤ x ₁	$\leq X_2 < b$; then f(x	x) is strictly monoton
	(A) $f(x_2) > f(x_1) w$ (C) $f(x_2) > f(x_1) w$	hen $x_2 > x_1$ hen $x_2 < x_1$	(B) (D)	$f(x_2) \le f(x_1)$ when $f(x_2) \le f(x_1)$ when	$1 \times_2 > \times_1$ $1 \times_2 < \times_1$
192.	If $0 \le x \le 2\pi$, the fu	unction $f(x) = \sin x$ is m	ninimu	m at	
	$(A) x = \frac{3\pi}{2}$	(B) $x = \pi$	(C)	$\frac{3\pi}{4}$	(D) $x = 2\pi$
193.	The value of is $\int ($	cos ec 2 x cot 2x) dx	is		
	(A) $-\frac{\cot 2x}{2} + c$	M (0)	(B)	2 cot 2x + c	Y (A) -1
	and 2 respectively			cos ec 2x	
	(C) -2 cosec 2x		(D)	$-\frac{\cos ec \ 2x}{2} + c$	
194.	If $\int_{0}^{\pi} xf(\sin x) dx = 1$	$\int_{0}^{\frac{\pi}{2}} f(\sin x) dx , \text{ then } A$	\ is eq	ual to	
		(B) π		π	(D) 2π
195.	The order and deg	ree of the differential	equation	on all sale as the	
	$\left(1+3\frac{dy}{dx}\right)^{\frac{2}{3}}=4\frac{d^3}{dx}$	<u>y</u> 3 are (0)			Associated Project 0 (A)
*	(A) $1, \frac{2}{3}$	(B) 3, 1	(C)	3, 3	(D) 1, 2
26		OU 18 C		GO ON TO	THE NEXT PAGE

189. The rate of change of the function y = f(x) w.r.t. x at the point x is

(A) $\frac{1}{2}f'(x)$ (B) 2f'(x) (C) $\frac{f'(x)}{f(x)}$ (D) None of these

The solution of the differential equation $y dx + (x + x^2y) dy = 0 is$

$$(A) \quad -\frac{1}{xy} = c$$

(A)
$$-\frac{1}{xy} = c$$
 (B) $-\frac{1}{xy} + \log y = c$

(C)
$$\frac{1}{xy} + \log y = 0$$

(D)
$$\log y = cx$$

137. If $\int e^{ax} \sin bx \, dx = \frac{e^{ax}}{\sqrt{a^2 + b^2}} \sin (bx + m) + c$, then the value of m is

(A)
$$-\tan^{-1}\frac{b}{a}$$
 (B) $\tan^{-1}\frac{b}{a}$ (C) $\tan^{-\frac{a}{b}}$ (D) $-\tan^{-1}\frac{a}{b}$

- If the position vactors of the points P and Q are $2\hat{i} + \hat{k}$ and $-3\hat{i} 4\hat{j} 5\hat{k}$ respectively, then vector OP is

(A)
$$5\hat{i} + 4\hat{j} + 4\hat{k}$$
 (B) $5\hat{i} + 4\hat{j} + 6\hat{k}$ (C) $5\hat{i} = 4\hat{j} + 4\hat{k}$ (D) $-\hat{i} = 4\hat{j} - 4\hat{k}$

- If a line whose direction ratios are proportional to 0, 1, -1 then the inclination of the line with z-axis is

(A)
$$\frac{\pi}{2}$$

(B) π

(C) $\frac{3\pi}{2}$

If the line $\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$ is parallel to z-axis then

(A)
$$a = c = 0$$
 and $b \neq 0$

(B)
$$a = b = 0$$
 and $c \neq 0$

(C)
$$b'=c=0$$
 and $a\neq 0$

(D)
$$a = b = c = 0$$

BIOLOGY letteretibe to notice ent. 391 Question: 50

 $y \, dx + (x + x^*y) \cdot y = 0 \cdot ts$

GO ON TO THE NEXT PAGE

151.	(A)			remain normal		, the heart beat v increase		decrease	
	(,,)	stop		= 4 pol (Q)	(0)		pol-		
152.			ing h	normones causes	reab	sorption of Na+ a	nd e	xcretion of K+	, H+
	and H	_H		FSH then then then		TSH = xb		Aldosterone	
153.	Which	of the follow	ing a	animals having lor	gitud			E E	
		Hydra	(B)	Plasmodium	(C)	Paramoecim	(D)	Euglena nai – (A)	•
154.	The state of the s			in mint occurs by					
	(A) (Offset	(B)	Runner	(C)	Sucker	(D)	Rhizome	198
155.		-1		sm from a single,					an
144				Parthenogenesis					
156.				nich of the followir					991
130.				(B) Vasopressin				Oxytocin	
157.	Spern	natozoa are n	ouris	shed during develo	opme	ent by			
	(A) L	_eydig cell	(B)	Sertoli cell (C	Ger	minal epithelium	(D)	Mitochondria	200
158.	Genit:	0 = 5 b	O ar	viral disease and i	0.001	and b ≠ 0	0=	0 = B (A) -	
/	(A) 7	Trichomonas	vagir	nalis	(B)	Treponema palli	idum	o 'u (0)	
		Human papillo				Chlamydia trach		tis	
159.	The te	chnique calle es	d ga	mete intrafallopiar	n trar	sfer (GIFT) is red	comn	nended for the	ose
	(A) v	vho cannot re	tain t	foetus inside uteru	IS				
		vho cannot pro							
,				e suitable environ nal is too narrow, t			perm	is	
28				18 81 C/O		MA COUNTY	-	NEXT PAGE	0
THE RESERVED IN COLUMN TWO IS NOT THE RESERVED IN			DOMESTIC OF			WI TILL	1 6 1 hours	14-111701	200

5	A method of birth control is (A) IUDs (B) HJF (C)	Which type of restriction enzymes as (C) IVF-ET (B) (D) GIFT (A)	171
151.	The linked characters would always inher (A) mutated (C) separated due to crossing over	(B) delinked due to segregation(D) masked by dominance	172.
162	Down's syndrome is a typical case of (A) Nullisomy (B) Monosomy	(C) Gene mutation (D) Trisomy	
63.	Leading strand during DNA replication is (A) in short segment • (C)	formed on white the singapos (B) continuously (A) (D) ahead of replication	174,
54	Neo-Darwinism believes that new species (A) mutations with natural selection (B) continuous variations with natural selection (C) hybridisation	s develop through	175,
19	Genetic drift operates in populatio (A) small (B) large		777.
66.	Which of the following is quartan in period (A) P. ovale (B) P. vivax		78.
67,	B.C.G. is vaccine against (a) (b) Tuberculosis	(C) German measles(D) Chicken po	, xe xe
58.	In tissue culture variations appeared are (A) Somatic variation (C) Somaclonal variation	(B) Clonal variation (D) Tissue culture variation	L08
169.	A common bio control agent for the control (A) Bacillus (B) Trichoderma	ol of plant diseases is (C) Baculovirus (D) Glomus	.18
170.	The technique for breakage of DNA fra molecule, is related to	gment and inserting it into another (B) Gene typing (D) DNA fingerprinting	DNA
GO	ON TO THE NEXT PAGE	OU 18 9 C 10	29

171.	(A)	ich type of re Type-I	striction enzymes (B) Type-II	are used i (C	n recombinant D) Type-III		echnology?) All of these
172.	Wh in p	ich of the follo lants/best ge	owing bacteria has netic vector used	s found ext	tensive use in ge		engineering work
	(A)	Bacillus thu	ringiensis um tumefaciens	(B)	Xanthomonas E. coli	citri	
173.	An a	abnormal gen Gene therap	e is replaced by n		e. It is called Mutation	(D)	None of these
174,	Geo (A)	ographic limit Biome	within which a pop (B) Habitat		kists is called Niche		
175.	ΔΝ	n lt = B represe	ents				
	(A)	Natality	(B) Growth rate	e (C)	Mortality	(D)	All of these
176.			in thermostat are ic (B) oligotherm		homeothermic	(D)	biothermic
177.	The (A)	lowest catego	ory in taxonomic h (B) kingdom		species	(D)	ilsme (A)
178.			nber in which root			(U)	phylum
	(A)	Rhynia	(B) Psilotum	(C)	Lycopodium	(D)	Selaginella
179.	(A)		r from gymnosper (B) large leaves		ing tap roots	(D)	covered seeds
180.			the excretory orga (B) Myriapoda		Arachnida	(D)	Crustace 1
181.	Whic	h tissue give	mechanical streng	gth to plan	t organs?		
182.			ells (B) Collench		rarenchyma •	(D).	Stomata
	(A)	Calotropis	(B) Sesbania		Datura	(D)	Acalypha
30			OU 18 C		GO ON TO	THE	NEVT BACE

EI3L			ing is superficial of (B) Latissimus			(D) Gastrocner	mius
541.	Duri (A) (C)	ng inspiration li Stigmata Spiracle and t	n cockroach the res	(B)	passage is Air chamber Longitudinal res		
85	The	function of the	collaterial gland in	cockros	ich is to		
	(A)	store eggs	conditional gland in		store sperms		
36	(C)		noist kes part in			gg case	
		Carbohydrate Protein synthe			Lipid synthesis Oxydative photo	ophosphorylation	
97	The	longest living o	cells amongst the fo	llowing	are		
-		T-cells	(B) B-cells		Memory cells	(D) RB	
B/B_	Mito (A) (C)	chondria increa dry seed germinating s	eed eed eed eed		dormant seed ripening fruits	The maximum grace. (A) exponential (C) stationary p	
89.		at holds the ribo mRNA	osomes together in (B) rRNA	a polyri (C)		nRNA, rRNA & tF	RNA
90.	Son	ne inorganic io	ns are required for	enzyme	e activity. These	inorganic substa	ances
	(A)	enzyme	(B) co-factor	(C)	prosthetic grou	p (D) activator	
91_			ne number being 8, vosis-I ?			r of chromatids in	each
	(A)		(B) 4	(C)		(D) 16	
92	Pota	assium ion excl	nange hypothesis of	openin	g and closing of	stomata was prop	osed
	(A)	Sayre	(B) Stewart	(C)	Levitt	(D) Bose	

193	If a cell 'X' has op=6 and TP=5 and is then what will be the direction of water	surrounded by the cell with op=4 and Ti movement?	P=2
	(A) From other cell to cell 'X'	(B) From cell 'X' to other cell	
	(C) Water absorption is not affected b(D) Water will move freely.	y temperature.	1
194.	Bidirectional translocation of minerals to	akes place through	•
	(A) xylem (B) phloem	(C) parenchyma (D) cambium	
195.	The intermediate between Glycolysis ar	nd TCA cycle is	
	(A) Oxaloacetate	(B) Glucose-1-6 diphosphate	
	(C) Pyruvic acid assurve figur (8)	(D) Acetyl Co-A	
100	(D) Oxydative photophosphorylation	(C) Protein synthesis	
196.	NADIN ADIT	glucose, 22 ATP molecules are formed fr	rom
	(A) Respiratory chain	(B) Kreb's cycle	
	(C) Oxidative decarboxylation	(D) EMP	
197.	The maximum growth rate occurs in	Mijochondria indreases in fire cells of	
	(A) exponential phase	(R) lag phase	
	(C) stationary phase	(B) lag phase (D) senescent phase	
198.	Mobilisation of stored food in germinating	What holds the phosomes together in a	
	(A) Auxin (B) Cytokinin		
0000	enzyme activity. These inorganic substan		
199.	Digestive enzymes are released by pancto the hormone	reas and hile is released by liver in reason	ise
	(A) Zymogen (B) Cholecystokinin	(C) Insulin (D) Secretin	
200.	After O ₂ diffusion into pulmonary capil	llaries, it diffused into and bin	ds
		(A) 2 (B) 4	
	(A) RBC, haemoglobin(C) Interstitial fluid, CO₂	(B) RBC, CO ₂	
osed	(5) moistillar fluid, CO ₂ obits primago	(D) Interstitial fluid, RBC	192
	(C) Levitt (D) Bose	(A) Sayre (B) Stewart	

