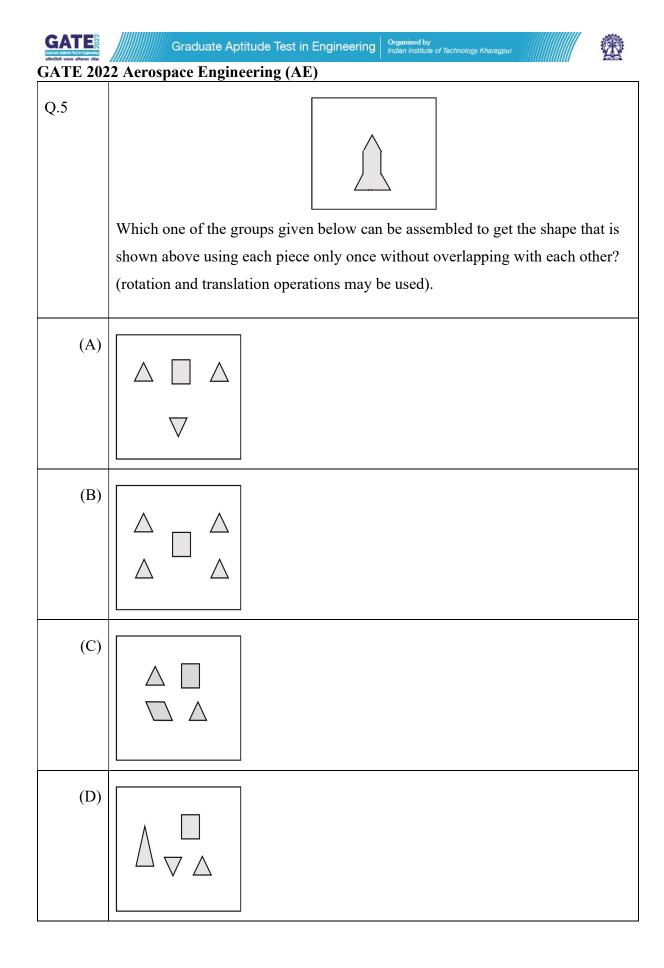

GATE 2022 Aerospace Engineering (AE) GATE 2022 General Aptitude

Q.1 – Q.5 Carry ONE mark each.

Q.1	Writing too many things on the while teaching could make the students get
(A)	bored / board
(B)	board / bored
(C)	board / board
(D)	bored / bored



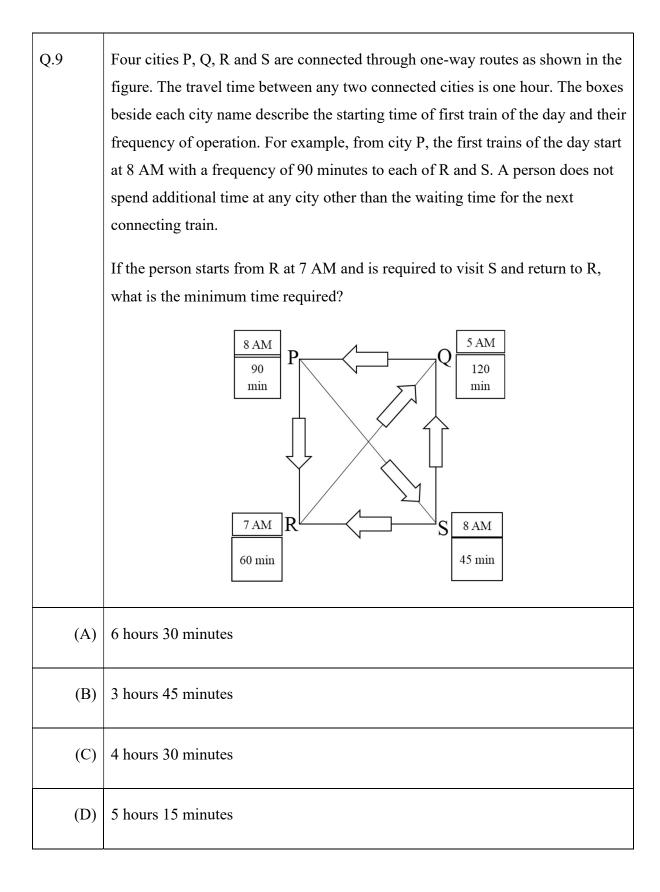
Q.3	If $f(x) = 2 \ln(\sqrt{e^x})$, what is the area bounded by $f(x)$ for the interval [0, 2] on the <i>x</i> -axis?
(A)	$\frac{1}{2}$
(B)	1
(C)	2
(D)	4

Q.4	A person was born on the fifth Monday of February in a particular year.
	Which one of the following statements is correct based on the above information?
(A)	The 2 nd February of that year is a Tuesday
(B)	There will be five Sundays in the month of February in that year
(C)	The 1 st February of that year is a Sunday
(D)	All Mondays of February in that year have even dates

Q. 6 – Q. 10 Carry TWO marks each.

Q.6	Fish belonging to species S in the deep sea have skins that are extremely black (ultra-black skin). This helps them not only to avoid predators but also sneakily attack their prey. However, having this extra layer of black pigment results in lower collagen on their skin, making their skin more fragile. Which one of the following is the CORRECT logical inference based on the information in the above passage?
(A)	Having ultra-black skin is only advantageous to species S
(B)	Species S with lower collagen in their skin are at an advantage because it helps them avoid predators
(C)	Having ultra-black skin has both advantages and disadvantages to species S
(D)	Having ultra-black skin is only disadvantageous to species S but advantageous only to their predators

Q.7	For the past <i>m</i> days, the average daily production at a company was 100 units per day. If today's production of 180 units changes the average to 110 units per day, what is the value of <i>m</i> ?
(A)	18
(B)	10
(C)	7
(D)	5



Q.8	Consider the following functions for non-zero positive integers, p and q .
	$f(p,q) = \underbrace{p \times p \times p \times \dots \dots \times p}_{q \text{ terms}} = p^q; f(p,1) = p$
	$g(p,q) = p^{pp^{p^{p^{p^{i^{i^{i^{i^{i^{i^{i^{i^{i^{j^{i^{i^{i^{i^{i^{i^{i^{i^{i^{i^{i^{i^{i^$
(A)	f(2,2) = g(2,2)
(B)	f(g(2,2),2) < f(2,g(2,2))
(C)	$g(2,1) \neq f(2,1)$
(D)	f(3,2) > g(3,2)

of Technology Kharagou

Q.10	Equal sized circular regions are shaded in a square sheet of paper of 1 cm side length. Two cases, case M and case N, are considered as shown in the figures below. In the case M, four circles are shaded in the square sheet and in the case N, nine circles are shaded in the square sheet as shown. What is the ratio of the areas of unshaded regions of case M to that of case N?
	case M case N
(A)	2:3
(B)	1:1
(C)	3:2
(D)	2:1

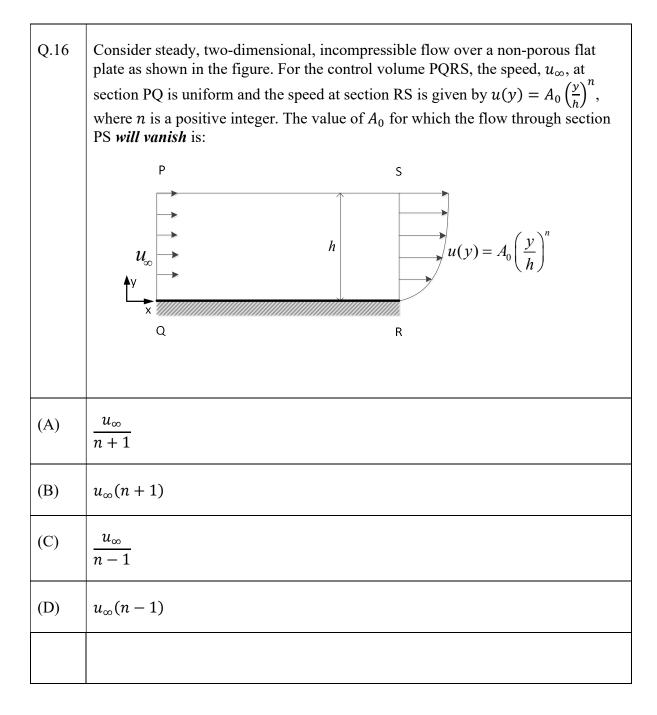
GATE 2022 Aerospace Engineering (AE) Q.11 – Q.35 Carry ONE mark Each

Q.11	The equation of the straight line representing the tangent to the curve $y = x^2$ at the point (1,1) is
(A)	y = 2x - 2
(B)	x = 2y - 1
(C)	y - 1 = 2(x - 1)
(D)	x - 1 = 2(y - 1)

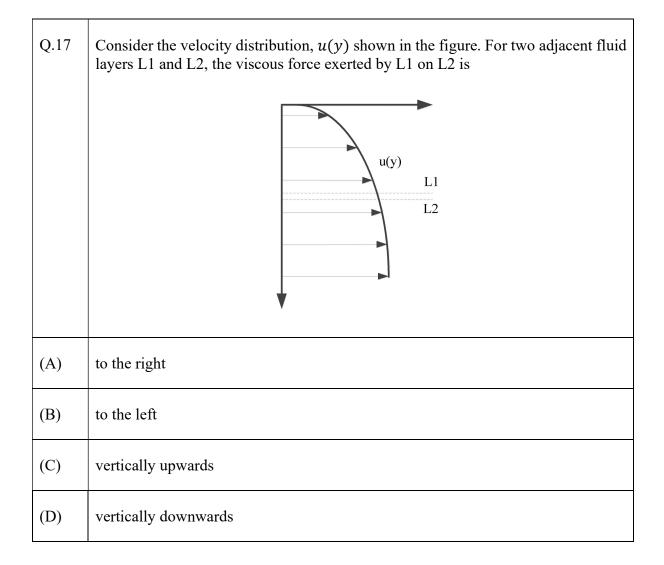
Q.12	Let \hat{i} , \hat{j} , and \hat{k} be the unit vectors in the x, y and z directions, respectively. If the vector $\hat{i} + \hat{j}$ is rotated about positive \hat{k} by 135°, one gets
(A)	$-\hat{\imath}$
(B)	$-\hat{j}$
(C)	$-\frac{1}{\sqrt{2}}\hat{j}$
(D)	$-\sqrt{2}\hat{\imath}$

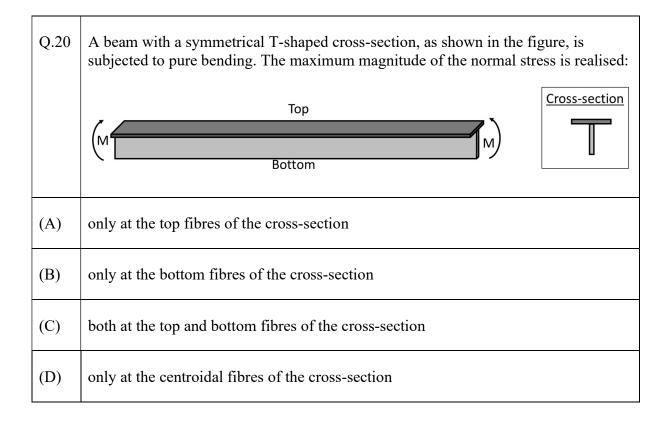
Q.13	Let <i>x</i> be a real number and $i = \sqrt{-1}$. Then the real part of $cos(ix)$ is
(A)	sinh x
(B)	$\cosh x$
(C)	cos x
(D)	sin x

Q.14	The point of maximum entropy on a Fanno-curve in a Temperature-Entropy (T-s) diagram represents the
(A)	maximum flow Mach number
(B)	minimum flow Mach number
(C)	sonic Mach number
(D)	normal shock in the flow



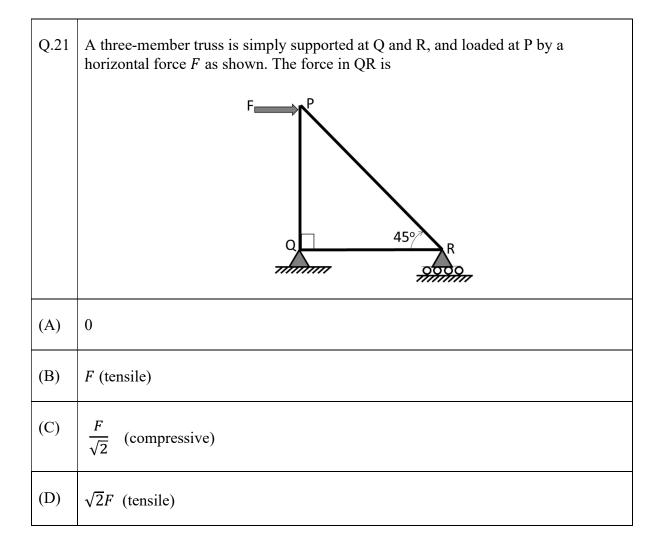
Q.15	Consider a two-dimensional potential flow over a cylinder. If the freestream speed is U_{∞} , the maximum speed on the cylinder surface is
(A)	$\frac{U_{\infty}}{2}$
(B)	$\frac{3U_{\infty}}{2}$
(C)	$2U_{\infty}$
(D)	$\frac{4U_{\infty}}{3}$

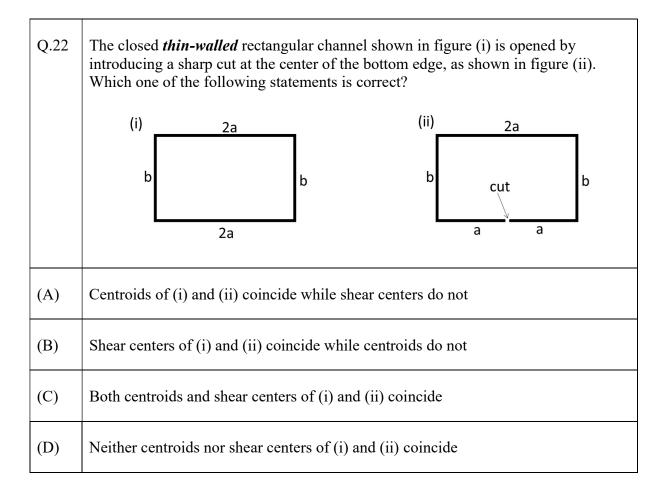



GATE	2022 Aerospace Engineering (AE)

Q.18	The service ceiling of an airplane is the altitude
(A)	at which maximum rate of climb is 100 m/min
(B)	beyond which theoretically the airplane cannot sustain level flight
(C)	at which maximum power is required for flight
(D)	at which maximum rate of climb is 100 ft/min

Q.19	Regarding the horizontal tail of a conventional airplane, which one of the following statements is true?
(A)	It contributes to $C_{m_{\alpha}} < 0$
(B)	It makes $C_{m_{\alpha}} = 0$
(C)	It makes $C_{m_{\alpha}} > 0$
(D)	It makes $C_{m0} > 0$ and $C_{m_{\alpha}} > 0$

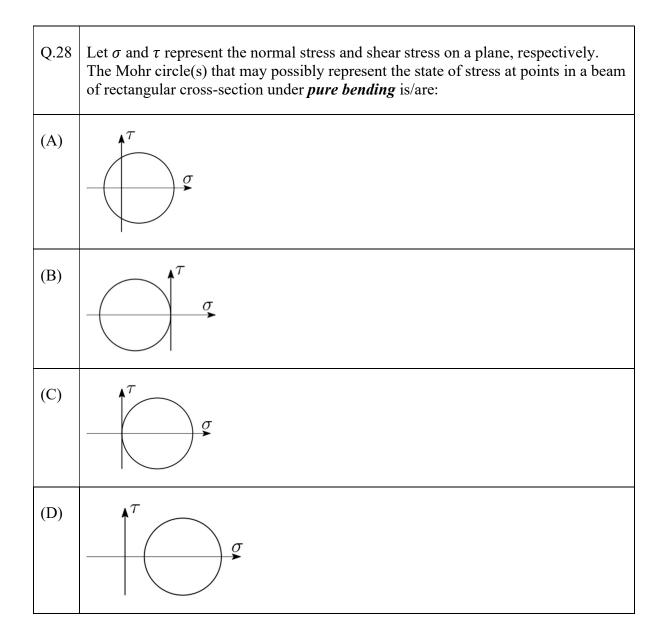




Q.23	The region of <i>highest static temperature</i> in a rocket engine and the region of <i>highest heat flux</i> are, respectively.
(A)	nozzle throat and nozzle entry
(B)	combustion chamber and nozzle throat
(C)	nozzle exit and nozzle throat
(D)	nozzle throat and combustion chamber

Q.24	If \hat{a} , \hat{b} , \hat{c} are three mutually perpendicular unit vectors, then $\hat{a} \cdot (\hat{b} \times \hat{c})$ can take the value(s)
(A)	0
(B)	1
(C)	-1
(D)	8

Q.25	Across an oblique shock wave in a calorifically perfect gas,
(A)	the stagnation enthalpy changes
(B)	the stagnation entropy changes
(C)	the stagnation temperature changes
(D)	the speed of sound changes

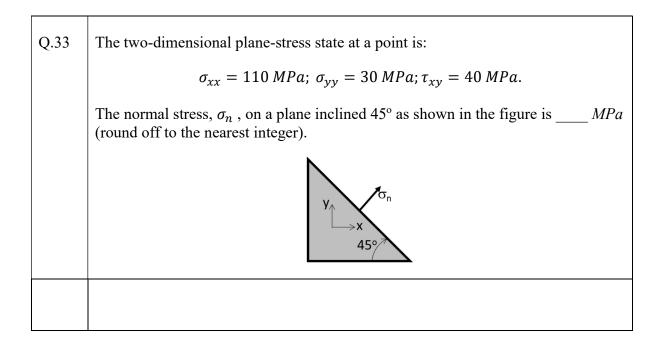


Q.26	NACA 2412 airfoil has
(A)	4% maximum camber with respect to chord
(B)	maximum camber at 40% chord
(C)	12% maximum thickness to chord ratio
(D)	maximum camber at 20% chord

Q.27	For International Standard Atmosphere (ISA) up to 11 km, which of the following statement(s) is/are true?
(A)	The hydrostatic/ aerostatic equation is used
(B)	The temperature lapse rate is taken as $-10^{-2} K/m$
(C)	The sea level conditions are taken as: pressure, $p_s = 1.01325 \times 10^5 Pa$; temperature, $T_s = 300 K$; density, $\rho_s = 1.225 kg/m^3$
(D)	Air is treated as a perfect gas

-

Q.29	An isotropic linear elastic material point under plane strain condition in the x-y plane always obeys:
(A)	out-of-plane normal strain, $\epsilon_{zz} = 0$
(B)	out-of-plane normal stress, $\sigma_{zz} = 0$
(C)	out-of-plane shear stress, $\tau_{xz} = 0$
(D)	out-of-plane shear strain, $\gamma_{xz} = 0$


Q.30	A high-pressure-ratio multistage axial compressor encounters an extreme loading mismatch during starting. Which of the following technique(s) can be used to alleviate this problem?
(A)	Blade cooling
(B)	Variable angle stator vanes
(C)	Blow-off valves
(D)	Multi-spool shaft

Q.31	The arc length of the parametric curve: $x = \cos \theta$, $y = \sin \theta$, $z = \theta$ from $\theta = 0$ to $\theta = 2\pi$ is equal to (round off to one decimal place).

Q.32	An unpowered glider is flying at a glide angle of 10 degrees. Its lift-to-drag ratio is (round off to two decimal places).

Q.34	In a <i>static</i> test, a turbofan engine with <i>bypass ratio</i> of 9 has core hot exhaust speed 1.5 times that of fan exhaust speed. The engine is operated at a fuel to air ratio of $f = 0.03$. Both the fan and the core streams have no pressure thrust. The ratio of fan thrust to thrust from the core engine is (round off to one decimal place).

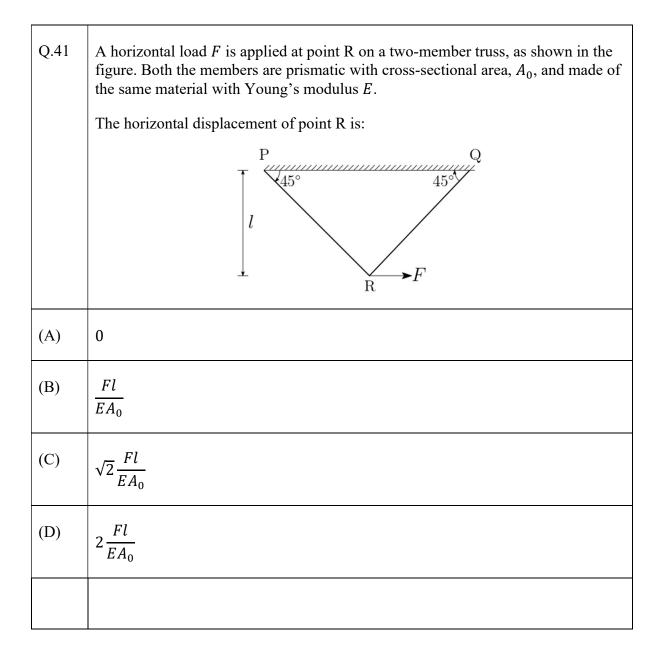
GATE 2022 Aerospace Engineering (AE) Q.36 – Q.65 Carry TWO marks Each

Q.36	The height of a right circular cone of maximum volume that can be enclosed within a hollow sphere of radius R is
(A)	R
(B)	$\frac{5}{4}R$
(C)	$\frac{4}{3}R$
(D)	$\frac{3}{2}R$

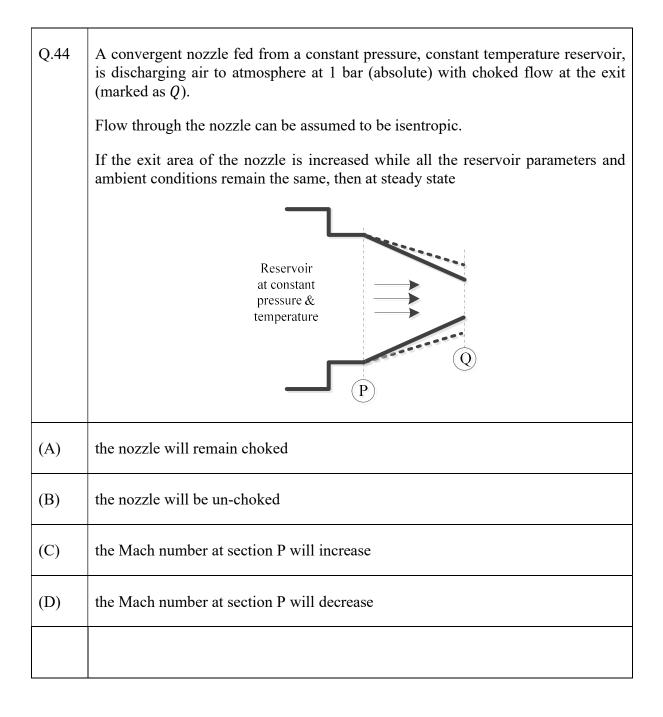
Q.37	Consider the differential equation $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = 0.$
	The boundary conditions are $y = 0$ and $\frac{dy}{dx} = 1$ at $x = 0$.
	Then the value of y at $x = 1/2$ is
(A)	0
(B)	\sqrt{e}
(C)	$\frac{\sqrt{e}}{2}$
(D)	$\sqrt{\frac{e}{2}}$

Q.38	Consider the partial differential equation $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$ where x, y are real.
	If $f(x, y) = a(x)b(y)$, where $a(x)$ and $b(y)$ are real functions, which one of the following statements can be true?
(A)	a(x) is a periodic function and $b(y)$ is a linear function
(B)	both $a(x)$ and $b(y)$ are exponential functions
(C)	a(x) is a periodic function and $b(y)$ is an exponential function
(D)	both $a(x)$ and $b(y)$ are periodic functions

Q.39	A cylindrical object of diameter 900 mm is designed to move <i>axially</i> in air at 60 m/s. Its drag is estimated on a geometrically half-scaled model in water, assuming flow similarity.
	Coefficients of dynamic viscosity and densities for air and water are 1.86×10^{-5} Pa-s, 1.2 kg/m ³ and 1.01×10^{-3} Pa-s, 1000 kg/m ³ respectively.
	Drag measured for the model is 2280 N. Drag experienced by the full-scale object is N (rounded off to the nearest integer).
(A)	322
(B)	644
(C)	1288
(D)	2576



Q.40	Consider a conventional subsonic fixed-wing airplane. <i>e</i> is the Oswald efficiency factor and <i>AR</i> is the aspect ratio. Corresponding to the minimum $\left(\frac{C_D}{C_L^{3/2}}\right)$, which of the following relations is true?
(A)	$\frac{C_D}{C_L^2} = \frac{1}{\pi e A R}$
(B)	$\frac{C_D}{C_L^2} = \frac{4}{3\pi e A R}$
(C)	$\frac{C_D}{C_L} = \frac{1}{\pi e A R}$
(D)	$\frac{C_D}{\sqrt{C_L}} = \frac{1}{\sqrt{\pi e A R}}$



Q.42	Which of the following is NOT always true for a combustion process taking place in a closed system?
(A)	Total number of atoms is conserved
(B)	Total number of molecules is conserved
(C)	Total number of atoms of each element is conserved
(D)	Total mass is conserved

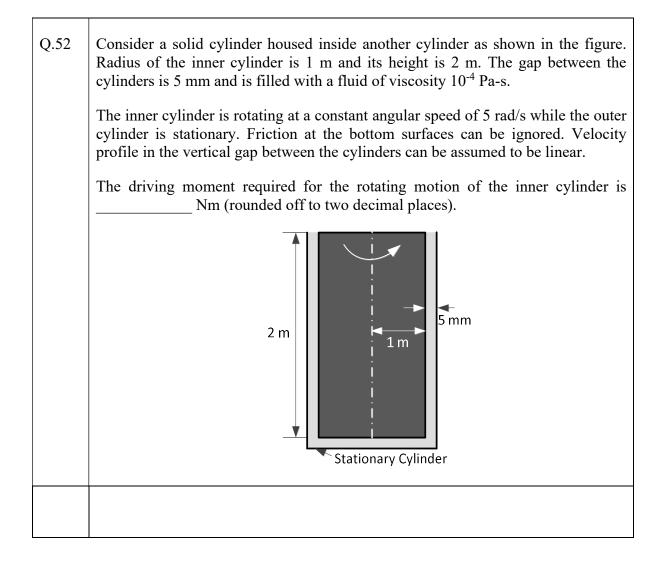
Q.43	The real function $y = \sin^2(x)$ is
(A)	continuous for all <i>x</i>
(B)	differentiable for all x
(C)	not continuous at $x = 0$
(D)	not differentiable at $x = 0$

Q.45	For a conventional airplane in straight, level, constant velocity flight condition, which of the following condition(s) is/are possible on Euler angles (ϕ , θ , ψ), angle of attack (α) and the sideslip angle (β)?
(A)	$\phi = 0^o, \theta = 2^o, \psi = 0^o, \alpha = 2^o, \beta = 0^o$
(B)	$\phi = 5^o, \theta = 0^o, \psi = 0^o, \alpha = 2^o, \beta = 0^o$
(C)	$\phi = 0^{o}, \theta = 3^{o}, \psi = 0^{o}, \alpha = 3^{o}, \beta = 5^{o}$
(D)	$\phi = 0^{o}, \theta = 5^{o}, \psi = 0^{o}, \alpha = 2^{o}, \beta = 5^{o}$

Q.46	Consider a high Earth-orbiting satellite of angular momentum per unit mass \vec{h} and eccentricity e .
	The mass of the Earth is M and G is the universal gravitational constant.
	The distance between the satellite's center of mass and the Earth's center of mass is r , the true anomaly is θ , and the phase angle is zero.
	Which of the following statements is/are true?
(A)	The trajectory equation is $r = r(\theta) = \frac{ \vec{h} }{GM(1 + e \cos \theta)}$
(B)	The trajectory equation is $r = r(\theta) = \frac{ \vec{h} ^2}{GM(1+e\cos\theta)}$
(C)	\vec{h} is conserved
(D)	The sum of potential energy and kinetic energy of the satellite is conserved

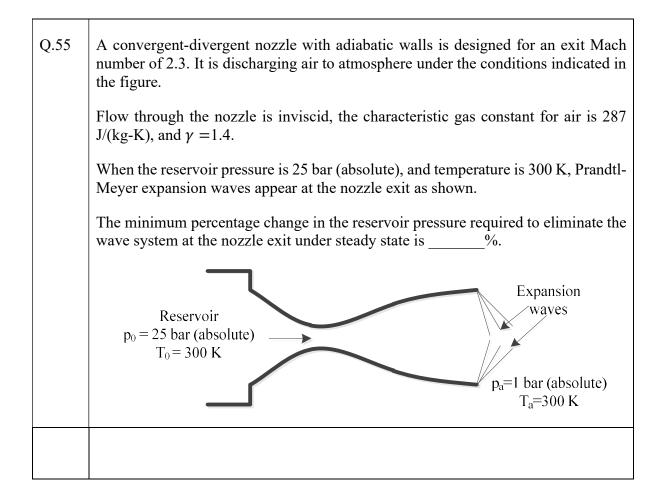
Q.47	A rocket operates at an absolute chamber pressure of 20 bar to produce thrust, F_1 .
	The hot exhaust is optimally expanded to 1 bar (absolute pressure) using a convergent-divergent nozzle with exit to throat area ratio $\left(\frac{A_e}{A_t}\right)$ of 3.5 and thrust coefficient, $C_{F,1} = 1.42$.
	The same rocket when operated at an absolute chamber pressure of 50 bar produces thrust F_2 and the thrust coefficient is $C_{F,2}$.
	Which of the following statement(s) is/are correct?
(A)	$\frac{F_2}{F_1} = 2.5$
(B)	$\frac{F_2}{F_1} > 2.5$
(C)	$\frac{C_{F,2}}{C_{F,1}} = 1$
(D)	$\frac{C_{F,2}}{C_{F,1}} > 1$

Q.48	$\vec{v} = x^3\hat{i} + y^3\hat{j} + z^3\hat{k}$ is a vector field where $\hat{i}, \hat{j}, \hat{k}$ are the base vectors of a cartesian coordinate system.
	Using the Gauss divergence theorem, the value of the outward flux of the vector field over the surface of a sphere of unit radius centered at the origin is (rounded off to one decimal place).


Q.49	The largest eigenvalue of the given matrix is
	$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$

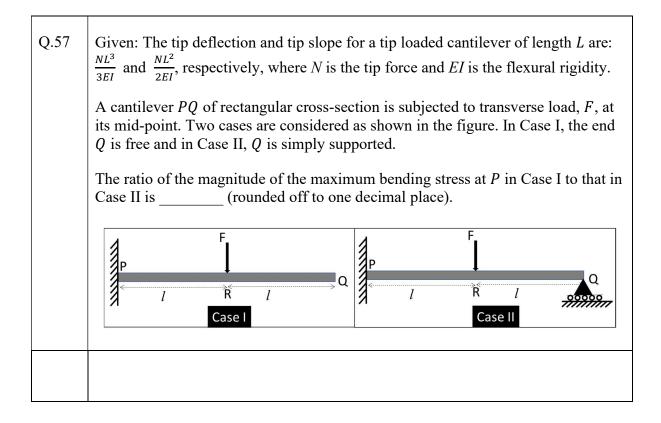
Q.50	A rotational velocity field in an air flow is given as $\vec{V} = ay\hat{i} + bx\hat{j}$, with $a = 10 \text{ s}^{-1}$, $b = 20 \text{ s}^{-1}$.
	The air density is 1.0 kg/m ³ and the pressure at $(x, y) = (0 \text{ m}, 0 \text{ m})$ is 100 kPa.
	Neglecting gravity, the pressure at $(x, y) = (6 \text{ m}, 8 \text{ m})$ is kPa (rounded off to nearest integer).

Q.51	Consider a circulation distribution over a finite wing given by the equation below.
	$\Gamma(y) = \begin{cases} \Gamma_0 \left(1 - \frac{2y}{b} \right) & if 0 \le y \le \frac{b}{2} \\ \Gamma_0 \left(1 + \frac{2y}{b} \right) & if -\frac{b}{2} \le y \le 0 \end{cases}$
	The wingspan <i>b</i> is 10 m, the maximum circulation Γ_0 is 20 m ² /s, density of air is 1.2 kg/m ³ and the free stream speed is 80 m/s.
	The lift over the wing isN (rounded off to the nearest integer).

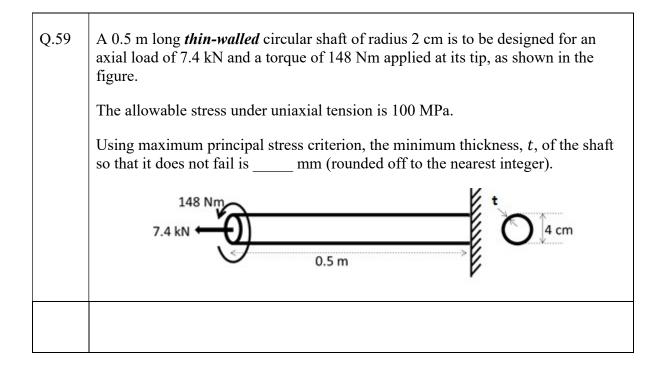


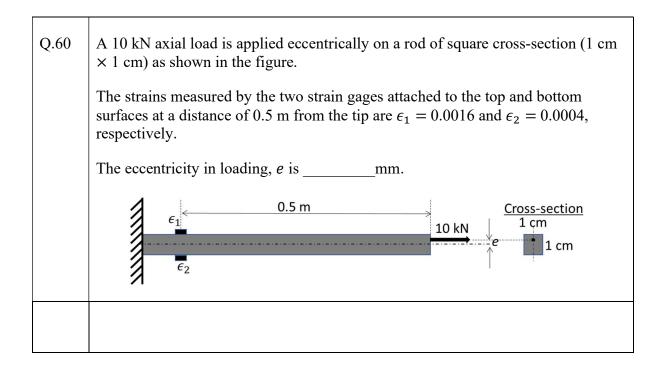
Q.53	In a converging duct, area and velocity at section P are 1 m^2 and 15 m/s , respectively. The temperature of the fluid is 300 K.
	Air flow through the nozzle can be assumed to be inviscid and isothermal. Characteristic gas constant is 287 J/(kg-K) and ratio of specific heats is 1.4 for air.
	To ensure that the air flow remains incompressible (Mach number, $M \le 0.3$) in the duct, the minimum area required at section Q is m ² (rounded off to two decimal places).

Q.54	Consider a thin symmetric airfoil at 2 degree angle of attack in a uniform flow at 50 m/s. The pitching moment coefficient about its leading edge is(rounded off to three decimal places).

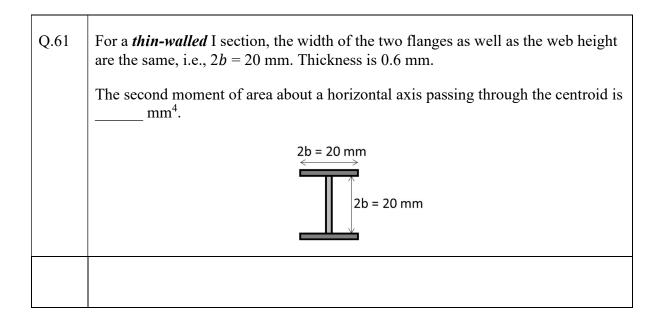


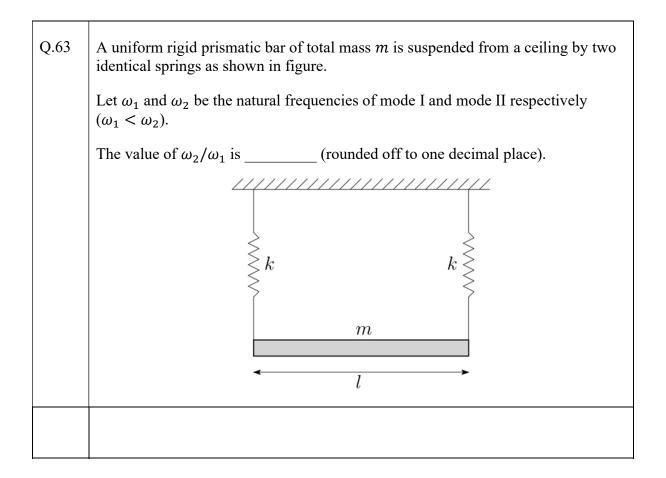
Q.56	A conventional airplane of mass 5000 kg is doing a level turn of radius 1000 m at a constant speed of 100 m/s at sea level.
	Taking the acceleration due to gravity as 10 m/s ² , the bank angle of the airplane is degrees.





Q.58	A simply supported Aluminium column of length 1 m and rectangular cross- section $w \times t$ with $t \le w$, is subjected to axial compressive loading.
	Young's modulus is 70 GPa. Yield stress under uniaxial compression is 120 MPa.
	The value of <i>t</i> at which the failure load for yielding and buckling coincide ismm.





Q.64	An ideal ramjet is to operate with exhaust gases optimally expanded to ambient pressure at an altitude where temperature is 220 K. The exhaust speed at the nozzle exit is 1200 m/s at a temperature of 1100 K.
	Given: $\gamma = 1.4$ at 220 K; $R = 287$ J/(kg-K) for air $\gamma = 1.33$ at 1100 K; $R = 287$ J/(kg-K) for exhaust gases.
	The cruise speed of this ramjet is m/s (rounded off to nearest integer).

Q.65	A multistage axial compressor takes in air at 1 atm, 300 K and compresses it to a minimum of 5 atm.
	The mean blade speed is 245 m/s and work coefficient, $\frac{\Delta C_{\theta}}{U}$ is 0.55 for each stage. For air, use $C_p = 1005 \text{ J/(kg-K)}$, $R = 287 \text{ J/(kg-K)}$ and $\gamma = 1.4$.
	If the compression is isentropic, the number of stages required is (rounded off to the next higher integer).