HIGHER SECONDARY MATHEMATICS – XII STANDARD SCIENCE STREAM

S.No.	Content	Expected Outcome	Transactional Strategy	No. of
				Periods
1.1	Systems of linear equations	Presentation in Matrix form; computing the rank of matrix and determining cases of i. a unique solution ii. a set of solution iii. no solution	Sets of simultaneous equations of at most three variable only to be prescribed Graphical interpretation wherever possible . Discriminating between inconsistent and dependent equations.	15
1.2	Methods of solution	Computing the unique solution of a system of equations when it exist by i)Cramer' s Rule and ii) Inverse matrix method	- Do -	

1. SYSTEMS OF EQUATIONS

2. APPLICATIONS OF MATRICES

S.No.	Content	Expected Outcome	Transactional Strategy	No. of Periods
2.1	Matrices for transformations: Matrices for Translation, Reflection, Rotation, Glide reflection, Shear and Stretch	Recognising matrices as tool to study specific geometrical notions. Applying transformation matrices to derive geometric results	Correlation with Pure and Analytical geometry and results in Trigonometry	15
2.2	Isometry and similarity matrices for the same.	Identifying points, lines etc remaining invariant under a transformation	Correlation with geometrical notions studied in earlier classes.	

3. VECTOR ALGEBRA

S.No.	Content	Expected Outcome	Transactional Strategy	No. of
				Periods

· · · · · · · · · · · · · · · · · · ·				
3.1	Vectors and	Definition vector addition,	Concept to be supported	
	Scalars	multiplication by scalars,	by Geometrical	
	Representations	linear relation among	interpretation.	
	of vectors and	vectors, orthogonal	Relation to velocity,	
	operations of	decomposition; 3	acceleration, resultants	
	addition and	dimensional Cartesian	etc to be introduced	
	subtractions	coordinates: direction		
		cosines.		
3.2	Scalar and	Ability to do simple	Geometrical meaning to	
	vector products	manipulative problems.	be explained.	
	Triple products	Ability to use appropriate	Use of suitable 3-D	
	and products 4	product in a given situation	diagrams.	
	vectors		_	30
3.3	Applications to	Applying formulae for Work	Relating the results to	
	mechanics	don by force and Moment of	actual problems in	
		a force using vectors	mechanics in the relevant	
			areas.	
3.4	Applications to	Derivations of the equations	Translation into	
	Geometry	and applying them in simple	analytical results of two	
	Parallel &	problems.	dimensions wherever	
	Perpendicular	Ability to apply the ideas to	possible.	
	vectors. Angle	derive standard trigonometric	Collincarity &	
	between lines,	results too.	coplanarity to be	
	Equations of		discussed appropriately	
	lines and planes			

4. COMPLEX NUMBERS

S.No.	Content	Expected Outcome	Transactional Strategy	No. of
				Periods
4.1	Complex Algebra Fundamental operations on complex numbers	Ability to separate real and imaginary parts; compute absolute value; multiplicative inverse of a complex number, conjugation: Triangle inequality	Emphasis to be given on Complex numbers as a vector. Interpretation through Argand diagram	15
4.2	Applications	De Moivre' s theorem: Roots of a complex number; Euler, formula, Statement and meaning of Fundamental Thm. Of Agebra.	Complex solutions to be illustrated by simple examples and diagrams	

5. ANALYTICAL GEOMETRY

S.No.	Content	Expected Outcome	Transactional Strategy	No. of
				Periods
5.1	Definition of a	Focus-directrix definition	Tracing Parabola, Ellipse	30
	conic	Given the equation to find	and Hyperbola using the	

	Derivation of the standard equation of Parabola, Ellipse, Hyperbola and Rectangle Hyperbola.	the foci, directrices. Eccentiricity, latus recta etc of the conic.	standard equations and explaining the special features
5.2	Chords, Tangents & Normals	Chord joining two point on the conic. Tangent and normal at a point on the conic. Condition for a line to be tangent to a conic: chord of contact of tangent. Chord with a given mid point (Not by 'r' method)	Use of equations to illustrate simple geometrical results
5.3	Parametric representation	Representing point on the conic in terms of parametric co-ordinates.	Results on chords and tangents to be explained in terms of parametric coordinates.
5.4	Asymptotes	Derive the equations of asymptotes of hyperbola and identify their properties	Explaining the role of asymptotes in tracing the conic.

6. APPLICATIONS OF DIFFERNTIATION

S.No.	Content	Expected Outcome	Transactional Strategy	No. of
				Periods
6.1	Derivative as a	Rate of change of quantities;	Majority of examples to	
	rate measurer	interpretation of velocity and	be chosen from science	
		acceleration using distance-	and Engineering areas.	
		time formulae and solving		
		problems involving them.		
6.2	Derivative as a	Solving problems connected	Comparing results of	
	measure of	with slope of a curve at a	Analytical geometry with	
	slope	point: Equations of tangent	the ones derived.	
		and normal, angle between		
		curves.		
6.3	Maxima and	Solving problems related to:	Graphical approach	
	minima	Increasing and decreasing	wherever possible with	
		functions: Stationary values:	stress on applications to	
		local and global maxima and	Science and Engineering.	
		minima; point of inflexion		
6.4	Mean Value	Statements of Rolle's	No formal proofs to be	
	Theorems	Theorem, Lagrange's Mean	given. Geometrical	
		Value Theorem. Taylor's and	interpretation of Rolle' s	
		Maclaurin's Theorems,	and Mean Value	
		Taylor's and Maclaurin's	Theorems.	
		series Statement and		

		application of L Hospital rule to ideterminate forms.		
6.5	Errors and Approximations	Comprehending Absolute, Relative and Percentage errors. Computing ' small' changes	Illustrations from Geometry, Trigonometry and Science to be provided	
6.6	Curve tracing	Obtaining an idea of the approximate shape of a curve without actually plotting points.	Use of symmetry, meets on axes, pass-ing through origin, real and imaginary values, extension to infinity turning points etc.	
6.7	Partial derivatives	Handling functions of 2 or 3 variables; Chain rule: Using Euler's Theorem on homogeneous functions (without proof)	Illustrative problems from Science and Engineering.	

7. APPLICATIONS OF INTEGRATION

S.No.	Content	Expected Outcome	Transactional Strategy	No. of Periods
7.1	Definite Integral	Identifying Definite Integral as the limit of a sum; Deriving and using properties of definite integral	Geometrical interpretation ?/2 ?/2 Evaluation of $\sin^m x dx$ $\cos^m x dx$ o	15
7.2	Application of definite integral	Applying to solve problems on I) Area under a curve. ii) Length of are of a curve, and iii) Surface and volume of revolution	Use of ideas of curve tracing in identifying parts of the curve to be used in the problem	

8. DIIFFERENTIAL EQUATIONS

S.No.	Content	Expected Outcome	Transactional Strategy	No. of
				Periods
8.1	Formation of	Formation of Differential	Using Graphs of families	
	Differential	Equations; identifying order	of curves	
	Equations	& degree; discriminating		25
		between general and		
		particular solutions.		
8.2	I order :	Applying Method of	Geometrical	
	Variables	separation of variables;	interpretation of results	
	separable.	Reducing to variables		
		separable type.		

8.3	I Order: Homogeneous Equation I Order: Exact	Reducing to the type of Variables separable by proper substitution Ability to identify and solve	Emphasis on how this type can be identified
	Equations	exact equation by inspection.	Integrating factor to make an equation exact.
8.5	I Order: Linear Equations	Solving equations of the form $y^2 + Py=Q$ where P, Q are functions of x	Explanation for use of Integrating factor.
8.6.	II Order: Linear equations with constant coefficient	Solving equations of type ay + by' + $cy = 0$ (with a, b, c,???? R, a ? o) and ay" + by' + $cy = f(x)$	f(x) to be restricted to the form x, x^2 ? e^{mx} or sin mx or cos mx (m ??R)
8.7	Applications	Geometrical applications involving slope, tangent normal etc.: Simple applications involving movement of a particle, Radioactive decay, Heat conduction, Electric circuits.	Interpretation of simple solutions such as that of simple harmonic equation to the form $x = -n^2x$

9. PROBABILITY DISTRIBUTIONS

S.No.	Content	Expected Outcome	Transactional Strategy	No. of
				Periods
9.1	Random	Definition and illustrations.	Projecting Random	20
	variable	Discriminating between and	variable as a real valued	
		working with discrete and	function through	
		continuous random variables	examples.	
9.2	Probability	Definitions and illustrations	Verification of properties	
	functions	for (i) probability mass	through a variety of	
		function (ii) probability	examples.	
		density function (iii)		
		distribution functions		
9.3	Mathematical	Definition and justification	Straightforward	
	Expectations	on properties for discrete and	application of E (X), E	
		continuous cases.	(X^2) and Var (X)	
9.4	Discrete	Definitions and application	Special attention to the	
	distributions	of Binomial and poisson	parameters Mean,	
		distribution	Variance and S.D. of the	
			distribution	
9.5	Continuous	Definition and application	Properties to be corrected	
	distribution	of Normal distribution.	with the form of Normal	
			curve and its	
			characteristics.	

S.No.	Content	Expected Outcome	Transactional Strategy	No. of Periods
10.1	Group structure	Illustrations from Number systems, matrices, functions, transformations. Etc. Justifying main properties of a group and applying them in simple problems. Identifying order of a group and order of a group element. Definition and examples of a cyclic group	Varied examples to be chosen Subgroup not to be treated Non-examples also to be given	15
10.2	Rings. Integral Domains and Fields	Illustrating structure through examples from Number system only. (No theorems are to be proved)	Use of different number systems to bring out the differences among various structures	

10. ALGEBRAIC STRUCTURES

COMMERCE STREAM

1.SYSTEMS OF EQUATIONS

S.No.	Content	Expected Outcome	Transactional Strategy	No. of
				Periods
1.1	Systems of linear equations	Presentation in Matrix form, Computing the rank of matrix and determining cases of (i) a unique solution (ii) a set of solutions (iii) no solution Discriminating between Inconsistent and dependent equations	Sets of simultaneous equations of at most three variables only to be presented. Graphical interpretation wherever possible.	15
1.2	Methods of solution	Computing the unique solution of a system of equations, when it exists, by (i) Cramer' s Rule and (ii) Inverse matrix method	-Do-	

2. APPLICATIONS OF MATRICES

S.No.	Content	Expected Outcome	Transactional Strategy	No. of
				Periods
2.1	Storing	Using matrices to store	Variety in examples to be	15
	Information	information.	adopted	
		Applying matrix algebra to	Relation matrices, Route	

		manipulate such matrices.	matrices, and Probability matrices are also to be used for illustration
2.2	Input-Output	Comprehension of the	'Hawkins-Simons
	Analysis	meaning and basic	viability conditions to be
		assumptions; framing and	stated (without proof)
		studying 'Transaction table;	and used.
		verification of viability of an	
		input-output system.	
2.3	Transition	Interpreting Probability	Multiplication of
	matrices for	Transition matrices and	Probability Transition
	market share	using them.	Matrices used for
			forecasting.

3. ANALYTICAL GEOMETRY

S.No.	Content	Expected Outcome	Transactional Strategy	No. of
				Periods
3.1	Definition of a conic Derivation of the standard equations	Focus-directrix definition Using it to derive the equation of a conic in general; Equation of Parabola, Ellipse, Hyperbola and Rectangle hyperbola	Using the illustration of a ' double cone' to explain the idea of conic	
3.2	Standard Equations	Derivation of the standard equation of Parabola, Ellipse, Hyperbola and Rectangle Hyperbola	Training in the skill of finding the foic, directrices, eccentricity, latus-recta etc. when the standard equation is given	20
3.3	Tracing the conics	Introduction to tracing of curves Tracing of Parabola, Ellipse and Hyperbola in their standard form.	Appropirate graphical illustrations to be given	

4. SEQENCES AND SERIES

S.No.	Content	Expected Outcome	Transactional Strategy	No. of
				Periods
4.1	Progressions	Recall of AP, GP and HP and	Geometrical illustrations	
	and Number	formulae for $? n, ?? n^2, ?? n^3$	to be given wherever	20
	sums		possible	

4.2	Application in	Working v	with concepts of	Use of information from
	– Commerce	(i)	Discounting	standard financial
		(ii)	Annuities &	institutions to be used for
			Sinking funds,	illustration.
		(iii)	Interest paid	
			continuously	
		(iv)	Present Value and	
			Investment	
			Analysis	

5. APPLICATIONS OF DIFFERENTIATION

S.No.	Content	Expected Outcome	Transactional Strategy	No. of Periods
5.1	Function in Economics and Commerce	Identifying and manipulating supply, Demand, Cost, Revenue, Production and Elasticity functions. Interpreting Market Equilibrium	Detailed exposition of dependent and independent variables in the case of each function	30
5.2	Derivative as a rate measurer	Rate of change of quantities, interpretation solving problems programmes involving them.	Majority of examples to be chosen from Commerce and Economics.	
5.3	Derivative as a measure of slope	Solving problems connected with: Slope of a curve at a point. Equations of tangent and normal	Comparing results of Analytical geometry with the once derived	
5.4	Maxima and Minima	Solving problems related to: Intereasing and decreasing functions. Stationary values; Local and global maxima and minima; points of inflexion	Graphical approach wherever possible with stress on applications to Commerce and Evonomics	
5.5	Application of Maxima and Minima	Solving problems on Profit Maximisationd. Inventory Control and Economics Order Quantity	Attention to be drawn to the constraints in each such problems	
5.6	Partial derivatives	Handling functions of 2 or 3 variables. Using Euler's Theorem (without proof)	Illustrative problems from Commerce and Economics	
5.7	Application of partial Derivatives	Production function of two variables, Marginal productivities of Labour and Capital, Partial Elasticities of Demand	- Do -	

5.8	Errors and	Comprehending Absolute,	dy	
	Applications	Relative and Percentage errors.	Use of concept: $2 \cdot 3 = dx$	
		Computing ' small changes,	<u>? ?</u> x	

6. APPLICATIONS OF INTEGRATION

S.No.	Content	Expected Outcome	Transactional Strategy	No. of Periods
6.1	Definite Integral	Identifying Definite Integral as the limit of a sum; Deriving and using properties of definite integrals	Geometrical interpretation; statement of Fundamental theorem of Integral Calculus	
6.2	Area Under a Curve	Applying Definite integral to solve problems on Area under a curve.	Use of ideas of curve tracing in identifying parts of the curve to be used in the problem	15
6.3	Applications of Definite Integral Computing Consumer's Surplus and Producer's surplus	scanning	Total Inventory carrying Cost = $H_e ?_o I(x) dx$ Where I (x) is inventory on hand and He is unit holding cost.	15

7. DIFFERNTIAL EQUATIONS

S.No.	Content	Expected Outcome	Transactional Strategy	No. of
				Periods
7.1	Formula of	Formation identifying order &	Using Graphs of families	25
	Differential	degree discriminating general	of curves	
	Equations	and particular solution.		
7.2	I Order:	Appling Method of separation	Geometrical	
	Variables	of variables; Reducing to	interpretation of results	
	separable.	Variables separable type.		
7.3	I Order:	Reducing to the types of	Emphasis on how this	
	Homogeneous	Variables separable by proper	type can be identified.	
	Equations.	substitution		
7.4	I Order: Exact	Ability to identify and solve	Introducing the idea of an	
	Equations	exact equations by inspection	Integrating factor to	
			make an equation exact.	
7.5	I Order:	Solving equations of the form	Explanation for use of	
	Linear	y' + Py = Q where P,Q are	Integral factor to make an	
	Equations	functions of x	equation exact	
7.6	II Order:	Solving equations of type ay"	f(x) to be restricted to the	
	Linear	+ by' + cy = 0 (with a, b, c? R,	form x or x^2 or	
	equations	2^{2} o) $2x^{2} + bx^{2} + cx = f(x)$	exponential form.	
	with constant	a:: 0) ay + 0y + 0y - I(x)		

	coefficients			
7.7	Applications'	Solving Models involving Investment, Price adjustment, Spread of disease etc.,	Usual relationships involving cost, Production etc. to be solved as illustrations	

S.No.	Content	Expected Outcome	Transactional Strategy	No. of
				Periods
8.1	Random variable	Definition and illustrations. Discriminating between and working with discrete and continuous random variables	Projecting Random variable as a real valued function through examples. (Most illustrations in this topic to be from Commerce and Economics)	
8.2	Probabilty functions	Definitions and illustrations for (i) probability mass function (ii) probability density function (iii) distribution function	Verification of properties through a variety of examples.	20
8.3	Mathematical Expectation	Definition and justification of properties for discrete nd continuous cases	Straight forward application of $E(X)$, $E(X^2)$ and Vary (X)	
8.4	Discrete distribution s	Definitions and application of Binomial and Poisson distributions.	Special attention to the parameters mean, Variance and S.D of the distributions.	
8.5	Continuous distributions	Definition and application of Normal distribution	Properties to be correlated with the form of Normal curve and its characteristics.	

9. SAMPLING TECHNIQUES

S.No.	Content	Expected Outcome	Transactional Strategy	No. of Periods
9.1	Concept of Sampling Definition and types	Classifying as Random Stratified, systematic. Multi- stage Also as Non-random: purposive, Quota, Cluster & Sequential	Simulation applying Monte-Carlo method and Random Numbers.	25

9.2	Errors	Discriminating sampling and non-sampling errors	
9.3	Sampling distributions	Illustrating with Distributions of sample Mean and Sample Proportions. Computing Standard Error in simple cases	Central limit theorem to be stand and explained without proof.
9.4	Estimation	Meaning of Statistical estimation Computing confidence intervals	Both point and interval estimation to be illustrated
9.5	Hypothesis testing	Identifying levels significance Determining critical region	Statistical inference to be illustrated in very simple cases.
9.6	Quality control charts	Classifying causes for variation in the quality of product into those (i) of chance and (ii) assignable Defining Process control & Product control	Presentation of technique for drawing a control chart explaining its underline principles.

10. FORCASING TECHNIES & DECISION THEORY

S.No.	Content	Expected Outcome	Transactional Strategy	No. of
				Periods
10.1	Linear	Dealing with objective	To be illustrated through	
	Programming	function with not more than 3	graphical approach only	
		constraints and 2 variables		
10.2	Correlation &	Applying method of least	Explaining estimates	
	Regression	squared to perform curve	through the concept of	
		fitting	approach curve of best fit	
103.	Time Series	Identifying different	Graphical illustration to	
	and	components of Time series	be provided for	
	determination	Applying (i) Free and (ii)	explanation.	
	of trend	Semi-average (iii) Moving	_	
		average & (iv) Least squares		25
		methods.		23
10.4	Index	Use of formulae of (i)	(i) Aggregate expenditure	
	Numbers	Laspeyre, (ii) Paasche, and (iii)	method & (ii) Family	
		Fisher. Testing Reversal tests	budget method to	
		to be satisfied by an index	compute Cost of living	
		number	index	
10.5	Decision	Identifying basic criteria for	Role of Decision trees to	
	Theory	making decision: EMV, Pay-	be highlighted and	
	-	offs, EOL, Using Maximin,	decision diagram to be	
		and Minimax and Baye's	illustrated	
		Principles		