BOARD QUESTION PAPER : MARCH 2019

Notes:

i. All questions are compulsory.
ii. Figures to the right indicate full marks.
iii. Graph paper is compulsory for L.P.P
iv. Logarithm table will be provided on request.
v. Answers to the question in Section - I and Section - II should be written in two separate answer books.
vi. Question from Section - I attempted in the answer book of Section - II and vice-versa will not be assessed / not be given any credit.
vii. Answer to every question must be written on a new page.

Section - I

Q.1. Attempt any SIX of the following:

i. Write converse and inverse of the following statement:
"If a man is a bachelor then he is unhappy."
ii. Discuss the continuity of f at $x=1$

Where $\mathrm{f}(x)=\frac{3-\sqrt{2 x+7}}{x-1}$ for $x \neq 1$

$$
\begin{equation*}
=\frac{-1}{3} \quad \text { for } x=1 \tag{2}
\end{equation*}
$$

iii. Find the value of ' k ' if the function
$\mathrm{f}(x)=\frac{\left(\mathrm{e}^{x}-1\right) \sin x}{x^{2}}$, for $x \neq 0$

$$
\begin{equation*}
=\mathrm{k} \quad \text {, for } x=0 \tag{2}
\end{equation*}
$$

is continuous at $x=0$.
iv. Find the marginal revenue if the average revenue is 45 and elasticity of demand is 5 .
v. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if $x^{3}+y^{2}+x y=7$
vi. Find the area bounded by the curve $y=x^{4}, \mathrm{X}$-axis and lines $x=1$ and $x=5$. (2)
vii. Evaluate: $\int_{-2}^{3} \frac{\mathrm{~d} x}{x+5}$
viii. Evaluate: $\int \frac{\mathrm{d} x}{16-9 x^{2}}$
Q.2. (A) Attempt any TWO of the following:
i. Prove that the following statement pattern is a tautology:
$(\mathrm{q} \rightarrow \mathrm{p}) \vee(\mathrm{p} \rightarrow \mathrm{q})$
ii. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ if $y=x^{x}+5^{x}$
iii. Evaluate: $\int x \cos ^{-1} x \mathrm{~d} x$
(B) Attempt any TWO of the following:
i. Find the inverse of the matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 1 & 5 \\ 2 & 4 & 7\end{array}\right]$ by using adjoint method.
ii. If f is continuous at $x=0$ then find $\mathrm{f}(0)$ where $\mathrm{f}(x)=\frac{5^{x}+5^{-x}-2}{x^{2}}, x \neq 0$
iii. A manufacturer can sell x items $(x>0)$ at a price of $₹(280-x)$ each. The cost of producing x items is $₹\left(x^{2}+40 x+35\right)$. Find the number of items to be sold so that the manufacturer can make maximum profit.
Q.3. (A) Attempt any TWO of the following:
i. If p and q are true statements and r and s are false statements, find the truth value of the following:
$(\mathrm{p} \wedge \sim \mathrm{r}) \wedge(\sim \mathrm{q} \wedge \mathrm{s})$
ii. Differentiate $\mathrm{e}^{4 x+5}$ w.r.t. $\mathrm{e}^{3 x}$
iii. Evaluate: $\int \frac{\mathrm{e}^{x}(1+x)}{\cos ^{2}\left(x \mathrm{e}^{x}\right)} \mathrm{d} x$
(B) Attempt any TWO of the following:
i. If $\mathrm{A}=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]$, find $(\mathrm{AB})^{-1}$
ii. For manufacturing x units, labour cost is $150-4 x$ and processing cost is x^{2}. Price of each unit is $p=10,800-4 x^{2}$. Find the values of x for which:
(a) Total cost is decreasing.
(b) Revenue is increasing
iii. Evaluate : $\int_{3}^{9} \frac{\sqrt[3]{12-x}}{\sqrt[3]{x}+\sqrt[3]{12-x}} \mathrm{~d} x$

