II PUC- ELECTRONICS (40) MODEL QUESTION PAPER - 2022

Time: 3hour 15 min Max. Marks: 70

Instructions:

- 1. The question paper has four parts A, B, C and D.
- 2. Read the instructions given in each part and answer.

PART A

Answer any TEN questions:

 $1 \times 10 = 10$

- 1. Is JFET unipolar or bipolar device?
- 2. What is heat sink?
- 3. What is an amplifier?
- 4. What happens to the input impedance of an amplifier when voltage series negative feedback is applied?
- 5. Mention the unit of slew-rate.
- 6. What are damped oscillations?
- 7. Which layer of the ionosphere disappears during night?
- 8. Define frequency modulation..
- 9. Sketch the AM wave for when modulation index $m_a = 1$.
- 10. Expand SCR.
- 11. Write the output Boolean expression for the two input XNOR gate.
- 12. Convert the decimal number 29 to BCD.
- 13. How many interrupt sources are there in 8051 microcontroller?
- 14. How many keywords are there in C-language?
- 15. What is meant by cell related to mobile communication system?

PART B

Answer any FIVE questions:

 $2 \times 5 = 10$

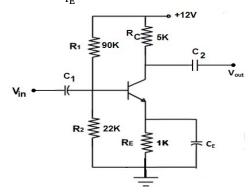
- 16. Define amplification factor in JFET and write its relation with g_m and r_d .
- 17. Mention any two advantages of voltage divider biasing.
- 18. Classify the amplifiers based on coupling scheme.
- 19. Mention the advantages of negative feedback.
- 20. List any four characteristics of an ideal op-amp.

- 21. Explain piezoelectric effect.
- 22. Draw the block diagram of satellite transponder.
- 23. What is over modulation and why is it not preferred in AM?
- 24. Write any two application of power electronics?
- 25. Distinguish between uplink and downlink signals.

PART C

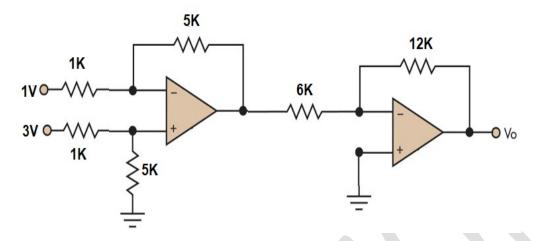
Answer any FIVE questions:

 $3 \times 5 = 15$


- 26. Give any three comparisons between BJT and FET.
- 27. What is thermal runaway? Name any two leakage current in a transistor.
- 28. Define (i) Skip distance (iii) Skip zone and (iii) fading
- 29. What is half-adder? Draw the logic diagram of half adder using only NAND gates.
- 30. Draw the structure of a typical pn junction power diode and explain its constructional details in brief indicating typical dimensions and doping levels.
- 31. Determine anode current I_A of SCR when $I_G = 0$. Given $(\alpha_1 + \alpha_2) = 0.98$ and $I_{(CO1)} + I_{(CO2)} = 1$ mA.
- 32. What is meant by Addressing mode in 8051? Name any two addressing modes.
- 33. Write the format of simple C program.
- 34. Discuss in detail the syntax errors, logical errors and run time errors.
- 35. What is Internet? Mention the important techniques used for Bluetooth operation.

PART D

I. Answer any THREE questions:


 $5 \times 3 = 15$

36. Calculate the voltage gain, input impedance and output impedance in the circuit given below. Given β =100 and $r_e'=\frac{26mV}{I_E}$

37. The gain of an amplifier is 50 and its output resistance is $2.5K\Omega$. A negative feedback is applied so that the output impedance reduces to 500Ω . What is the value of β ? If the bandwidth before feedback is 200KHz, what is the new bandwidth?

38. Find the output voltage in the op-amp circuit given.

- 39. A transistor Colpitt's oscillator has L=4mH, $C_1 = 10nF$ and $C_2 = 10nF$. Calculate the frequency of oscillations.
- 40. A 10 kW carrier wave is amplitude modulated at 80% depth of modulation by a sinusoidal modulating signal. Calculate the total power and sideband power of the AM wave.
- 41. Simplify the Boolean expression $Y=\Sigma m$ (1,3,5,7,13,15) + Σd (0,12,14) using K-map. Draw the NAND Gate equivalent circuit to realize the simplified equation.

II. Answer any FOUR questions:

 $5 \times 4 = 20$

- 42. (a)Mention the steps involved in drawing the AC equivalent circuit of a transistor CE-amplifier and also draw the AC equivalent circuits.
- (b)What is cross-over distortion? (4+1)
- 43. With a neat circuit diagram explain the working of two stage RC-coupled amplifier.
- 44. What is an op-amp comparator? With the help of circuit diagram derive an expression for voltage gain of an op-amp non-inverting amplifier. (1+4)
- 45. With a neat circuit diagram derive an expression for output voltage of three input opamp adder.
- 46. Derive an expression for instantaneous voltage equation of AM wave
- 47. What is NAND gate? Realise the basic gates and XOR-gate using only NAND gates. (1+4)
- 48. With the help of logic diagram and truth table explain the working of clocked SR flip-flop.
- 49. write a c-program to find the largest of three numbers

Blue Print for Model Question Paper

II PUC ELECTRONICS (40)

Sl.	Name of the chapter	K	now (30	vledg %)	ge	Un	ders		ing			catio		Total
		1	2	3	5	1	2	3	5	1	2	3	5	
1	FIELD EFFECT TRANSISTOR (FET)		1			1		1						06
2	TRANSISTOR BIASING	1					1	1				B		06
3	TRANSISTOR AMPLIFIERS	1			1		1		1				1	18
4	FEEDBACK IN AMPLIFIERS	<	1			1							1	08
5	OPERATIONAL AMPLIFIER	1			1		1		1				1	18
6	OSCILLATORS	1	1		V								1	08
7	WIRELESS COMMUNICATIONS			1		1	1							06
8	MODULATION AND DEMODULATION	1				1	1		1				1	14
9	POWER ELECTRONICS AND ITS APPLICATIONS	1					1	1				1		09
10	DIGITAL ELECTRONICS	1		1	1				1	1			1	20
11	MICROCONTROLLER					1		1				1		07
12	C PROGRAMMING			1		1							1	09
13	MODERN COMMUNICATION SYSTEMS	1		1			1							06

Total	41	52	42	135

