0193

SET -

Total No. of Questions - 37 Total No. of Printed Pages - 3

Regd. No.

Part - III MATHEMATICS, Paper - IB

(English Version)

MODEL QUESTION PAPER

(For the Academic year 2021-22 only)

Time: 3 Hours Max. Marks: 75

Note: This question paper consists of three section A, B and C.

Section - A

Very short answer type questions.

- (i) Answer ANY TEN questions.
- (ii) Each question carries 2 marks.

 $10 \times 2 = 20$

- 1. Find the value of x, if the slope of the line passing through (2, 5) and (x, 3) is 2.
- 2. Transform the equation x+y+1=0 into normal form.
- 3. Find the angle which the straight line $y = \sqrt{3}x 4$ makes with the Y-axis.
- 4. Find the length of the perpendicular from (0, 0) to the straight line x-3y-4=0.
- 5. Show that the points (1, 2, 3), (2, 3, 1) and (3, 1, 2) form an equilateral triangle.
- 6. Find the ratio in which the XZ-plane divides the line joining A(-2,3,4) and B(1,2,3).
- 7. Find the coordinates of the vertex 'C' of \triangle ABC if it's centroid is the origin and the vertices A, B are (1,1,1) and (-2,4,1) respectively.
- 8. Find the equation of the plane whose intersepts on X, Y, Z axes are 1, 2, 4 respectively.
- 9. Show that $L_{x\to 0+}^{t} \left\{ \frac{2|x|}{x} + x + 1 \right\} = 3$
- 10. Find $Lt \frac{e^{x+3} e^3}{x}$

- 11. Compute: $Lt_{x\to 0} \frac{a^x 1}{b^x 1} (a > 0, b > 0, b \neq 1)$
- 12. Find the derivative of $5\sin x + e^x \log x$.
- 13. If $y = \log[\sin(\log x)]$ then find $\frac{dy}{dx}$.
- 14. Find the approximate value of $\sqrt[3]{65}$.
- 15. Find the slope of the tangent to the curve $y = 3x^4 4x$ at x = 4.

Section - B

Short answer type questions.

 $5 \times 4 = 20$

- (i) Answer any FIVE questions.
- (ii) Each question carries four marks.
- 16. A(2, 3) and B(-3, 4) are two given points. Find the equation of the locus of P, so that the area of the triangle PAB is 8.5 sq.units.
- 17. Find the equation of the locus of P, if A = (4, 0), B = (-4, 0) and |PA PB| = 4.
- 18. A(1, 2), B(2, -3) and C(-2, 3) are three points. A point P moves Q. $PA^2 + PB^2 = 2 PC^2$, show that the equation of the locus of P is 7x - 7y + 4 = 0.
- 19. When the origin is shifted to point A(2, 3), the transformed equation of the curve is $x^2 + 3xy 2y^2 + 17x 7y 11 = 0$. Find the original equation of the curve.
- 20. When the axes are roted through an angle $\frac{\pi}{6}$. Find the transformed equation of $x^2 + 2\sqrt{3}xy y^2 = 2a^2$.
- 21. Find the points on the line 3x-4y-1=0 which are at a distance of 5 units from the point (3, 2).
- 22. Find the value of p, if the following lines are concurrent.

$$3x + 4y = 5$$
, $2x + 3y = 4$, $px + 4y = 6$

- 23. Show that the points O(0, 0, 0), A(2,-3, 3), B(-2, 3, -3) are collinear. Find the ratio in which each point divides the segment joining the other two.
- 24. Compute the limit $\underset{x\to 0}{Lt} \frac{1-\cos mx}{1-\cos nx}, n \neq 0$
- 25. Find the derivative of $\sin 2x$ from the first principle.

- 26. If the increase in the side of a square is 4%. Then find the approximate percentage of increase in the area of the square.
- 27. Show that the tangent at any point θ on the curve $x = c \sec \theta$, $y = c \tan \theta$ is $y \sin \theta = x c \cos \theta$.

Section - C

Long Answer type questions.

 $5 \times 7 = 35$

- (i) Answer any FIVE questions.
- (ii) Each question carries seven marks.
- 28. Find the equation of straight lines passing through (1, 2) and making an angle of 60° with the line $\sqrt{3}x + y + 2 = 0$.
- 29. Find the circumcentre of the triangle whose verteses are (1, 0), (-1, 2) and (3, 2).
- 30. Find the orthocentre of the triangle with the vertices (-2, -1), (6, -1), (2, 5).
- 31. If the angle between the pair of straight lines $ax^2 + 2hxy + by^2 = 0$ is θ , then show that $\cos \theta = \frac{|a+b|}{\sqrt{(a-b)^2 + 4h^2}}.$
- 32. Find the value of k, if the line joining the origin to the points of intersection of the curve $2x^2 2xy + 3y^2 + 2x y 1 = 0$ and the line x + 2y = k are mutually perpendicular.
- 33. If a ray with d.c's *l*, *m*, *n* makes angles α , β , γ and δ with four diagonals of a cube, then show that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta = \frac{4}{3}$.
- 34. Find the derivative of $\frac{\sin(x+a)}{\cos x}$.
- 35. Find the derivative of $f(x) = \frac{x \cos x}{\sqrt{1+x^2}}$
- 36. Find the derivative of $\frac{x(1+x^2)}{\sqrt{1-x^2}}$.
- 37. Show that the curves $y^2 = 4(x+1)$ and $y^2 = 36(9-x)$ intersect orthogonally.