0266

Regd.

No.

SET -

Total No. of Questions - **37** Total No. of Printed Pages - **4**

MATHEMATICS, Paper - IIA

(English Version)

MODEL QUESTION PAPER

(For the Academic year 2021-22 only)

Time : 3 Hours

Note: This question paper consists of three sections A, B and C.

Section - A

Very short answer type questions.

(i) Answer ANY TEN questions.

- (ii) Each question carries 2 marks.
- 1. Write the multiplicative inverse of the complex number $(\sin\theta, \cos\theta)$.
- 2. If $(a + ib)^2 = (x + iy)$, then find the value of $(x^2 + y^2)$.
- 3. If $Z_1 = (2, -1)$, $Z_2 = (6, 3)$ find $Z_1 Z_2$.
- 4. If $x = \operatorname{cis}\theta$, then find the value of $\left(x^6 + \frac{1}{x^6}\right)$.
- 5. If α , β are the roots of the equation $ax^2 + bx + c = 0$, then find the value of the expression $\left(\frac{1}{\alpha} + \frac{1}{\beta}\right)$ in terms of *a*, *b*, *c*.
- 6. Write the quadratic equations whose roots are 1, 2.
- 7. Find the algebraic equation whose roots are three times the roots of $x^3 + 2x^2 4x + 1 = 0$.
- 8. Find the transformed equation whose roots the negatives of the roots of $x^4 + 5x^3 + 11x + 3 = 0$.

Max. Marks: 75

$$10 \times 2 = 20$$

Turn Over

- 9. Find the number of ways of arranging 5 different maths books, 4 different physics books and 3 different chemistry books such that the books of the same subject are together.
- 10. Find the number of diagonals of a polygon with 12 sides.
- 11. If ${}^{n}P_{3} = 1320$, find 'n'.

12. Find the 7th term in the expansion of
$$\left(1-\frac{x^2}{3}\right)^{-4}$$
.

- 13. Find the mean deviation from the mean of the following data6, 7, 10, 12, 13, 4, 12, 16
- 14. The probability that a person chosen at random is left handed in handwriting is 0.1. What is the probability that in a group of 10 people, there is one who is left handed?
- 15. A Poisson variable satisfies P(x = 1) = P(x = 2). Find P(x = 5).

Short answer type questions.

5×4=20

- (i) Answer any FIVE questions.
- (ii) Each question carries four marks.
- 16. If x and y are real numbers, such that $\frac{(1+i)x-2i}{3+i} + \frac{(2-3i)y+i}{3-i} = i$, then determine the values of x and y.

17. If
$$x + iy = \frac{1}{1 + \cos \theta + i \sin \theta}$$
 then, show that $4x^2 - 1 = 0$.

- 18. If 1, ω , ω^2 are the cube roots of unity, then prove that (2- ω) (2- ω^2) (2- ω^{10}) (2- ω^{11}) = 49.
- 19. Find the range of the expression $\frac{x+2}{2x^2+3x+6}$.
- 20. Solve $x^3 7x^2 + 14x 8 = 0$, given that the roots are in geometric progression.
- 21. Find the sum of all 4 digited numbers that can be formed using the digits 1, 2, 4, 5, 6 without repetition.
- 22. Simplify: ${}^{34}C_5 + \sum_{r=0}^4 ({}^{(38-r)}C_4$

23. Resolve
$$\frac{x^2+5x+7}{(x-3)^3}$$
 into partial fractions.

24. Resolve $\frac{x^3}{(x-a)(x-b)(x-c)}$ into partial fractions.

- 25. Resolve $\frac{2x+3}{(x-1)^3}$ into partial fractions.
- 26. A and B are events with P(A) = 0.5, P(B) = 0.4 and $P(A \cap B) = 0.3$. Find the probability that (i) A does not occur (ii) neither A nor B occurs.
- 27. State and prove Multiplication Theorem of Probability.

Section - C

Long Answer type questions.

- (i) Answer any FIVE questions.
- (ii) Each question carries seven marks.

28. If
$$\alpha$$
, β are the roots of the equation $x^2 - 2x + 4 = 0$, then for any $n \in N$, show that

$$\alpha^n + \beta^n = 2^{n+1} \cos\left(\frac{n\pi}{3}\right).$$

- 29. Let *a*, *b*, $c \in \mathbf{R}$ and $a \neq 0$ such that the equation $ax^2 + bx + c = 0$ has real roots α , β with $\alpha < \beta$. Prove that the expression $ax^2 + bx + c$ and '*a*' have same sign when $x < \alpha$ or $x > \beta$.
- 30. Solve $x^4 4x^2 + 8x + 35 = 0$, given that $2 + i\sqrt{3}$ is a root.
- 31. Find the polynomial equation whose roots are the translates of the roots of the equation $x^4 5x^3 + 7x^2 17x + 11 = 0$ by -2.
- 32. If the letters of the word PRISON are permuted in all possible ways and the words thus formed are arranged in dictionary order, then find the rank of the word PRISON.
- 33. Find the numerically greatest terms in the expansion of $(3x 4y)^{14}$ when x = 8, y = 3.
- 34. In a box containing 15 bulbs, 5 are defective. If 5 bulbs are selected at random from the box, then find the probability of the event that
 - (i) none of them is defective
 - (ii) only one of them is defective
 - (iii) atleast one of them is defective
- 35. If A, B, C are three independent events of a random experiment such that $P(A \cap \overline{B} \cap \overline{C}) = \frac{1}{4}$, $P(\overline{A} \cap B \cap \overline{C}) = \frac{1}{8}$, $P(\overline{A} \cap \overline{B} \cap \overline{C}) = \frac{1}{4}$ then find P(A), P(B) and P(C).

Turn Over

5×7=35

- 36. Let X be a random variable such that P(X = -2) = P(X = -1) = P(X = 2) = P(X = 1)= $\frac{1}{6}$ and $P(X = 0) = \frac{1}{3}$. Find the mean and variance of X.
- 37. If the difference between the mean and variance of a binomial variate is $\frac{5}{9}$, then find the probability for the event of 2 successes when the experiment is conducted five times.