HSC 12TH STANDARD

CHEMISTRY

MODEL QUESTION PAPER-III

TIME: 2.30 HOURS MARKS: 70

Note:	Draw diagrams and write	e equations wl	nere ever nece	ssary.		
Note:	(i) Answer all the questio (ii) Choose the most suita			$15 \times 1 = 15$ four alternatives.		
1.	H ₃ PO ₃ is a powerful reducin	g agent becaus	e it has.			
	(a) O-H bond (b) P-	O bond (c) O-	P bond	(d) P-H bond		
2.	Paramagnetism is the proper	rty of				
	(a) Paired electrons	(b) Complete	ly filled electroi	nic subshells.		
	(c) Unpaired electrons	(d) Complete	ly Vacant electr	onic subshells.		
3.						
	Statement (II): One 4f electro	on show perfec	shielding by a	nother in the same subshell.		
	(a) Statement (1) is correct but Statement (II) is false.					
	(b) Statement (I) and (II) are correct and Statement (II) is the correct explanation					
	of Statement (I)					
	(c) Statement (I) is false but	Statement (II) i	s correct			
	(d) Statement (I) and (II) are o	correct and State	ement (II) is not	correct explanation of Statement (I)		
4.	The geometry of complex ion	n [Fe(CN) ₆] ⁴⁻ is				
	(a) tetrahedral	(b) Square pla	nnar			
	(c) Octahedral	(d) Triangula	r			
5.	Fill in the blank					
	$_{11}Na^{23} + $?	$Mg^{23} + On^1$				
(a	$a) \propto (b) d$	(c) p	(d) n			

6.	The enthalpy of vapor 75 J mol ⁻¹ K ⁻¹ its boiling		liquid is 30	KJmol ⁻¹ and	entropy	of vap	pouriztion	is
	(a)600K (b) 500K	(c) 400K	(d) 300K					
7.	In the reversible reaction	$n \ 2HI \rightleftharpoons H_2 + I_2$, Kp is					
	(a) greater than Kc	(b) less than ?	Кс					
	(c) Equal to Kc	(d) Zero						
8.	NH ₄ OH is a weak base l	pecause						
	(a) it has low vapour pressure.							
	(b) it is only partially ion	nized.						
	(c) it is completely ioniz	ed.						
	(d) it has low density.							
9.	Consider the following Statements.							
	(I) Order of a reaction may be zero, fractional or integral values.							
	(II) Order of a reaction can be determined theoretically.							
	(III) Higher order reactions are not common.							
	Which of the above Stat	ement/s is/are	not correct?					
	(a) I and III	(b) I and II						
	(c) I,II and III	(d) II and III						
10.	Match the List-I and Lis	st-II correctly l	by using the co	de given belov	V.			
	List-I			List-II				
	(A) Haber's p	rocess	(1) C	Cupric chloride	2			
	(B) Contact P	rocess	(2) F	erric Oxide				
	(C) Deacon's	process	(3) F	inely divided	ron			
	(D) Bosch's pr	rocess	(4) p	latinized asbe	stos			

Codes;		(A)	(B)	(C)	(D)			
	(a)	(3)	(4)	(2)	(1)			
	(b)	(3)	(4)	(1)	(2)			
	(c)	(4)	(3)	(1)	(2)			
	(d)	(2)	(1)	(4)	(3)			
11. A c	compoi	and tha	t under	goes bro	omination easily is			
(a)	Benzo	ic acid						
(b)	Benze	ne						
(c)	pheno	1						
(d)) toluen	ie						
12. Die	ethyletl	her can	be deco	ompose	d with			
(a)	HI			(b) KN	MnO_4			
13. Be	nzophe	enone d	oes not	form a	dditional product with sodium bisulphite because.			
(a)	Steric	hindrar	nce of p	henyl g	roups			
(b)	(b) phenyl groups reduce the activity							
(c)	(c) phenyl groups increase the activity.							
(d)	Both a	and b						
14. The	e oil of	winter	green is	8				
(a)	methy	l acetat	e					
(b)	methy	l oxalat	te					
(c)	methy	l salicyl	late					
(d)) methy	l forma	ite					

15. Which one of the following is a tertiary amine (a) Ethyl amine (b) Dimethyl amine (c) tert- butyl amine (d) trimethyl amine **Section -II** Answer any six questions and question number 21 is compulsory 6x2=1216. State Heisenberg Uncertainty Principle. 17. Calculate the electro-negativity values of fluorine on Mulliken's scale given that (Ionization potential) F= 17.4 ev/atom, (Electron affinity) F=3.62 ev/atom. 18. What is the action of heat on copper sulphate crystals? 19. Write a note on the assignment of atoms per unit cell in fcc. 20. What is common ion effect? Give example. 21. Determine the standard emf of the cell and predict its feasibility. Ag, Ag $\prod H^+$, $H_{2(g)}$ l atm, pt The Standard reduction potential of Ag⁺, Ag is 0.80v 22. How do you distinguish the three isomers of di-substituted Benzene using DPM(Dipole moment value)? 23. Why sucrose is a non reducing sugar? 24. What are food preservatives? Give example. Section - III Answer any six questions and question number 31 is compulsory. 6x3 = 1825. Mention the uses of Helium. 26. How Lanthinides are extracted from Monazite sand? 27. Explain coordination and ionization isomerism with suitable examples.

28. Derive a general relationship between Kp and Kc for a equilibrium reaction.

30.	Explain electro osmosis.				
31.	Identify (B),(C) and (D)				
	$ \begin{array}{c} O \\ \parallel \\ CH_3\text{-C-CH}_3 \end{array} $ (A) $\xrightarrow{\text{LiAlH}_4}$ (B) $\xrightarrow{\text{SOCl}_2}$ (C) $\xrightarrow{\text{alc.KOH}}$ (D)				
32.	Give the mechanism involved in the esterification of a carboxylic acid with alcohol.				
33.	How can the following conversion be effected?				
	(a) Nitrobenzene to anisole				
	(b) Aniline to Iodobenzene.				
	Section -IV				
Ans	Answer all the questions				
34.		(3)			
	(ii) How Ionization energy is affected by atomic size and nuclear charge.	(3)			
	(or)				
	(i) Discuss the chemistry behind Holme's signal.	(2)			
	(ii) Explain the extraction of zinc from its ore.	(3)			
35.	(i) Write the common and maximum Oxidation state of lanthanides.				
	(ii) Mention the function of haemoglobin.				
	(or)				
	(i) What is Spallation reaction?	(2)			
	(ii) Give the uses of radio active isotopes in medicine.	(3)			
36.	(i) Explain Bragg's Spectrometer method.	(3)			
	(ii) State Lechatelier's principle.	(2)			

29. Distinguish between simple and complex reaction.

	(1) State various Statements of 11 law of thermodynamics.	(3)			
	(ii) The initial rate of a first Order reaction is 5.2×10^{-6} mol lit ⁻¹ S ⁻¹ at 298k. When the concentration of reactant is 2.6×10^{-3} mol. lit ⁻¹ calculate the first order rate constant of the concentration of reactant is 2.6×10^{-3} mol. lit ⁻¹ calculate the first order rate constant of the concentration of reactant is 2.6×10^{-3} mol. lit ⁻¹ calculate the first order rate constant of the concentration of reactant is 2.6×10^{-3} mol. lit ⁻¹ calculate the first order rate constant of the concentration of the concentration of reactant is 2.6×10^{-3} mol. lit ⁻¹ calculate the first order rate constant of the concentration of the concentrat				
	reaction at same temperature.	(2)			
37.	(i) Derive Henderson equation.	(3)			
	(ii) Using IUPAC convention write the cell diagram for zinc-copper cell.	(2)			
	(or)				
	(i) Describe the conformations of cyclohexanol, comment on their stability.	(3)			
	(ii) Give the possible Ether isomers for molecular formula $C_4H_{10}O$.	(2)			
38.	8. (i) An organic compound (A) of molecular formula C_6H_6O gives violet colour with neutral C_6H_6O gives violet C_6H_6O gives violet colour with neutral C_6H_6O gives violet C_6H_6O gi				
	(A) gives maximum of two isomers (B) and (C) when an alkaline solution of (A) is rewith CCl (A) also reacts C H N Cl to give compound (D) which is a red orange dye. In				
	(A),(B),(C) and (D). Explain with suitable chemical reaction.	(5)			
	(i) How is the Structure of glucose elucidated.	(3)			
	(ii) What are chromophores? Give examples.	(2)			