2019

MATHEMATICS

(New Course)

(FOR REGULAR CANDIDATES WITH PRACTICALS/ INTERNAL ASSESSMENT)

Full Marks : 80
Pass Marks: 24

Time : 3 hours

The figures in the margin indicate full marks for the questions

General Instructions :

(i) The question paper consists of 30 questions divided into five Sections-A, B, C, D and E.
(ii) Section-A contains 8 questions of 1 mark each. Section-B contains 7 questions of 2 marks each. Section-C contains 8 questions of 3 marks each. Section-D contains 4 questions of 4 marks each. Section-E contains 3 questions of 6 marks each.
(iii) There is no overall choice. However an internal choice has been provided in three questions of 3 marks each, two questions of 4 marks each and two questions of 6 marks each.
(iv) In question on construction, the drawing should be neat and exactly as per the given measurements.
(v) Questions which are meant for Visually Handicapped (Blind) Students, should be answered by them only.
(vi) Use of Calculator/Mobile Phone is not permitted.

(2)

(Question Nos. 1 to 8 carry 1 mark each)

1. If $\frac{a}{b}$ is a rational number $(b \neq 0)$ in its lowest form, then what is the condition on b so that the decimal representation of $\frac{a}{b}$ is terminating?
2. Check, whether $x=-2$ is a solution of the equation $x^{2}-3 x+2=0$ or not.
3. Find the 17 th term of the sequence $a_{n}=4 n-3$.
4. Find the value of $x\left(0^{\circ}<x<90^{\circ}\right)$ in $\tan 5 x=1$.
5. Determine whether the given sides $a=7 \mathrm{~cm}, b=24 \mathrm{~cm}$ and $c=25 \mathrm{~cm}$ are sides of a right-angled triangle or not.
6. State SSS-similarity criterion.

(3)

7. Find the circumference of a circle whose diameter is 35 cm . (Use $\pi=\frac{22}{7}$)
8. Define class-mark of a class interval.

SECTION—B

(Marks: 14)
(Question Nos. 9 to 15 carry 2 marks each)
9. Determine k so that $k+2,4 k-6,3 k-2$ are the three consecutive terms of an A.P.
10. Evaluate :

$$
\frac{4}{\cot ^{2} 30^{\circ}}+\frac{1}{\sin ^{2} 60^{\circ}}-\cos ^{2} 45^{\circ}
$$

11. Prove that

$$
2 \cos ^{2} \theta+\frac{2}{1+\cot ^{2} \theta}=2
$$

12. Find the coordinates of the centroid of the triangle whose vertices are $(-2,3),(2,-1)$ and $(4,0)$.

(4)

13. If the point $P(x, y)$ is equidistant from the points $A(5,1)$ and $B(1,5)$, then prove that $x=y$.
14. The areas of two similar triangles $A B C$ and $P Q R$ are in the ratio $9: 16$. If $B C=4.5 \mathrm{~cm}$, find the length of $Q R$.
15. If the tangent at a point P to a circle with centre O cuts a line through O at Q such that $P Q=24 \mathrm{~cm}$ and $O Q=25 \mathrm{~cm}$, then find the radius of the circle.

[For Visually Handicapped (Blind) Students only, instead of Question No. 15 given above]

15. (a) Define a circle.
(b) How many tangents can be drawn from a point outside the circle?
(Marks: 24)
(Question Nos. 16 to 23 carry 3 marks each)
16. Using ruler and compass only, construct a $\triangle P Q R$ with sides $Q R=7 \mathrm{~cm}, P Q=6 \mathrm{~cm}$ and $\angle P Q R=60^{\circ}$. Then construct another triangle whose sides are $\frac{3}{5}$ th of the corresponding sides of $\triangle P Q R$. (Only traces of construction are required.)

(5)

[For Visually Handicapped (Blind) Students only, instead of Question No. 16 given in Page No. 4]

16. (a) In a right-angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
(State whether True or False) 1
(b) Define similar triangles.
17. In the adjoining figure,

$\triangle A B C$ is such that $\frac{B D}{D C}=\frac{A B}{A C}, \angle B=70^{\circ}, \angle C=50^{\circ}$. Find $\angle B A D$.
Or
In the given figure,

find $P T$, if $O P=41 \mathrm{~cm}$ and $O T^{\prime}=9 \mathrm{~cm}$.

(6)

[For Visually Handicapped (Blind) Students only, instead of Question No. 17 given in Page No. 5]

17. (a) Define secant of a circle.
(b) A tangent to a circle is \qquad to the radius through the point of contact.
(Fill in the blank) 1
(c) Two triangles are said to be equiangular, if their corresponding angles are \qquad .
(Fill in the blank) 1
18. A steel wire when bent in the form of a square encloses an area of $121 \mathrm{~cm}^{2}$. If the same wire is bent in the form of a circle, then find the area of the circle. (Use $\pi=\frac{22}{7}$)
Or

The minute hand of a clock is 7 cm long. Find the area of the face of the clock by the minute hand between 9 A.M. and 9:35 A.M. (Use $\pi=\frac{22}{7}$)
19. A box contains 20 cards numbered from 1 to 20 . A card is drawn at random from the box. Find the probability that the number on the drawn card is-
(a) divisible by 2 or 3 ;
(b) a prime number.
20. Using Euclid's division algorithm, find the HCF of 9367 and 3451.

(7)

21. Find the sum of the following series :

$$
72+70+68+\ldots+40
$$

22. If α, β are zeroes of the polynomial $p(x)=3 x^{2}-2 x-6$, then find $\alpha^{2}+\beta^{2}$.
23. Prove that

$$
\frac{\sin 70^{\circ}}{\cos 20^{\circ}}+\frac{\operatorname{cosec} 20^{\circ}}{\sec 70^{\circ}}-2 \cos 70^{\circ} \cdot \operatorname{cosec} 20^{\circ}=0
$$

Or
If $\tan \theta=\frac{a}{b}$, then show that

$$
\frac{a \sin \theta-b \cos \theta}{a \sin \theta+b \cos \theta}=\frac{a^{2}-b^{2}}{a^{2}+b^{2}}
$$

SECTION-D
(Marks: 16)
(Question Nos. 24 to 27 carry 4 marks each)
24. The product of Reena's age (in years) 5 years ago and her age 8 years later is 30 . Find her present age.

Or
The area of a rectangle gets reduced by 80 square units, if its length is reduced by 5 units and the breadth is increased by 2 units. If we increase the length by 10 units and decrease the breadth by 5 units, the area is increased by 50 square units. Find the length and breadth of the rectangle.

X/19/M (N)/5

(8)

25. A kite is flying at a height of 75 m from the level ground, attached to a string inclined at 60° to the horizontal. Find the length of the string, assuming that there is no slack in it. (Use $\sqrt{3}=1 \cdot 73$)
Or

A vertically straight tree, 15 m high, was broken by the wind in such a way that its top just touched the ground and made an angle of 60° with the ground. At what height from the ground did the tree break? (Use $\sqrt{3}=1 \cdot 732$)

[For Visually Handicapped (Blind) Students only, instead of Question No. 25 given above]

25. (a) If $\sec \theta+\tan \theta=m$ and $\sec \theta-\tan \theta=n$, then prove that $m n=1$.
(b) If $\sin \theta=\cos \theta$, then $\theta=45^{\circ}$.
(State whether True or False)
(c) $1+\cot ^{2} \theta=$ \qquad .
(Fill in the blank) 1
26. Find the value of ' p ' for which the given points $(-3,9),(2, p)$ and $(4,-5)$ are collinear.

(9)

27. Prove that, if a line is drawn parallel to one side of a triangle intersecting the other two sides, then the other two sides are divided in the same ratio.

[For Visually Handicapped (Blind) Students only, instead of Question No. 27 given above]

27. (a) What is the length of the altitude of an equilateral triangle of side 2 cm ?
(b) State mid-point theorem.

SECTION-E
(Marks: 18)
(Question Nos. $\mathbf{2 8}$ to $\mathbf{3 0}$ carry 6 marks each)
28. Solve the following system of linear equations graphically :

$$
\begin{array}{r}
x-y+1=0 \\
3 x+2 y-12=0
\end{array}
$$

Find the area of the triangle formed by the lines and x-axis (plot at least three points for each graph).

[For Visually Handicapped (Blind) Students only, instead of Question No. 28 given in Page No. 9]

28. Solve the following system of linear equations :

$$
\begin{aligned}
& 2 x-3 y=13 \\
& 7 x-2 y=20
\end{aligned}
$$

29. A metallic bucket, open at the top, of height 24 cm is in the form of the frustum of a cone, the radii of whose lower and upper circular ends are 7 cm and 14 cm respectively.
(a) Find the volume of water which can completely fill the bucket.
(b) Find the area of the metal sheet used to make the bucket. (Use $\pi=\frac{22}{7}$)

> Or

From a solid cylinder whose height is 8 cm and radius 6 cm , a conical cavity of height 8 cm and of base radius 6 cm is hollowed out. Find the volume of the remaining solid. Also, find the total surface area of the remaining solid. (Use $\pi=3 \cdot 14$)

(11)

30. The following distribution shows the daily pocket allowances of children of a locality. The mean pocket allowance is $₹ 18$. Find the missing frequency f :

Daily pocket allowance (in ₹)	$11-13$	$13-15$	$15-17$	$17-19$	$19-21$	$21-23$	$23-25$
Frequency	7	6	9	13	f	5	4

Or

The following table shows the ages of the patients admitted in a hospital during a year :

Age (in years)	$5-15$	$15-25$	$25-35$	$35-45$	$45-55$	$55-65$
No. of patients	6	11	21	23	14	5

Find the mode of the data given above.

