SAMPLE PAPER 2021-22

CLASS XII
MATHEMATICS (TERM-II)

Time: 2 Hours

Max. Marks: 40

INSTRUCTIONS:

1. All the questions are compulsory.
2. The question paper consists of 11 questions divided into 3 sections A, B and C.
3. Section A comprises of 5 questions of 2 marks each.
4. Section B comprises of 3 questions of 4 marks each.
5. Section C comprises of 3 questions of 6 marks each.
6. There is no overall choice. However, an internal choice has been provided in two questions of 2 marks, two questions of 4 marks and two questions of 6 marks each. You have to attempt only one of the alternatives in all such questions.
7. Use of calculator is not allowed.

SECTION-A

1. Find the equation of the line passing through two points $(1,2)$ and $(3,6)$ using determinants.
2. Evaluate $\int \tan ^{2} x d x$.

Or
Evaluate $\int \sin 2 x \sin 3 x d x$.
3. Evaluate $\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$.
4. Determine the order and degree of the differential equation given by $x\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\left(\frac{d y}{d x}\right)^{4}+$ $x^{3}=0$. Also, write the number of arbitrary constants in its general solution.

Or
Find the particular solution of the differential equation $\cos \left(\frac{d y}{d x}\right)=a(a \in \mathbb{R}), y=2$ When $x=0$.
5. Find the value of k so that the lines $\frac{x-3}{2}=\frac{y+1}{3}=\frac{z-2}{2 k}$ and $\frac{x+2}{1}=\frac{4-y}{k}=\frac{z+5}{1}$ are at right angles.

SECTION-B

6. Evaluate $\int \frac{1}{(x+1)(x+2)(x+3)} d x$.

Or
Evaluate $\int_{1}^{3}\left(3 x^{2}+2 x\right) d x$ as limit of sum.
7. Find the area of the region bounded by the two parabolas $y^{2}=x$ and $x^{2}=y$.
8. Solve the differential equation: $x \frac{d y}{d x}+2 y=x^{2} \log x$.

Or
Solve the differential equation: $(x-y) d y-(x+y) d x=0$.

SECTION-C

9. Using matrix method, solve the system of equations given by $x-y+z=4,2 x+y-$ $3 z=0, x+y+z=2$.
Or
Show that $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$ satisfies the equation $A^{2}-4 A-5 I=O$. Hence, find A^{-1}.
10. Find the shortest distance between the lines given by

$$
\vec{r}=\hat{\imath}+2 \hat{\jmath}+\hat{k}+\lambda(\hat{\imath}-\hat{\jmath}+\hat{k}) \text { and } \vec{r}=2 \hat{\imath}-\hat{\jmath}-\hat{k}+\mu(2 \hat{\imath}+\hat{\jmath}+2 \hat{k})
$$

Or
Find the equation of the plane through the intersection of the planes $3 x-y+2 z-4=0$ and $x+y+z=2$ and the point $(2,2,1)$
11. Graphically maximize and minimize $Z=7 x+2 y$ subject to the constraints:

$$
x-2 y \leq 2,3 x+2 y \leq 12,-3 x+2 y \leq 3, x \geq 0, y \geq 0
$$

