Total No. of Printed Pages-7
HS/XII/A. Sc. Com/M/19

2019

MATHEMATICS

Full Marks : 100
Time : 3 hours

General Instructions :
(i) Write all the answers in the Answer Script.
(ii) The question paper consists of three Sections-A, B and C .
(iii) Section-A consists of 15 questions, carrying 2 marks each.
(iv) Section-B consists of 10 questions, carrying 4 marks each, out of which 2 questions have internal choices.
(v) Section-C has 5 questions, carrying 6 marks each, out of which 2 questions have internal choices.

SECTION-A

1. Show that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{3}$ is one-one and onto.
2. Evaluate :

$$
\sin \left\{\frac{\pi}{3}-\sin ^{-1}\left(-\frac{1}{2}\right)\right\}
$$

(2)

3. If $A=\left[\begin{array}{cc}1 & 3 \\ -2 & 5\end{array}\right]$ and $B=\left[\begin{array}{cc}-2 & 5 \\ 3 & 4\end{array}\right]$, then find $A-4 B$.
4. Express the matrix $A=\left[\begin{array}{cc}2 & 3 \\ -1 & 4\end{array}\right]$ as a sum of a symmetric and a skew-symmetric matrix.
5. For what value of k the function

$$
\begin{aligned}
f(x) & =\frac{k \cos x}{\pi-2 x}, \text { when } x \neq \frac{\pi}{2} \\
& =3 \quad, \text { when } x=\frac{\pi}{2}
\end{aligned}
$$

is continuous at $x=\frac{\pi}{2}$?
6. Show that

$$
\frac{d}{d x}(\sin 2 x \sin 4 x)=3 \sin 6 x-\sin 2 x
$$

7. The side of a square sheet of metal is increasing at 3 cm per minute. At what rate the area is increasing when the side is 10 cm long?
8. Evaluate :

$$
\int_{-\pi / 2}^{\pi / 2}|\sin x| d x
$$

9. Solve the equation

$$
\log \left(\frac{d y}{d x}\right)=a x+b y
$$

(3)

10. Evaluate :

$$
\int e^{x}\left(\frac{1+x \log x}{x}\right) d x
$$

11. Find the value of the integral

$$
\int_{0}^{\pi / 2} \frac{\sin x}{1+\cos ^{2} x} d x
$$

12. Find the unit vector perpendicular to both \vec{a} and \vec{b} where

$$
\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k} \text { and } \vec{b}=2 \hat{i}+3 \hat{j}-\hat{k}
$$

13. Find the value of k so that the lines

$$
\frac{1-x}{3}=\frac{7 y-14}{2 k}=\frac{z-3}{2} \text { and } \frac{7-7 x}{3 k}=\frac{5-y}{1}=\frac{6-z}{5}
$$

are at right angles.
14. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0$, find the value of

$$
\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}
$$

15. The probability that a student selected at random from a class will pass in Hindi is $\frac{4}{5}$ and the probability that he passes in Hindi and English is $\frac{1}{2}$. What is the probability that he will pass in English if it is known that the student has passed in Hindi?

(4)

SECTION-B

16. Let \mathbb{N} be the set of natural numbers and let R be a relation on $\mathbf{N} \times \mathbb{N}$ defined by

$$
(a, b) R(c, d) \Leftrightarrow a d=b c
$$

Prove that R is an equivalence relation.
17. Using the properties of determinants, show that

$$
\left|\begin{array}{lll}
1 & a & a^{2}-b c \\
1 & b & b^{2}-c a \\
1 & c & c^{2}-a b
\end{array}\right|=0
$$

18. If $x=\frac{1+\log t}{t^{2}}$ and $y=\frac{3+2 \log t}{t}$, then show that $\frac{d y}{d x}=t$.
19. Evaluate :

$$
\int\left(\sin ^{-1} x\right)^{2} d x
$$

20. Using differential, find the approximate value of $\sqrt[3]{127}$.
21. Find the interval in which the function $f(x)=5+36 x+3 x^{2}-2 x^{3}$ is (a) strictly increasing and (b) strictly decreasing.

(5)

Or
Find the equation of the tangent to the curve $x^{2}+3 y=3$ which is parallel to the line $y-4 x+5=0$.
22. Using the properties of definite integral, show that

$$
\int_{\pi / 6}^{\pi / 3} \frac{1}{1+\sqrt{\tan x}} d x=\frac{\pi}{12}
$$

23. Evaluate the following integral as the limit of a sum :

$$
\int_{1}^{4}\left(3 x^{2}+2 x\right) d x
$$

24. Find the equation of the plane passing through the point $(1,0,-2)$ and perpendicular to each of the planes $2 x+y-z-2=0$ and $x-y-z-3=0$.

> Or

Find the length and foot of the perpendicular from the point $(7,14,5)$ to the plane $2 x+4 y-z=2$.
25. Find the shortest distance between the lines

$$
\begin{aligned}
& \vec{r}=(6 \hat{i}+3 \hat{k})+\lambda(2 \hat{i}-\hat{j}+4 \hat{k}) \text { and } \\
& \quad \vec{r}=(-9 \hat{i}+\hat{j}-10 \hat{k})+\mu(4 \hat{i}+\hat{j}+6 \hat{k})
\end{aligned}
$$

(6)

SECTION-C

26. Using integration, find the area of the region in the first quadrant enclosed by the X-axis, the line $y=x$ and the circle $x^{2}+y^{2}=32$.
27. Using matrices, solve the following system of equations :

$$
\begin{aligned}
& \frac{2}{x}-\frac{3}{y}+\frac{3}{z}=10 \\
& \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=10 \\
& \frac{3}{x}-\frac{1}{y}+\frac{2}{z}=13
\end{aligned}
$$

28. Show that the maximum volume of the cylinder which can be inscribed in a sphere of radius $5 \sqrt{3} \mathrm{~cm}$ is $(500 \pi) \mathrm{cm}^{3}$.

Or

A window is in the form of a rectangle, surmounted by a semicircular opening. The total perimeter of the window is 10 metres. Find the dimensions of the window to admit maximum light through it.
29. A box contains 16 bulbs, out of which 4 bulbs are defective. 3 bulbs are drawn one by one from the box without replacement. Let X be the number of defective bulbs drawn. Find the mean and variance of X.

(7)

30. A manufacturer produces two types of steel trunks. He has two machines A and B. The first type of trunk requires 3 hours on machine A and 3 hours on machine B. The second type requires 3 hours on machine A and 2 hours on machine B. Machines A and B can work at most 18 hours and 15 hours per day respectively. He earns a profit of $₹ 30$ and $₹ 25$ per trunk of first and second type respectively. How many trunks of each type must he make each day to make maximum profit?

Or

Two tailors A and B, earn $₹ 300$ and $₹ 400$ per day respectively. A can stitch 6 shirts and 4 pairs of trousers per day while B can stitch 10 shirts and 4 pairs of trousers per day. How many days should each of them work if it is desired to produce at least 60 shirts and 32 pairs of trousers at a minimum labour cost?

