SUBJECTIVE TYPE QUESTIONS (MATHEMATICS)

Lesson- 1 REAL NUMBERS (3 marks questions)

Q 1. Use Euclid's algorithm to find the HCF of 6 and 20.

remainder= 0 and divisor= 2

Q 2. Use Euclid's algorithm to find the HCF of 65 and 135.

Solution:

remainder = 0 and divisor= 5

$$HCF(65,135) = 5$$

Q 3. Express 20 as prime factors.

Solution:

=
$$2^2 \times 5^1$$
 ans.

Q 4. Express 156 as prime factors.

$$156 = 2 \times 2 \times 3 \times 13$$

2	156	
2	78	
3	39	

13

=
$$2^2 \times 3^1 \times 13^1$$
 ans.

Q 5. Find the LCM of 18 and 12

$$18 = 2 \times 3 \times 3$$

$$=2^{1}\times3^{2}$$

$$12 = 2 \times 2 \times 3$$

$$=2^{2}\times3^{1}$$

LCM = Product of the greatest po-wer of each prime factor

LCM =
$$3^2 \times 2^2 = 3 \times 3 \times 2 \times 2 = 36$$

Q 6. Express $\frac{30}{8}$ into decimal form.

$$\frac{30}{8} = \frac{2^1 \times 3^1 \times 5^1}{2 \times 2 \times 2} = \frac{2^1 \times 3^1 \times 5^1}{2^3} \times \frac{5^3}{5^3} = \frac{2^1 \times 3^1 \times 5^1 \times 5^3}{2^3 \times 5^3}$$

$$= \frac{2 \times 3 \times 5 \times 5 \times 5 \times 5}{10 \times 10 \times 10} = \frac{2 \times 3 \times 5 \times 5^{3}}{10^{3}} = \frac{3750}{1000} = 3.75$$

Q 7. Express 0.75 as rational number.

$$0.75 = \frac{75}{100}$$
 Ans.

Q 8. Identify the rational and irrational numbers.

(i)
$$\frac{75}{2}$$

Solution.

rational numbers =
$$\frac{75}{2}$$
 0.375

 $\sqrt{2}$

irrational number= $\sqrt{2}$

(4 marks Questions)

Q 9. Find the LCM of 8, 9 and 25.

Solution:

$$8=2\times2\times2=2^3$$

$$9 = 3 \times 3 = 3^2$$

$$25 = 5 \times 5 = 5^2$$

LCM = Product of the greatest power of each prime factor involved in the numbers.

LCM =
$$2^3 \times 3^2 \times 5^2 = 8 \times 9 \times 25 = 180$$

Q 10. Find the HCF of 15,12 and 21

Solution:

$$15 = 3 \times 5 = 3^{1} \times 5^{1}$$

$$12 = 2 \times 2 \times 3 = 2^2 \times 3^1$$

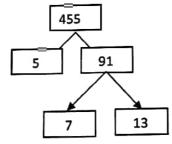
$$21 = 3 \times 7 = 3^{1} \times 7^{1}$$

HCF = Product of the smallest power of each common prime factor in the number.

$$HCF = 3^1 = 3$$

Q 11. Express 455 as a product of prime factors (using factor tree method)

Solution:

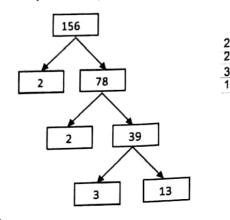


5	455	
7	91	
13	13	
	1	

 $455 = 5 \times 7 \times 13$

Q 12. Express156 as a product of prime factor. (By using factor tree method)

Solution:



::156 = 2×2×3×13

Q 13. Given that HCF (26, 91) = 13, find LCM (26, 91)

Solution:

$$13 \times LCM = 26 \times 91$$

$$LCM = \frac{26 \times 91}{13} = 182$$

Q 14. Given that HCF (15, 25) = 5, find LCM (15, 25)

Solution:

$$5 \times LCM = 15 \times 25$$

$$LCM = \frac{15 \times 25}{5} = 75$$

Q 15. Find the HCF and LCM of 6, 72 and 120, using the prime factorization method.

Solution:

$$6 = 2 \times 3 = 2^1 \times 3^1$$

$$72 = 2 \times 2 \times 2 \times 3 \times 3 = 2^3 \times 3^2$$

$$120 = 2 \times 2 \times 2 \times 3 \times 5 = 2^{3} \times 3^{1} \times 5^{1}$$

$$LCM = 2^3 \times 3^2 \times 5^1 = 2 \times 2 \times 2 \times 3 \times 3 \times 5 = 360$$

2	72	2	120
2	36	2	60
2	18	2	30
3	9	3	15
3	3	5	5

=360

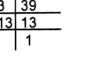
Q 16. Explain why 7×11×13+13 is composite number.

Solution:

$$7 \times 11 \times 13 + 13 = 13 (7 \times 11 + 1)$$

It is product of prime numbers.

∴ 7×11×13+13, is composite number

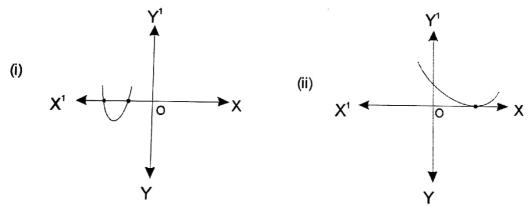


Q 1. Write the formula of sum and product of zeroes of quadratic polynomial ax_1^2bx+c whose zeroes are α and β

$$\alpha + \beta = \frac{-(coefficient of x)}{cofficient of x^2}$$

$$\alpha + \beta = \frac{constant term}{cofficient of x^2}$$

Q 2. Given below the graph of y = p(x), where p(x) is a polynomial. Find the number of zeroes of p(x).



Solution:

- (i) The number of zeroes is 2 as the graph intersects the x- axis at two points.
- (ii) The number of zeroes is 1 as the graph intersects the x-axis at one point only.
- 3. Find the zeroes of the quadratic polynomial $x^2 + 7x + 10$

Solution:
$$x^2 + 7x + 10$$

 $= x^2 + 5x + 2x + 10$
 $= x(x+5) + 2(x+5)$
 $= (x+5)(x+2)$
So the value of $x^2 + 7x + 10$ is zero
when $x+5=0$ or $x+2=0$
 $\therefore x=-5$ or $x=-2$
The zeroes of $x^2 + 7x + 10$ are -5 and -2

Q 4. Find the zeroes of the quadratic polynomial $x^2 - 2x - 8$

Solution:
$$x^2 - 2x - 8$$

= $x^2 - 4x + 2x - 8$

$$= x(x-4) + 2(x-4)$$

= x(x-4)(x+2)

So the value of equation $x^2 - 2x + 8$ is zero

when
$$x - 4 = 0$$
 or $x + 2 = 0$

$$\therefore x = 4 \text{ or } x = -2$$

The zeroes of equation $x^2 - 2x + 8$ are 4 and -2

Q 5. Divide $x^2 - 2x - 3$ by x - 1

Solution:

$$x-1$$
) $x^{2}-2x-3$ ($x-1$) $x^{2}-x$ $-x-3$ $-x+1$ reminder $x-4$

Ans: Quotient = x-1 and remainder = -4

Find the sum and product of zeroes of the polynomial whose zeroes are 4 and -2.

zeroes are
$$\alpha = 4$$
 and $\beta = -2$

Sum of zeroes =
$$\alpha + \beta = 4 - 2 = 2$$

product of zeroes=
$$\alpha\beta = 4 \times -2 = -8$$

Find the zeroes of the quadratic polynomial $x^2 - 4$

Solution:

$$x^{2}-4$$
= $(x^{2})-(2)^{2}$
= $(x+2)(x-2)$

The value of $x^2 - 4$ is zero

When
$$x + 2 = 0$$
 or $x - 2 = 0$

$$x = -2$$
 or $x = 2$

-2 and 2

Q 8. Divide $2x^2 + 3x + 1$ by x + 2

Solution:

$$x+2)$$
 $2x^{2}+3x+1$ $(2x-1)$ $2x^{2}+4x$ $-\frac{-x+1}{-x-2}$ reminder $\frac{-x+1}{3}$

Ans.: quotient = 2x-1 and remainder= 3

49

4 marks questions

Q 9. Divide $x^3 - 3x^2 + 5x - 3 by x^2 - 2$ Solution:

$$x^{2}-2)x^{3}-3x^{2}+5x-3 (x-3)$$

$$x^{3}-2x$$

$$-\frac{+}{-3x^{2}}+7x-3$$

$$-3x^{2}+6$$

$$+\frac{-7x-9}{-7x-9}$$

Answer: quotient = x-3 and remainder = 7x-9

Q 10. Find a quadratic polynomial, the sum and product of whose zeroes are -3 and 2 respectively.

Solution: let α and β are zeroes of the quadratic polynomial.

$$\therefore \alpha + \beta = -3 = \frac{-b}{a} \Rightarrow \text{ If } a = 1 \text{ then } b = 3 \text{ and } c = 2$$

$$\alpha \cdot \beta = 2 = \frac{c}{a}$$

Quadratic Polynomial $= \alpha x^2 + bx + c$ Answer: $x^2 + 3x + 2$

Q 11. Find sum and product of zeroes of a quadratic polynomial $x^2 - 9$

Solution: x^2-9 = $(x)^2-(3)^2$ = (x+3)(x-3)x+3=0 or x-3=0x=-3 or x=3Zeroes are -3 and 3Sum of zeroes =-3+3=0Product of zeroes $-3\times 3=-9$

Q 12. Find a quadratic polynomial, the sum and product of whose zeroes are 1 and -1 respectively

Solution: let α and β are zeroes of a quadratic polynomial.

$$\alpha + \beta = \frac{-b}{a}$$
 \Rightarrow if $a = 1$ then $b = 3$ and $c = 1$

$$\alpha \cdot \beta = \frac{c}{a} = 1 \Rightarrow$$

Quadratic polynomial = $ax^2 + bx + c = x^2 - x + 1$

Q 13. Find the sum and product of the zeroe of $x^2 + 7x - 3$

Solution: Sum of zeroes $\alpha + \beta = -\frac{(coefficient of x)}{coefficient of x^2}$ Product of zeroes α . $\beta = -\frac{costant term x}{coefficient of x^2} = \frac{-3}{1}$

50

Q 14. Find the zeroes of the quadratic polynomial $6x^2 - 7x = 3$, and verify the relationship between the zeroes and the co-efficients.

Solution:
$$6x^2 - 7x - 3$$

 $= 6x^2 - 9x + 2x - 3$
 $= 3x^2(2x - 3) + 1(2x - 3)$
 $= (3x + 1)(2x - 3)$
 $\therefore 3x + 1 = 0 \text{ or } 2x - 3 = 0$
 $3x = -1 \text{ or } 2x = 3$
 $x = \frac{-1}{3} \text{ or } x = \frac{3}{2}$

Q 15. Which of the following are the quadratic polynomials.

(i)
$$2y^2 - 3y + 4$$

(ii)
$$\frac{1}{x-1}$$

(iii)
$$x^2 - 4x - \sqrt{2}$$

(iv)
$$\sqrt{3}x + 2x^2 + 1$$

A polynomial of degree 2 is called quadratic polynomial.

(i) (iii) and (iv) are quadratic polynomials.

Q 16. Whether 2x-3 is factor of $6x^2-7x-3$

$$2x-3$$
) $6x^{2}-7x-3$ ($3x+1$) $6x^{2}-9x$

$$\frac{-+}{2x-3}$$

$$\frac{2x-3}{-+}$$
remainder 0

Ans: remainder is zero, therefore, 2x-3 is a factor of $6x^2-7x-3$

Lesson-3 PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

(3 marks questions)

Q 1. In equation x + y = 10 of x = 2 then find value of y

Solution:

Given
$$x + y = 10$$

Put value of x

$$2 + y = 10$$

$$y = 10 - 2 = 8$$

 \therefore value of y = 8

Q 2. In equation 2x+3y=14, if y=2 then find the value of x

Solution:

$$2x + 3y = 14$$

put value of y

$$2x + 3(2) = 14$$

$$2x + 6 = 14$$

$$2x = 14 - 6 = 8$$

$$x = \frac{8}{2} = 4$$

 \therefore value of x = 4

Q 3. By compairing the co-efficients of the pairs of linear equations $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$, define, which type of solution of these linear equation graphically?

Solution:

(i) if
$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$
 then interesting lines.

(ii) if
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$
 then lines coincide.

(iii) if
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$
 then lines are parallel.

Q 4. By compairing the coefficients of the pairs of linear equations $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ define, which type of solution of these linear equation graphically.

Solution:

(i) if
$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$
 then unique solution

(ii) if
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$
 then infinitely many solutions

(iii) if
$$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$
 then no solution

Q 5. In equations 5x + 7y + 12 = 0 and 4x + 8y + 5 = 0 write the value of $a_1, a_2, b_1, b_2, c_1, c_2$

$$a = 5$$

$$a_{1} = 4$$

$$b_{1} = 8$$

 $c_1 = 12$

Q 6. In equations 2x + 3y = 8 and 4x + 6y = 9, write the value of $a_1, a_2, b_1, b_2, c_3, c_4$

Solution:

$$a_1 = 2$$
 and $a_2 = 4$

$$b_1 = 3$$

$$b_2 = 6$$

$$c_1 = 8$$

$$c_{i} = 9$$

Q 7. Find out whether the pair of linear equations 5x+4y+8=0 and 7x+6y+9=0 has unique solution or not?

Solution:

$$\frac{a_1}{a_2} = \frac{5}{7}$$
, $\frac{b_1}{b_2} = \frac{4}{6}$ and $\frac{c_1}{c_2} = \frac{8}{9}$

 $\therefore \frac{a_1}{a_2} \neq \frac{b_1}{b_2} \therefore \text{ equations has unique solution.}$

Q 8. Whether graphical representation of the pair of equations 2x+3y+9=0 and 4x+6y+18=0 coincident or not?

Solution:

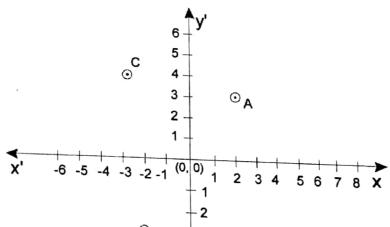
$$\frac{a_1}{a_2} = \frac{2}{4} = \frac{1}{2}$$

$$\frac{b_1}{b_2} = \frac{3}{6} = \frac{1}{2}$$

$$\frac{c_1}{c_2} = \frac{9}{18} = \frac{1}{2}$$

$$\therefore \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \therefore \text{ graphically lines coincide}$$

Q 9. Find the coordinates of points A, B and C from the following given graph.



Solution:

$$B(-2,-3)$$

(4 marks questions)

Q 10. Solve the pair of equations x + y = 5 and x - y = 15

Solution:
$$x + y = 5$$

add $x - y = 15$

$$2x = 20$$

$$x = \frac{20}{2} = 10$$

$$x = 10$$

$$x + y = 5$$

$$10 + y = 5$$
 (put value of x)
$$y = 5 - 10$$

$$y = -5$$

$$x = 10 \text{ and } y = -5$$

Q 11. Solve the pair of linear equations x+3y=6 and 2x-3y=12

Solution:
$$x+3y=6$$

$$2x-3y=12$$

$$3x = 18$$

$$x = \frac{18}{3} = 6$$

$$x+3y=6$$

$$6+3y=6$$

$$6+3y=6$$

$$3y=6-6=0$$

$$y=\frac{0}{3}=0$$

$$y=0$$

$$x=6 \text{ and } y=0$$

Q 12. On comparing the ratio of coefficients of pair of equations 5x + 6y + 7 = 0 and 7x + 12y + 8 = 0, find out whether the lines representing the graph intersect at a point, are parallel or coincident.

Solution:
$$5x + 6y + 7 = 0$$

 $7x + 12y + 8 = 0$
 $\frac{a_1}{a_2} = \frac{5}{7}, \qquad \frac{b_1}{b_2} = \frac{6}{12} = \frac{1}{2}, \quad \frac{c_1}{c_2} = \frac{7}{8}$
 $\therefore \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$

:. Lines intersect at a point and system has unique solution. Intersecting point is the solution of the equations.

Q 13. 5 pencils and 7 pen together cost ₹50, whereas 7 pencils and 5 pens together cost ₹ 46. Find the cost of one pencil and that of one pen.

Put y = 5 in equation 5x + 7y = 50 we get 5x + 7(5) = 50 5x = 50 - 35 5x = 15 $x = \frac{15}{5} = 3$

∴ cost of one pencil=₹3 cost of one pen=₹5

Q 14. The cost of 5 oranges and 3 apples is ₹ 35 and the cost of 2 oranges and 4 apples is ₹ 28. Find the cost of an orange and an apple.

let cost of an orange $\Rightarrow x$ cost of an apple $\Rightarrow x$ according to question: 5x + 3y = 35] $\times 2$

$$2x+4y=28)] \times 5$$

$$714y=70$$

$$y = \frac{70}{14} = 5$$

$$5x+3y=35$$

$$5x+3(5) = 35$$
 (put value of y)
$$5x+15 = 35$$

$$5x = 35-15 = 20$$

$$x = \frac{20}{5} = 4$$

∴ cost of an orange = ₹4

cost of an apple = ₹5

Q 14. For which value of P does the pair of equations given below has unique solutions? 4x + py + 8 = 0 and 2x + 2y + 2 = 0

$$\frac{a_1}{a_2} = \frac{4}{2} = \frac{2}{1}$$
, $\frac{b_1}{b_2} = \frac{p}{2}$, $\frac{c_1}{c_2} = \frac{8}{2} = \frac{4}{1}$

For unique solution:
$$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$

$$\frac{a_1}{a_2} \neq \frac{b}{b_1}$$

$$\frac{2}{1} \neq \frac{p}{2}$$

$$p \neq 4$$

Q 15. The difference between two numbers is 26 and one number is three times the other. Find them.

Solution:

Let one number =
$$x$$

according to question:
$$x-y=26---(i)$$

$$x = 3y - - - -(ii)$$

put value of
$$x$$
 in (i) we get

$$3y - y = 26$$

$$2y = 26$$

$$y = \frac{26}{2} = 13$$

Put value of y in equation x - y = 26

$$x-13=26$$

$$x = 26 + 13 = 39$$

Q 16. Solve the pair of equation x+2y-4=0 and 2x+4y-12=0 graphically

$$x+2y-4=0$$

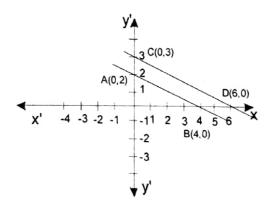
	<u> </u>	
x	0	4
у	2	0

$$2x + 4y - 12 = 0$$

C D					
x	0	6			
у	3	0			

We observe from graph that lines are parallel.

... pair of equation has no solution



Lesson -4 QUADRATIC EQUATIONS

(3 marks equations)

Q 1. (i) Write the standard form of a quadratic equation.

(ii) Write the formula of discriminant (D) of the quadratic equation.

Solution:

(i)
$$ax^2 + bx + c = 0$$
 where $a \ne 0$

(ii)
$$D = b^2 - 4ac$$

Q 2. Check whether $(x+1)^2 = 7$ is quadratic equations?

Solution:

$$(x+1)^2 = 7$$

$$x^2 + 2x + 1 = 7$$

$$x^2 + 2x + 1 - 7 = 0$$

$$x^2 + 2x - 6 \equiv 0$$

highest power of x = 2

$$(x+1)^2 = 7$$
 is a quadratic equation.

Q 3. Check whether $x^2 - 2x = -x(3-x)$ is a quadratic equation?

Solution:

$$x^2 - 2x = -x(3-x)$$

$$x^2 - 2x = -3x + x^2$$

$$x^2-2x+3x-x^2=0$$

$$x = 0$$

highest power of x = 1

$$x^2 - 2x = -x(3-x)$$
 is not a quadratic equation.

Q 4. Find the roots of the quadratic equation $x^2 - 3x - 10 = 0$ by factorisation

Solution:

$$x^2 - 3x - 10 = 0$$

$$x^2 - 5x + 2x - 10 = 0$$

$$x(x-5)+2(x-5)=0$$

$$(x-5)(x+2)=0$$

$$(x-5)$$
 or $(x+2)=0$

$$(x-5)$$
 or $x=-2$

$$x = 5, -2$$

roots of the quadratic equation are 5 and -2

Q 5. Find the discrimination of the quadratic equation $x^2 + 5x + 2 = 0$

Solution:

$$x^2 + 5x + 2 = 0$$

$$ax^2 + bx + c = 0$$
 (standard form)

$$a = 1, b = 5, c = 2$$

$$D=b^2-4ac$$

$$=(5)^2-4(1)(2)$$

$$= 25 - 8 = 17$$

$$D = 17$$

Q 6. Write the conditions of nature of roots of $ax^2 + bx + c = 0$

Solution: For quadratic equation $ax^2 + bx + c = 0$

$$D = b^2 - 4ac$$

- if $b^2 4ac > 0$ then two distinct real roots. (1)
- if $b^2 4ac = 0$ then two equal real roots.
- if $b^2 4ac < 0$ then no real roots.

Q 7. Are the roots of quadratic equation $x^2 - 2x + 1 = 0$ equal?

Solution:
$$x^2 - 2x + 1 = 0$$

 $ax^2 + bx + c = 0$
 $a = 1, b = -2, c = 1$
 $D = b^2 - 4ac$
 $= (-2)^2 - 4(1)(1)$
 $= 4 - 4 = 0$
 $\therefore D = 0$

roots are real and equal.

Q 8. Are roots of the quadratic equation $y^2 - 11y + 30 = 0$ are real?

Solution: $y^2 - 11y + 30 = 0$ $ay^2 + by + c = 0$ a = 1, b = -11, c = 30 $D = b^2 - 4ac$ $=(-11)^2-4(1)(30)$ = 121 - 120 = 1" D> 0 ·· roots are real.

(4 Marks question)

Q 9. Are roots of the quadratic equation $2x^2 - 7x + 3 = 0$ exist?

Solution:
$$2x^{2} - 7x + 3 = 0$$

$$ax^{2} + bx + c = 0$$

$$a = 2, b = -7, c = 3$$

$$D = b^{2} - 4ac$$

$$= (-7)^{2} - 4(2)(3)$$

$$= 49 - 24 = 25$$

$$\therefore D > 0$$

.: roots are real, therefore they exist

Q 10. Find the nature of the roots of quadratic equation $(x-2)^2 = 0$ and find them.

Solution:
$$(x-2)^2 = x^2 - 4x + 4 = 0$$

 $D = b^2 - 4ac$

=
$$(-4)^2 - 4(1)(4)$$

 $16 - 16 = 0$
 $D = 0$
 \therefore Roots are real and equal
 $(x-2)^2 = 0$
 $(x-2)(x-2) = 0$
 $x-2 = 0$ or $x-2 = 0$

x = 2 or x = 2

x = 2,2

roots are 2, 2

Q 11. Find the roots of equation $3x^2 - 5x + 2 = 0$ by using quadratic formula.

Solution:
$$3x^{2} - 5x + 2 = 0$$

$$ax^{2} + bx + c = 0$$

$$a = 3, b = -5, c = 2$$

$$D = b^{2} - 4ac$$

$$= (-5)^{2} - 4(3)(2)$$

$$= 25 - 24 = 1$$
Now
$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-5) \pm \sqrt{1}}{2(3)}$$

$$= \frac{5 \pm 1}{6}$$

$$x = \frac{5 + 1}{6} = \frac{6}{6} = 1$$

$$x = \frac{5 - 1}{6} = \frac{4}{6} = \frac{2}{3}$$

$$x = 1, \frac{2}{3}$$

Q 12. Find the roots of the quadratic equation $x^2 - 2x - 8 = 0$

Solution:
$$x^{2}-2x-8=0$$

$$a=1, b=-2, c=-8$$

$$D=(b)^{2}-4ac$$

$$=(-2)^{2}-4(1)(-8)$$

$$=4+32=36$$

$$x=\frac{-b\pm\sqrt{D}}{2a}=\frac{2\pm\sqrt{36}}{2\times1}=\frac{2\pm6}{2}$$

$$x=\frac{2+6}{2}=\frac{8}{2}=4$$

$$x = \frac{2-6}{2} = \frac{-4}{2} = -2$$

the roots of the quadratic equation $x^2 + 2x - 8 = 0$ are 4 and -2

Q 13. Find the roots of the quadratic equation $2x^2 + x - 6 = 0$, if possible?

Solution:
$$2x^2 + x - 6 = 0$$

 $a = 2, b = 1, c = -6$
 $D = b^2 - 4ac$

$$=(1)^2-4(2)(-6)$$

$$= 1 + 48 = 49$$

 $\therefore D > 0$: roots are real

$$x = \frac{-b \pm \sqrt{D}}{2a} = \frac{-1 \pm \sqrt{49}}{2(2)} = \frac{-1 \pm 7}{4}$$

$$x = \frac{-1+7}{4} = \frac{6}{4} = \frac{3}{2}$$

$$x = \frac{-1-7}{4} = \frac{-8}{4} = -2$$

$$\therefore$$
 roots are $\frac{3}{2}$ and -2

Q 14. Find two consecutive odd positive integers, sum of whose squares is 290

Solution: Let two consecutive odd positive integers be x and x+2

According to the question:

$$(x)^2 + (x+2)^2 = 290$$

$$x^2 + x^2 + 4x + 4 = 290$$

$$2x^2 + 4x + 4 - 290 = 0$$

$$2x^2 + 4x - 286 = 0$$

$$2(x^2 + 2x - 143) = 0$$

$$\therefore x^2 + 2x - 143 = 0$$

$$x^2 + 13x - 11x - 143 = 0$$

$$x(x-13)-11(x+13)=0$$

$$(x+13)(x-11)=0$$

$$x+13=0$$
 or $x-11=0$

$$x = -13$$
 $x = 11$

≈ 23 −13 rejected(numbers are positive integers)

$$\therefore x = 11$$

: First number =11

second number=11+2= 13

Q 15. If roots of the quadratic equation $x^2 + 2x + k = 0$ are equal then find the value of k.

Solution:

$$x^2 + 2x + k = 0$$

$$ax^2 + bx + c = 0$$

$$a = 1, b = 2, c = k$$

$$D = b^2 - 4ac$$

$$=(2)^2-4(1)(k)$$

$$= 4 - 4k$$

Roots are equal $: b^2 - 4ac = 0$

or
$$4 - 4k = 0$$

or
$$\frac{4}{4} = k$$

$$\therefore$$
 1 = k

∴value of
$$k=1$$

Q 16. If roots of the quadratic equation $2x^2 + kx + 3 = 0$ are equal then find value of k.

Solution:

$$2x^2 + kx + 3 = 0$$

$$ax^2 + bx + c = 0$$

$$a = 2, b = k, c = 3$$

$$D = b^2 - 4ac$$

$$=(k)^2-4(2)(3)$$

$$= k^2 - 24$$

 \therefore Roots are equal: \therefore D = 0

$$k^2-24=0$$

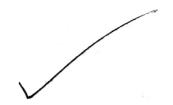
$$k^2 = 24$$

$$k^2 = 4 \times 6$$

$$k = \pm \sqrt{4 \times 6}$$

$$k = \pm 2\sqrt{6}$$

value of $k = \pm 2\sqrt{6}$



Lesson -5 ARITHMETIC PROGRESSIONS

(3 marks question)

Q 1. Fill in the boxes from AP: -3, 0, 3, 6, 9

$$a_1 =$$
 $a_2 =$

Answer: $a_1 = -3$, $a_2 = 0$, $a_3 = 3$, $a_6 = 12$

Q 2. For the AP: 1,3,5,7....., write the first term, 5th term and the common difference.

Solution:

$$a_1 = 1$$

$$a_s = 9$$

Common difference $d = a_1 - a_1 = 3 - 1 = 2$

$$a_2 - a_1 = 3 - 1 = 2$$

Q 3. For AP: 0, 5,10, 15,......, write the first term, third term and sixth term.

Solution:

$$a = 0$$

$$a_1 = 10$$

$$a_6 = 25$$

Q 4. If a = 10 and d = 10 then write four terms of the AP.

Solution:

$$a_1 = 10$$
 $d = 10$

$$a_1 = 10 + 10 = 20$$

$$a_3 = 10 + 20 = 30$$

$$a_1 = 10 + 30 = 40$$

Q 5. Find the missing terms in the following AP.

, 0, 2, , 6, , 10----Solution: (ii) [= 8 (iii)

Q 6. Write the nth term of AP: $a_1, a_2, a_3, \dots = a_n$ if $a_1 = a$ and common difference is d

 n^{th} term $a_n = a + (n-1)d$ Ans. Solution:

Q 7. Write the 10th term of the AP: 2, 4, 6, 8

Solution: $a_1 = 2$, $a_2 = 4$, $a_3 = 6$ $d = a_1 - a_1 = 4 - 2 = 2$ $a_{10} = a + (n-1)d$ =2+(10-1)2=2+9(2)= 2 + 18 = 2010th term=20

Q 8. Write the first four term of the A.P. where a = 4 and d = -3

Solution:
$$a_1 = 4$$
,
 $d = -3$
 $a_1 = 4$
 $a_2 = a + d = 4 + 1(-3) = 4 - 3 = 1$
 $a_3 = a + 2d = 4 + 2(-3) = 4 - 6 = -2$
 $a_4 = a + 3d = 4 + 3(-3) = 4 - 9 = -5$

Answer: Four Terms of A.P = 4,1,-2,-5

(4 marks questions)

Q 9. Which term of the A.P: 3, 8, 13, 18, is 78?

Solution:

$$a_1 = 3$$
, last term $a_n = 78$
 $d = 8 - 3 = 5$
 $a_n = a + (n - 1)$ d
 $78 = 3 + (n - 1)5$
 $78 = 3 + 5n - 5$
 $78 - 3 + 5 = 5n$
 $80 = 5n$
 $\frac{80}{5} = n$
 $16 = n$

78 in the 16th term

Q 10. Find the number of terms in AP: 7, 13, 19......205?

Solution:

on:
$$a = 7$$
, $a_n = 205$
 $d = 13 - 7 = 6$
 $a_n = a + (n-1)d$
 $205 = 7 + (n-1)6$
 $205 = 7 + 6n - 6$

$$205 - 7 + 6 = 6n$$

$$204 = 6n$$

$$\frac{204}{6} = n$$

$$\therefore 34 = n$$

34 terms in given AP

Q 11. Determine the A.P whose 3rd term is 5 and the 7th term is 9.

Solution:

$$a_{7}=a+6d=9$$

$$a_3 = a + 2d = 5$$

Substract

$$-4d = -4$$

$$d = \frac{-4}{-4} = 1$$

Put value of d in
$$a+2d=5$$

 $a+2(1)=5$
 $a+2=5$
 $a=5-2=3$
.: A.P: 3,4,5,6,7.....

 ${f Q}$ 12. Find the sum of the first 10 terms of the AP: 2, 4, 6, 8...... 20

Solution:
$$a = 2$$

 $d = 4 - 2 = 2$, $n = 10$

$$Sn = \frac{n}{2}[(2a + (n-1)d)]$$

$$= \frac{10}{2}[2 \times 2 + (10 - 1)2]$$

$$= 5[4 + (9 \times 2)]$$

$$= 5[4 + 18]$$

$$= 5 \times 22 = 110$$

Sum of 10term of AP= 110

Q 13. Find the sum of the first 7 terms of the AP: 10, 20, 30, 40,......

Solution:
$$a = 10$$

 $d = 20 - 10 = 10$
 $n = 7$
 $Sn = \frac{n}{2}[2a + (n-1)d]$
 $= \frac{7}{2}[2 \times 10 + (7-1)10]$
 $= \frac{7}{2}[20 + 60]$
 $= \frac{7}{2} \times 80 = 40$
 $= 280$

Sum of the 7 terms of AP=280

Q 14. Write the first 4 terms of A.P: $a_n = 1 + n$.

Put value
$$n = 1, 2, 3, 4$$
 in $a_n = 1 + n$

Solution:

$$a_1 = 1 + 1 = 2$$

 $a_2 = 1 + 2 = 3$

$$a_1 = 1 + 2 = 3$$

$$a_3 = 1 + 3 = 4$$

$$a_4 = 1 + 4 = 5$$

First four terms of an AP: 2,3,4,5

Q 15. Write the terms of AP $a_n = 5 + n$ and 10th term also.

Solution:

$$a_{n} = 5 + n$$

64

Q15. Write the terms of AP $a_n = 5 + n$ and 10th term also.

$$a_{n} = 5 + n$$

Put
$$n = 1, 2, 3$$

$$a_1 = 5 + 1 = 6$$

$$a_2 = 5 + 2 = 7$$

$$a_1 = 5 + 3 = 8$$

$$a_{10} = 5 + 10 = 15$$

and
$$a_{10} = 15 \,\text{Ans}.$$

Q16. Find the sum of the first 5 multiple of 8

Solution:

$$a = 8$$

$$d = 16 - 8 = 8$$

$$n = 5$$

$$Sn = \frac{n}{2} [2a + (n-1)d]$$

$$=\frac{5}{2}[2\times8+(5-1)8]$$

$$\equiv \frac{5}{2}[16+4\times8]$$

$$=\frac{5}{2}[16+32]$$

$$=\frac{5}{2}\times 48^{24}$$

$$= 120$$

= Sum of first 5 multiple of 8 = 120

Lesson -6 TRIANGLES

(3 marks questions)

Define Thales Theorem 1.

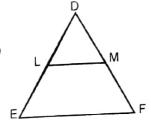
If a line is drawn parallel to one side of a triangle to intersect the other two rides in

In ADEF , LM||EF 2.

$$\frac{DL}{\Box} = \frac{\Box}{MF}$$

(Fill in the blank)

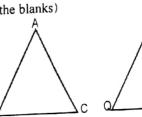
Answer:
$$\frac{DL}{LE} = \frac{DM}{MF}$$

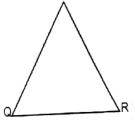


3.
$$\triangle ABC \sim \triangle PQR$$

then
$$\frac{ar(\Delta ABC)}{ar(\Delta PQR)} = \frac{AB^2}{\Box} = \frac{\Box}{QR^2} = \frac{AC}{\Box}$$

(Fill in the blanks)





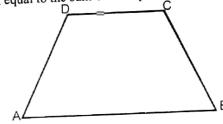
Answer: $\frac{AB^2}{PQ^2} = \frac{BC^2}{QR^2} = \frac{AC^2}{PR^2}$

Write pythagores theorem

Answer: In a right triangle, the square of the hypotenuse in equal to the sum of the squares of the other two sides.

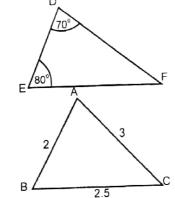
From the figure, trapezium ABCD write the parallel and non-parallel sides.

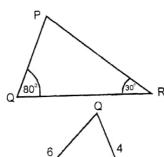
Ans.: parallel sides: AB and DC non-parallel sides AD and BC



Write the following similar triangle in symbolic form 6.

(ii)





Answer : (i) $\Delta DEF \sim \Delta PQR$

(ii) ΔABC~ΔQRP

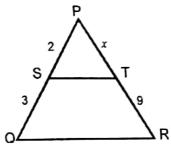
(4 marks question)

7. In figure $\triangle PQR$ in which ST||QR find x

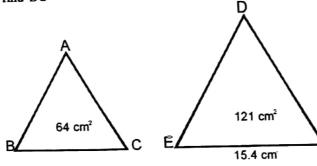
Sol: In ΔPQR , ST||QR

.. Acc. to Thales theorem

$$\frac{PS}{SQ} = \frac{PT}{TR} \implies \frac{2}{3} = \frac{x}{9} \text{ or } 3x = 2 \times 9$$
$$x = \frac{2 \times 9}{3} = 6$$



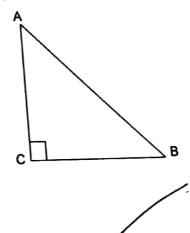
8 Let $\triangle ABC \sim \triangle DEP$ and their areas be, respectively, 64 cm^2 and 121 cm^2 . If EF = 15.4 cm them find BC



Sol:
$$\triangle ABC \sim \triangle DEF$$
 (given)

$$\frac{ar(\Delta ABC)}{ar(\Delta DEF)} = \frac{AB^2}{DE^2} = \frac{BC^2}{EF^2} = \frac{AC^2}{DF^2}$$
or
$$\frac{ar(\Delta ABC)}{ar(\Delta DEF)} = \frac{BC^2}{EF^2} \text{ or } \frac{64}{121} = \frac{(BC)^2}{(15.4)^2}$$
or
$$\frac{(8)^2}{(11)^2} = \frac{BC^2}{(15.4)^2}$$
or
$$\frac{8}{11} = \frac{BC}{15.4}$$
or
$$BC = \frac{15.4 \times 8}{11} = 11.2 \text{ cm}$$

- 9. ABC is an isosceles triangle right angled at $C_{.Prove that} AB^2 = 2AC^2$
- Sol: In $\triangle ABC$, $\angle C = 90^{\circ}$ and AC = BC (given) By pythagores Theorem $AB^2 = AC^2 + BC^2$ $AB^2 = AC^2 + AC^2$ (: BC = AC) : $AB^2 = 2AC^2$



- 10. A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from base of the wall.
- Sol: Let length of the ladder AB = 10m

 ht of window from ground AC = 8m

 foot of the ladder from base of well = BC
 according to pythagorastheorm

$$AB^{2} = BC^{2} + AC^{2}$$
$$(10)^{2} = BC^{2} + (8)^{2}$$

or
$$100 = BC^2 + 64 \Rightarrow BC^2 = 100 - 64 = 36 = (6)^2$$

 $\therefore BC = 6m$

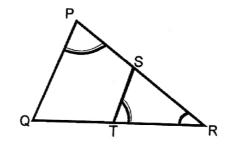
- : distance of foot of the ladder from base of the well = 6m
- 11. S and T are points on sides PR and QR of $\triangle PQR$ such that $\angle P = \angle RTS$. Show that $\triangle RPQ \sim \Delta RTS$

Sol: In
$$\Delta PQR$$

$$\angle P = \angle RTS$$
 (given)

∴Now in
$$\triangle$$
RPQ and \triangle RTS $\angle R = \angle R$ (Common)

$$\angle P = \angle RTS$$
 (given)

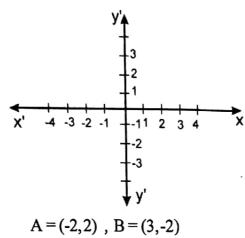


8m

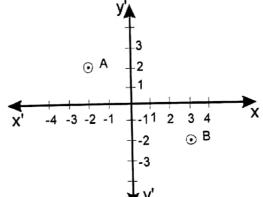
Lesson- 7

(3 marks questions)

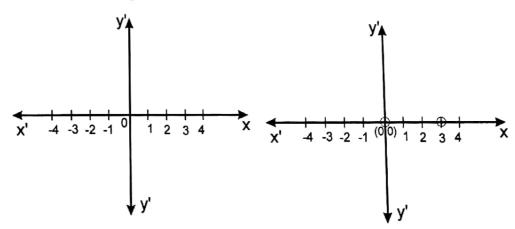
1. Plot any point in second and fourth quadrant.



Answer:



2. Plot the point on origin and on x - axis



origin (0,0), any point (3,0)

3. Find the distance between the points P(1,2) and Q(3,4)

Sol.
$$\overrightarrow{PQ} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

 $= \sqrt{(3-1)^2 + (4-2)^2}$
 $= \sqrt{(2)^2 + (2)^2}$

$$=\sqrt{4+4}=\sqrt{8}=\sqrt{4\times 2}=2\sqrt{2}$$

4. Write the formula of the area of the triangle whose vertices are $A(x_1, y_1)$, $B(x_2, y_2)$, and $C(x_1, y_1)$

Ans. Area of the
$$\triangle ABC = \frac{1}{2} [x_1(y_2 - y_1) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$$

5. If a point X(x,y) divides the line segment joining the points $A(x_i,y_i)$ and $B(x_i,y_i)$ in the ration m:n:

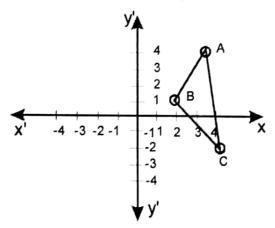
and
$$x = \frac{mx_1 + nx_1}{m+n}$$
 then find $y = ?$

Answer:
$$y = \frac{my_2 + ny_1}{m + n}$$

6. Write the formula to find the distance between points $A(x_1, y_1)$ and $B(x_2, y_2)$

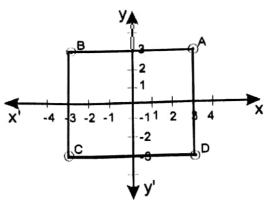
Answer:
$$\overrightarrow{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

7. Plot three points on a graph paper such that joining the points, it becomes triangle.



Answer: A(3,4), B(2,1), C(4,-2)

The co-ordinates of a point C (-3,-3) of a square ABCD on the given graph paper, then find the co-ordinates of A,B and D



Answer: Co-ordinates are A (3,3), B(-3, 3) D (3, -3)

9. Find the abscissa of a point which divides the line segment joining the points A (1,7) and B(5,3) in the ratio 2:3 internally.

Sol:
$$x = \frac{mx_2 + nx_1}{m + n}$$

$$x = \frac{2(5) + 3(1)}{2 + 3}$$

$$x = \frac{10+3}{5}$$

$$x = \frac{13}{5}$$

- If a $\triangle ABC$ whose vertices are A(2,3), B(4,3), C(6,1) then find the co-ordinates of the mid points D, E and F of sides AB, BC and AC respectively. A (2,3)
- Sol: Co-ordinate of mid point D of side AB

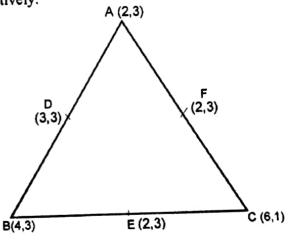
$$x = \frac{x_1 + x_2}{2} = \frac{2+4}{2} = \frac{6}{2} = 3$$

$$y = \frac{y_1 + y_2}{2} = \frac{3+3}{2} = \frac{6}{2} = 3$$

 \therefore D(3,3)

Co-ordinate of point E, and point of side
$$x = \frac{4+6}{2} = \frac{10}{2} = 5$$
, $y = \frac{3+1}{2} = \frac{4}{2} = 2$

Co-ordinates of point F, the mid point of side AC



$$x = \frac{2+6}{2} = \frac{8}{2} = 4$$
, $y = \frac{3+1}{2} = \frac{4}{2} = 2$
 $\therefore F(4,2)$

11. AA2. Find the value of k for which the points A(7,2), B(5,1) and C(0, k) are collinear.

Answer: Area of $\triangle ABC = 0$ (The area of triangle is 0 square units when the vertices of the triangle are collinear)

$$= \frac{1}{2} (x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)) = 0$$

$$\frac{1}{2} (7(1-k) + 5(k-2) + 0(2-1)) = 0$$

$$\Rightarrow 7 - 7k + 5k - 10 = 0$$

$$\Rightarrow$$
 $-2k-3=0$

$$\Rightarrow$$
 $-2k=3$

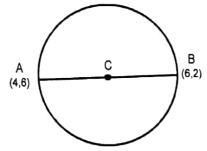
$$\Rightarrow \qquad k = \frac{3}{-2}$$

12. The co-ordinates of the diameter AB of circle are A (4, 6) and B (6,2) then find the co-ordinates of the centre C of the circle.

Answer:
$$C(x, y) = (\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$$

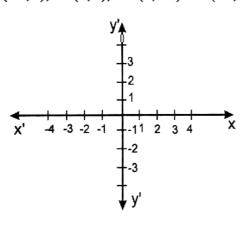
$$=(\frac{4+6}{2},\frac{6+2}{2})$$

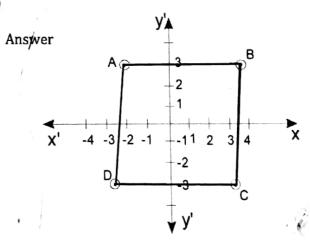
$$\left(\frac{10}{2},\frac{8}{2}\right) = (5,4)$$



13. Plot the vertices of the parallelogram on the araph paper.

$$A(-2,3)$$
, $B(4,3)$, $C(3,-3)$ $D(-3,-3)$





TRIGNOMETRY

(3 marks question)

1. Evaluate
$$\frac{\tan 65^{\circ}}{\cot 25^{\circ}}$$

sol:
$$\frac{\tan 65^{\circ}}{\cot 25^{\circ}} = \frac{\cot (90^{\circ} - 65^{\circ})}{\cot 25^{\circ}} = \frac{\cot 25^{\circ}}{\cot 25^{\circ}} = 1 \quad \because (\tan A = \cot (90^{\circ} - A))$$

2. Evaluate
$$5 \sin^2 \theta + 5 \cos^2 \theta$$

Sol:
$$5 \sin^2 \theta + 5 \cos^2 \theta$$
$$= 5 (\sin^2 \theta + \cos^2 \theta) \quad (\because \sin^2 \theta + \cos^2 \theta = 1)$$
$$= 5 \times 1 = 5$$

Sol:
$$2 \tan^2 45^0$$

= $2(1)^2$ (: $\tan 45^0 = 1$)
= $2 \times 1 \times 1 = 2$

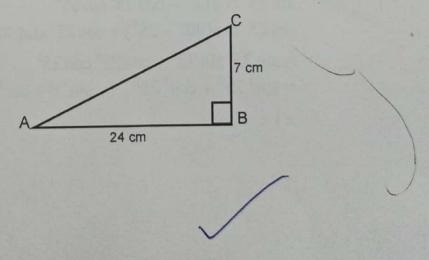
4. Evaluate
$$4 \sin 30^{\circ} \cos 60^{\circ}$$

Sol:
$$4 \sin 30^{\circ} \cos 60^{\circ}$$

= $4 \times \frac{1}{2} \times \frac{1}{2}$ (:: $\sin 30^{\circ} = \frac{1}{2}$, $\cos 60^{\circ} = \frac{1}{2}$)
= 1

5. In
$$\triangle ABC$$
, right angled at B, $AB = 24cm$, $BC = 7cm$. Find the value of tan A

Sol: In
$$\triangle ABC$$
, $\angle B = 90^{\circ}$



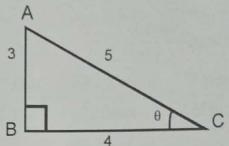
(4 marks question)

- 6. Find the value of $\cos\theta$, $\tan\theta$, $\sin\theta$ from the following diagram.
- Sol:

$$\cos\theta = \frac{\text{Base}}{\text{Hypotenuse}} = \frac{\text{BC}}{\text{AC}} = \frac{4}{5}$$

$$\tan\theta = \frac{\text{Paperdicular}}{\text{Base}} = \frac{\text{AB}}{\text{BC}} = \frac{3}{4}$$

$$\sec\theta = \frac{\text{Hypotensue}}{\text{Base}} = \frac{\text{AC}}{\text{BC}} = \frac{5}{4}$$



- 7. Evaluate: $\sin 60^{\circ} \cos 30^{\circ} + \sin 30^{\circ} \cos 60^{\circ}$
- Sol: $\sin 60^{\circ} \cos 30^{\circ} + \sin 30^{\circ} \cos 60^{\circ}$

$$= \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2} + \frac{1}{2} \times \frac{1}{2}$$

$$= \frac{3}{4} + \frac{1}{4}$$

$$= \frac{3+1}{4} = \frac{4}{4} = 1$$
(:: sin 60° = cos 30° = $\frac{\sqrt{3}}{2}$ and sin 30° = cos 60° = $\frac{1}{2}$)

8. Express $\sin 67^{0} + \cos 75^{0}$ in terms of trigonometric ratios of angles between 0^{0} and 45^{0}

Sol:
$$\sin 67^{0} + \cos 75^{0}$$

= $\sin(90^{0} - 23^{0}) + \cos(90^{0} - 15^{0})$ (: $\sin(90^{0} - \theta) = \cos\theta$ and $\cos(90^{0} - \theta) = \sin\theta$)
 $\cos 23^{0} + \sin 15^{0}$

9. Evaluate: $\sin 25^{\circ} \cos 65^{\circ} + \cos 25^{\circ} \sin 65^{\circ}$

Sol:
$$\sin 25^{\circ} \cos 65^{\circ} + \cos 25^{\circ} \sin 65^{\circ}$$

 $\sin 25^{\circ} \cos (90^{\circ} - 25^{\circ}) + \cos 25^{\circ} \sin (90^{\circ} - 25^{\circ})$
 $= \sin 25^{\circ} \sin 25^{\circ} + \cos 25^{\circ} \cos 25^{\circ}$
 $= \sin^2 25^{\circ} + \cos^2 25^{\circ}$ (: $\sin^2 \theta + \cos^2 \theta = 1$)
 $= 1$

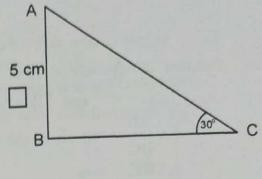
10. In $\triangle ABC$, right angled at B, AB=5cm and $\angle ACB=30^{\circ}$ (see fig.) determine the length of side BC.

Sol: In right angled
$$\triangle ABC$$
, $\angle B = 90^{\circ}$

$$\angle ACB = 30^{\circ} \text{ and } AB = 5 \text{cm}$$

$$\therefore \frac{AB}{BC} = \tan 30^{\circ}$$
or
$$\frac{5}{BC} = \frac{1}{\sqrt{3}} \qquad (\because \tan 30^{\circ} = \frac{1}{\sqrt{3}})$$

$$\therefore BC = 5\sqrt{3}cm$$

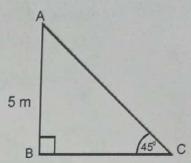


Lesson-9 SOME APPLICATIONS OF TRIGONOMETRY

(4 marks)

1. In given figure AB = 5 m, find BC Solution: In rightangle \triangle ABC \angle B = 90° and

$$\angle C = 45^{\circ}$$
 and AB = 5cm
 $\therefore \frac{AB}{BC} = \tan 45^{\circ}$ or $\frac{5}{BC} = 1$ (: $\tan 45^{\circ} = 1$)
 $\therefore BC = 5$ m

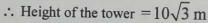


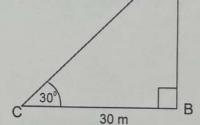
- 2. The angle of elevation of the top of a tower from a point on the ground, which is 30m away from the foot of the tower, is 30^0 Find the height of the tower.
- Sol: Let height of tower AB

Angle of elevation of top of the tower from point Con the ground = 30° Distance of point C from foot of tower = 30m In right angle ΔABC

$$\frac{AB}{BC} = \tan 30^{\circ}$$

or
$$\frac{AB}{30} = \frac{1}{\sqrt{3}}$$
 or $AB = 30 \times \frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{30\sqrt{3}}{3} = 10\sqrt{3} \text{ m}$





- 3. A circus artist is climbing a 20m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angled made by the rope with the ground level is 30°
- Sol: Length of the rope AC = 20m

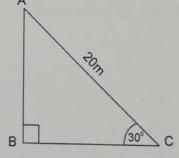
Angle of elevation top of pole $\angle C = 30^{\circ}$ Height of pole = AB

In rt $< \Delta ABC$

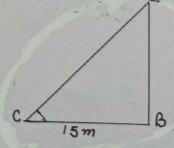
$$\frac{AB}{AC} = \sin 30^{\circ} \text{ or } \frac{AB}{20} = \frac{1}{2} : (\sin 30^{\circ} = \frac{1}{2})$$

$$\therefore AB = \frac{1}{2} \times 20 = 10m$$

:. Height of pole= 10m



- 4. A tower stands vertically on the ground. From a point on the ground which is 15m a way from the foot of the tower, the angle of elevation of the top of the tower is 60°. Find the height of the tower
- Sol: Let AB represent the tower. is the distance of the point from the tower is CB=15m angle of elevation $\angle ACB = 60^{\circ}$. In right angled $\triangle ABC$



$$\frac{AB}{BC} = \tan 60^{\circ}$$

$$\frac{AB}{15} = \sqrt{3} \qquad (\because \tan 60^{\circ} = \sqrt{3})$$

 $\therefore AB = 15\sqrt{3} \text{ m} \qquad \therefore \text{ (height of the tower= } 15\sqrt{3} \text{ m}\text{)}$

A kit is flying at height of 60m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is $_{A}60^{\circ}$ Find the length of the string, assuming that there is no slack in the string.

Ô¼ñ: Let AC represents length of the string

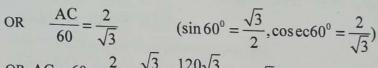
AB in the height of kite=60 m

Angle of elevation of the kite= 60°

$$\therefore AB = 60m, \angle ACB = 60^{\circ}$$

In right angled $\triangle ABC$

$$\frac{AC}{AB} = \csc 60^{\circ}$$



OR AC =
$$60 \times \frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{120\sqrt{3}}{3} = 40\sqrt{3}$$
m

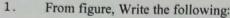
 \therefore Length of the string = $40\sqrt{3}$ m

60m

В

Lesson -10

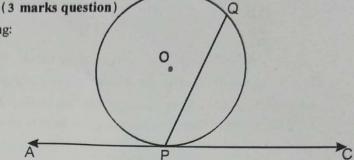
CIRCLES



- (i) Name of the tangent
- (ii) Point of contact
- (iii) Name of the chord

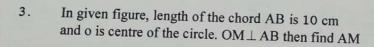
Answer:

- (i) Tangent AC
- (ii) Contanct point P
- (iii) chord PQ



 In given figure, length of the tangent PA is 5cm from the external point P to circle. Then find the length of tangent PB.

Sol: We know that the length of tangents drawn from an external point to a circle are equal If PA=5 cm then PB=5 cm



Sol:
$$AB = 10cm$$

 $OM \perp AB$

We know that perpendicular from the centre of a circle to the chord, bisect the chord.

$$\therefore AM = \frac{1}{2}AB = \frac{1}{2} \times 10 = 5cm$$

10cm -

- 4. In figure, PM and PN are the tangents to the circle with centre O
 - (i) Find ZOMP, ZONP
 - (ii) Are PM = PN?
- Sol: We know that the tangent of the circle is perpendicular to the radius through the point of contact.

$$\therefore \angle OMP = \angle ONP = 90^{\circ}$$

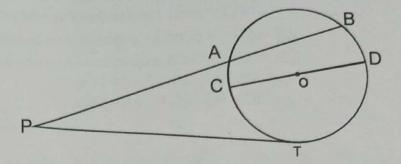
(ii) Tangent drawn from an external point to a circle are equal.

$\therefore PM = PN$

- 5. Write from the figure:
- (i) name of the secant
- (ii) diameter
- (iii) longest chord

Sol:

- (i) secant PAB
- (ii) diameter CD
- (iii) longest chord CD



(4 marks questions)

6. From figure find ∠BPO

Sol: In
$$\triangle PAO$$
 and $\triangle PBO$

$$\angle OAP = \angle OBP (each 90^\circ)$$

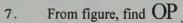
$$PA = PB$$
 (tangent from the external point)

$$PO = PO (common)$$

$$\therefore \angle APO = \angle BPO$$
 (c.p.c.t)

But
$$\angle APO = 30^{\circ}$$
 (given)

$$\therefore \angle BPO = 30^{\circ}$$



- 7. From figure, find Of
- Sol: PA is the tangent, OA is the radius

$$\angle PAO = 90^{\circ}$$

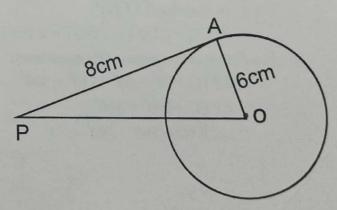
$$\therefore$$
 In right angled $\triangle PAO$

$$OP^2 = AP^2 + OA^2$$

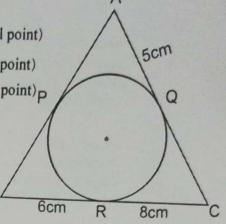
$$OP^2 = (8)^2 + (6)^2$$

$$OP^2 = 64 + 36 = 100$$

$$OP^2 = 10^2 \text{ or } OP = 10 \text{cm}$$



- 8. From figure, find the lengths of AB and AC
- AP = AQ = 5cm (tangents drawn from the external point) Sol:
 - BP = BR = 6cm (tangents drawn from the external point)
 - CR = CQ = 8cm (tangents drawn from the external point)
 - $\therefore \text{side AB} = \text{AP} + \text{BP} = 5 + 6 = 11 \text{cm}$
 - side AC = AQ + QC = 5 + 8 = 13cm



- The length of a tangent from a point A at distance 5cm from the centre of the circle is 4 cm. Find the radius of the circle.
- A circle with centre O with radius OP. Tangent AP=4cm.
 - Distance of point A from centre O is AO = 5cm

$$\angle APO = 90^{\circ}$$

In right angled $\triangle APO$

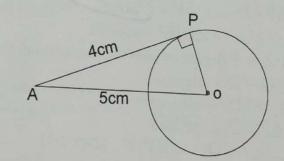
$$OA^2 = AP^2 + OP^2$$

$$(5)^2 = (4)^2 + OP^2$$

$$25 = 16 + OP^2$$

OR
$$OP^2 = 25 - 16 = 9 = 3^2$$

$$\therefore$$
 OP = 3cm



- In figure, if TP, TQ are two tangent in a circle with centre O so that $\angle POQ = 110^{\circ}$ then find ∠PTQ
- In quadrilatrel OQTP Sol:

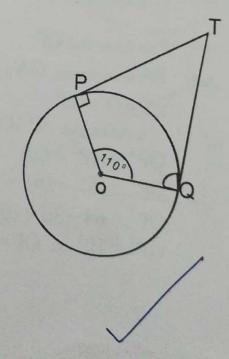
$$\angle PTQ + \angle OPT + \angle OQT + \angle POQ = 360^{\circ}$$

(sum of four angles of the quadrilatrel)

$$\angle PTQ + 90^{\circ} + 90^{\circ} + 110^{\circ} = 360^{\circ}$$

$$\angle PTQ + 290^{\circ} = 360^{\circ}$$

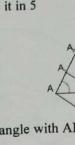
$$\therefore \angle PTQ = 360^{\circ} - 290^{\circ} = 70^{\circ}$$



Lesson- 11 CONSTRUCTIONS

(3 marks question)

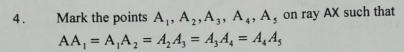
Q. 1. Draw a line segment of length 10 cm and divide it in 5 equal parts.



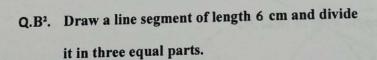
Steps of Construction:

- 1. Take a line segment AB of length 10cm.
- 2. From point A, draw a ray AX making an acute angle with AB
- 3. From a point B, draw another ray BY opposite to ray

 AX, making an acute angle with AB

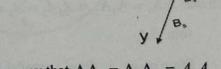


- 5. Similarly on ray BY, mark the points B_1 , B_2 , B_3 , B_4 , B_5 such that $BB_1 = B_1B_2 = B_2B_3 = B_3B_4 = B_4B_5$
- F². Join A with B_5 , A_1 with B_4 , A_2 with B_3 , A_3 with B_2 , A_4 with B_1 and A_5 with B 1
- 7. Therefore line segment AB is divided in five equal parts.



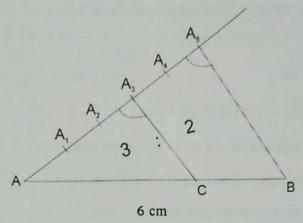
Steps of Construction:

- 1. Take a line segment AB of length 6 cm
- 2. From Point A, draw a ray AX making a acute angle with AB.
- 3. From point B, draw another ray BY opposite to ray AX making acute angle with AB.



- 4. Mark the points A_1 , A_2 , A_3 on ray AX in such a way that $AA_1 = A_1A_2 = A_2A_3$
- 5. Similarly mark the points B_1 , B_2 , B_3 , on ray BY such that $BB_1 = B_1B_2 = B_2B_3$
- F^2 . Join A with B_3 , A_1 with B_2 , A_2 with B_1 , A_3 with B_2

- 7. Therefore line segment AB divided in 3 equal part.
- Q. 3. Divide the line segment of length 6cm in ratio 3:2

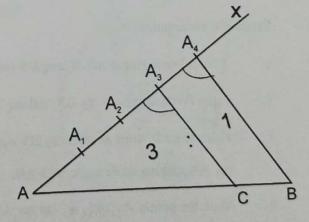


Steps of construction: -

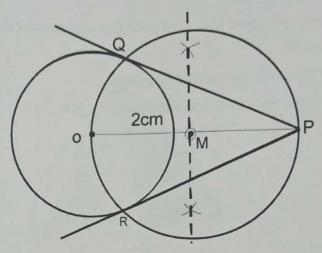
- 1. Take line segment AB = 6cm
- 2. Draw a ray AX making an acute angle at A on AB.
- 3. Take five points A_1 , A_2 , A_3 , A_4 , A_5 and A_5 on ray AX such that $AA_1 = A_1A_2 = A_2A_3 = A_3A_4 = A_4A_5$
- 4. Join BA₅
- 5. From point A_3 draw a parallel line to BA_5 which intersect AB at C
- 6. Now AC:CB=3:2
- Q. 4. Divide a line segment of length 8 cm in ratio 3:1

Step of construction: -

- 1. Take line segment AB = 8cm
- 2. Draw a ray AX making an acute angle at A on AB.
- 3. Plot point A_1 , A_2 , A_3 , A_4 , on ray AX such that $AA_1 = A_1A_2 = A_2A_3 = A_3A_4$
- 4. Join BA₄
- 5. From point A_3 draw a parallel line to BA₄ which interested AB at C
- 6. Now AC: CB = 3:1

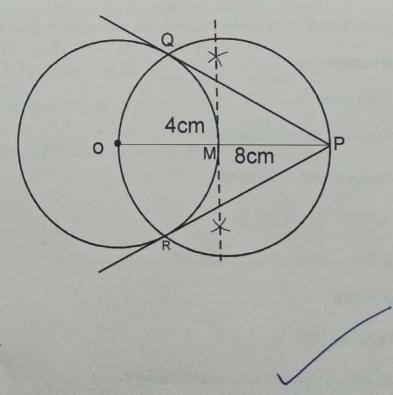


Q 5. Draw a circle. From a point 5cm away from its centre, construct the pair of tangents to the circle.



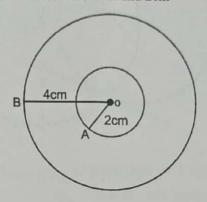
Step of Construction:

- 1. Draw a circle of radius 2 cm with centre O.
- 2. Take a point P, 5cm away from its centre.
- 3. Join PO and bisect it. Let mid point of PO is M.
- D. Draw a circle with centre M and radius OM which intersect the given circle at Q and R.
- 5. Join PQ and PR. These PQ and PR are two tangents.
- Q6. Draw a circle of radius 4cm. From a point 8 cm from its centre, construct the pair of tangents to the circle.



Steps of Construction:

- Draw a circle of radius 4cm with centre O and take point P away from its centre at distance 8cm.
- 2. Join OP and bisect it at M.
- 3. Draw a circle with centre M and radius OM which intersect the given circle at Q and R.
- 42. Join PQ and PR.
- 52. Therefore PQ and PR are required tangents.
- Q7. Draw two concentric circles with radius 4cm and 2cm

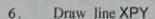


Steps of Construction:

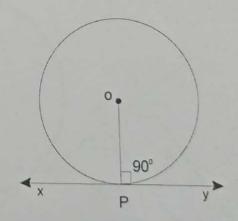
- 1. Take a point O.
- 2. Draw a circle of radius 2 cm taking centre O.
- 3. Draw another circle on centre O with radius 4cm.
- 4. Those circles whose centres are at the same point called concentric circles.
- Q8. Draw a circle. Take a point P on it. Join it with centre O. Draw tagent at point P.

Steps of construction:

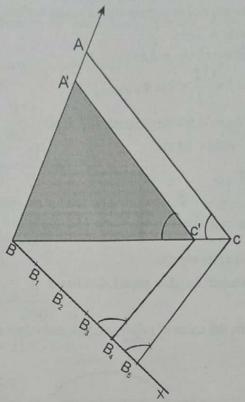
- 1. Take a point O.
- 2. Draw any circle with centre O.
- 3. Take a point P on the circle.
- 4. Join OP.
- 5. on line segment OP make angle 90° at point P



7. So, XPY is a tangent to the circle at point P.



Q 9. Take a triangle. Construct a triangle similar to a given triangle ABC with its sides equal to $\frac{4}{5}$ of the corresponding sides of the triangle ABC



- 1. Take a triangle $\triangle ABC$
- 2. From Point B draw a ray BX making an acute angle opposite vertex A.
- 3. Locate 5 points B_1 , B_2 , B_3 , B_4 , B_5 on the ray BX such that $BB_1 = B_1B_2 = B_2B_3 = B_3B_4 = B_4B_5$
- 4. Join B_5 with C and Draw a line $B_4C'B_5C$.
- 5. From C draw a line C'A' | | CA. Therefore A' BC' is required triangle.

Lesson-12 AREAS RELATED TO CIRCLES

(3 Marks Question)

1. Find the circumference of the circle whose radius is 7cm.

Circumference of the circle $=2\pi r$

$$=2\times\frac{22}{7}\times7=44 \text{ cm}$$

2. Find the area of a circle whose diameter is 14cm.

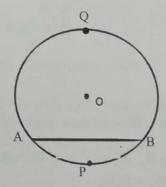
radius
$$=\frac{14}{2}=7$$
 cm

area of the circle =
$$\pi r^2 = \frac{22 \times 7 \times 7}{7} = 154$$
 cm²

3. Write any four circular objects.

Sol: Cycle wheels, washer, bangles, papad, dart board

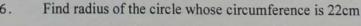
4. From figure write the name of major segment and minor segment.



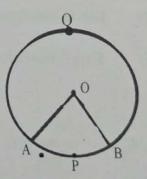
Sol: Major Segment: AQB Minor segment: APB

5. In figure, write the name of minor sector and major sector.

Answer: (major sector): OAQB (minor sector): OAPB



$$2\pi r = 22$$
$$2 \times \frac{22}{7} \times r = 22$$



$$r = \frac{22 \times 7}{2 \times 22} = \frac{7}{2}$$
 cm = 3.5 cm

(4 marks questions)

In a circle of radius 14cm, an arc subtends an angle 60° at the centre. Find the length of the arc

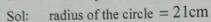
Sol: radius of the circle=14 cm

Central angle
$$\theta = 60^{\circ}$$

Length of arc =
$$2\pi r \frac{\theta}{360}$$

$$=2\times\frac{22}{7}\times14\times\frac{60}{360}=\frac{44}{3}$$
cm

In a circle of radius 21cm, an arc subtends an angle 60° at the centre. Find the area of the sector formed by the arc.



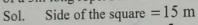
Central angel
$$\theta = 60^{\circ}$$

Area of the sector =
$$\pi r^2 \frac{\theta}{360}$$

= $\frac{22}{7} \times 21 \times 21 \times \frac{60}{360}$

$$=231 \text{cm}^2$$

A horse is tied to a peg at one corner of a square shaped grass field of side 15m by means 10. of a 5m long rope. Find the area of that part of the field in which horse can graze.



Length of the rope
$$= 5 \text{ m}$$

Each angle of square
$$=90^{\circ}$$

Area of that part of the field in which

Horse can graze =
$$\pi r^2 \frac{\theta}{360}$$

= $3.14 \times 5 \times 5 \times \frac{90}{360} = \frac{39.25}{2}$
= 19.625m^2

- 15 m
- A square whose side is 21cm. A circle of radius 7cm is drawn in the square. Find the area of the remaining part of the square. 21cm
- side of the square= 21cm Sol: Area of the square =(side)2

$$=(21)^2 = 21 \times 21 = 441 \text{ cm}^2$$

radius of the circle=7 cm

area of the circle $=\pi r^2$

$$=\frac{22}{7}\times7\times7=154 \text{ cm}^2$$

Area of the remaining part of square = $441-154 = 287 \text{ cm}^2$

12. Find the area of the shaded region in given figure, If ABCD is a square of side 14cm and APD and BPC are semicircles.

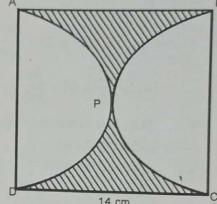
Sol: side of square ABCD = 14 cm

Area of the square = side2

$$=14^2 = 196$$
 cm²

Diameter of semicircle APD = 14cm

$$radius = \frac{14}{2} = 7 \text{ cm}$$



area of one semi circle = $\frac{1}{2}\pi r^2 = \frac{1}{2} \times \frac{22}{7} \times 7 \times 7 = 77 \text{ cm}^2$

area of two semi circle = 77 + 77 = 154 cm²

area of remaining shaded part = 196 - 154 = 42 cm²

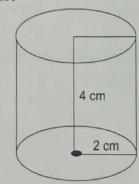
SURFACE AREAS AND VOLUMES

(3 marks questions)

- Write three examples of cuboid from daily life.
- Ans: (i) Match box
- (ii) chalk box
- (iii) book
- 2. Write the formula of volume of a frustum of a cone.
- Ans: $\frac{1}{3}\pi\hbar (r_1^2 + r_2^2 + r_1^2)$
- The diameter of a sphere is 4cm then find its radius.

= 2 cm

- Ans: radius = $\frac{Diameter}{2}$ $= \frac{4}{2}$
- 4. Fill in the blanks from figure:
 - (i) r = ____
 - (ii) h = _____



- Ans: (i) r = 2cm
 - (ii) h = 4cm
- 5. Match the following:
- (a) Match box

(i) Sphere

- (b) cap of a Turks
- (ii) cuboid

(c) Footbal

(iii) cube

(d) dice

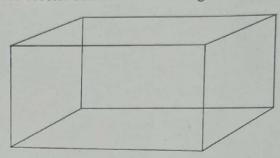
- (iv) cone
- Sol: (a) \longrightarrow (ii), (b) \longrightarrow (iv), (c) \longrightarrow (i), (d) \longrightarrow (iii)
- 6. What is the relation between slant height of a cone, its radius and height.
- Sol: Slant height = ℓ

radius= r

height $=\hbar$

$$\ell^2 = h^2 + r^2 \Rightarrow \ell = \sqrt{h^2 + r^2}$$

7. Draw a diagram of a cuboid. Count its faces and edges.



(4 marks questions)

- 8. A cube has a edge 4cm. Find its total surface area.
- Sol: side of a cube = a = 4cm Total surface area of a cube = $6a^2$ = $6 \times 4 \times 4 = 96$ cm²
- 9. A cylinder whose diameter is 14 cm and height 10 cm. Find volume.
- Sol: diameter of the cylinder = 14cm

radius
$$r = \frac{14}{2} = 7 \text{cm}$$

height h = 10 cm

$$volume = \pi r^2 h$$

$$=\frac{22}{7}\times7\times7\times10$$

$$=1540 \text{cm}^3$$

- 10. Find the volume of a cube whose height is 21cm and radius of its base is 6cm.
- Sol: height of the cube = 21cm

Radius of the base of cone (r) = 6 cm

Volume of cube = $\frac{1}{3}\pi r^2 h$

$$= \frac{1}{3} \times \frac{22}{7} \times 6 \times 6 \times 21$$

- $=792 \text{cm}^3$
- 11. The radius of a hemisphere 14cm. Find its curved surface area.
- Sol: radius of the hemisphere r = 14 cmCurved surface of the hemisphere $= 2\pi r^2$

$$=2\times\frac{22}{7}\times14\times14$$
$$=1232 \text{ cm}^2$$

- 12. Volume of a cube is 64cm³. Find its each side.
- Sol: Volume of a cube = $(side)^3$

$$(side)^3 = 64cm^3$$

$$(side)^3 = (4)^3$$

$$\therefore$$
 side = 4cm

- 13. Find the volume of a cuboid whose dimensions are $5 \text{cm} \times 10 \text{cm} \times 4 \text{cm}$.
- Sol: volume of cuboid = $\ell \times b \times h$

$$=5\times10\times4$$

$$= 200 \text{cm}^3$$

- 14. How much milk can be poured in the hemispherical bowl whose radius is 7cm
- Sol: radius of a hemispherical bowl=7cm

volume of a hemispherical bowl =
$$\frac{2}{3}\pi r^3$$

= $\frac{2}{3} \times 7 \times 7 \times 7$
= $\frac{2156}{3}$ cm³ or = 718.67cm³

Lesson-14 STATISTICS

(3 marks question)

- 1. Write the upper and lower limit of a class interval 100-150

 Upper limit = 150

 Lower limit = 100
- 2. Write the class mark of the class interval 10-30

Sol:

Class mark = upper class limit+lower class lin

Class mark =
$$\frac{upper class \ limit+lower \ class \ limit}{2}$$
$$= \frac{10+30}{2}$$
$$= \frac{40}{2} = 20$$

3. Find the mean of the data 2, 9, 7, 8, 14.

Sol: $mean = \frac{sum \ of \ the \ observations}{number \ of \ observation}$

$$=\frac{2+9+7+8+14}{5}$$
$$=\frac{40}{5}=8$$

4. Find the mean of the first five natural numbers.

Sol: First five natural numbers = 1, 2, 3, 4, 5

mean
$$=\frac{1+2+3+4+5}{5}$$

 $=\frac{15}{5}=3$

5. Write names of three methods to find mean.

Ans: (i) direct method

(ii) assumed mean method

(iii) step deviation method

6. What is the class size of the class interval 60-100?

Sol: class size = upper class limit-lower class limit

$$= 100 - 60 = 40$$

7. median = $\ell + \left(\frac{\frac{n}{2} - cf}{f}\right) \times h$, what is the meaning of ℓ and f

Sol: $\ell = \text{lower limit of median class.}$ f = frequency of median class. 8. Find the median of the data 6, 7, 9, 5, 4, 8, 7, 3, 2.

Sol: ascending order= 2,3,4,5,6,7,7,8,9

Number of observation =9 and 9 is a odd number.

$$\therefore$$
 Median = $(\frac{n+1}{2})^{th}$ observation.

$$= \frac{9+1}{2} = \frac{10}{2} = 5$$
 th observation
Median = 5th observation means F

(4 marks question)

Following given data represents the number of plants in 20 houses. Find the mean number of plants per house.

Number of plants	0-2	2-4	4-6	6-8	8-10	10-12	12-14
Number of houses	1	2	1	5	6	2	3

Sol:

Number of plants	Number of houses f_i	Class mark x,	$f_i x_i$
0-2	1	1	1
2-4	2	3	6
4-6	1	5	5
6-8	5	7	35
8-10	6	9	54
10-12	2	11	22
12-14	3	13	39
	$\sum fi = 20$		$\sum fi \ xi = 162$

From above data

Mean
$$\bar{x} = \frac{\sum f_i x_i}{\sum f_i}$$

= $\frac{162}{20} = 8.1$

The marks obtained by 20 students of class X of a certain school in Science paper consisting of 100 marks are presented in table below. Find the mean marks.

Marks obtained x_i	10	20	36	40	50
Number of students f_i	4	3	5	6	2

Marks obtained x_i	Number of students f_i	$f_i x_i$
10	4	40
20	3	60
36	5	180
40	6	240
50	2	100
	$\sum f_i = 20$	$\sum f_i x_i = 620$

Mean
$$\overline{X}$$
 = $\frac{\sum f_i x_i}{\sum f_i}$
= $\frac{620}{20}$
= 31

11. Marks obtained by 80 students of a class given below. Find the mode of the data.

Marks obtained	0-10	10-20	20-30	30-40	40-50
No. Of students	6	10	12	32	20

Sol: In given data maximum number of students (frequency) are 32 and they lies in the class interval 30-40.

$$\therefore \ell = 30; f_1 = 32; f_0 = 12; f_2 = 20; h = 10$$

$$\text{Mode} = \ell + \left(\frac{f_i - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

$$= 30 + \left(\frac{32 - 12}{2(32) - 12 - 20}\right) \times 10$$

$$= 30 + \left(\frac{20}{64 - 32}\right) \times 10$$

$$= 30 + \frac{200}{32}$$

= 30 + 6.25 = 36.2512. The following table gives production yield per hectare of wheat of 100 farms of a village.

Production yield 50-55	55-60	60-65	65-70	70-75	
(in kg/ha) Number of farms 2		12	24	38	16

Change the distribution to a more than type distribution.

sol:

Production	Cumulative
More than or equal to 50	100
More than or equal to 55	98
More than or equal to 60	90
More than or equal to 65	78
More than or equal to 70	54
More than or equal to 75	16

13. The following distribution gives the daily income of 50 workers of a factory.

Daily income in	100-120	120-140	140-160	160-180	180-200
(₹)			1.1	6	10
Number of	12	8	14		
workers					

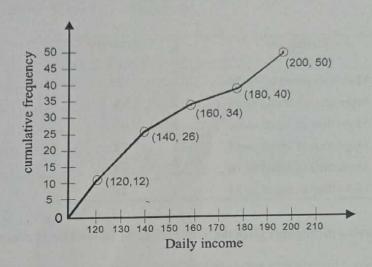
Convert the above distribution to a less than type cumulative frequency distribution.

Sol:

Daily income in (₹)	Cumulative frequency
less than 120	12
less than 140	12+8 = 20
less than 160	20+14 =34
less than 180	34+6 =40
less than 200	40+10 =50

14. Draw Ogive		1 - thon	less than	less than 180	less than
Daily income	less than	less than	160	less than 100	200
	120	140		40	50
Number of worker(cumulative)	12	26	34	40	

Sol:



15.

Find the median of the fond	Ting data		_					
Marks obtained	20	29	28	33	42	38	43	25
Number of students	6	28	24	15	2	4	1	20

Sol: -First we arrange the marks in ascending order and prepare a cumulative frequency table.

Marks obtained	Number of students frequency (f)	Cumulative frequency cf
20	6	6
25	20	6+ 20 =26
28	24	26+ 24 = 50
29	28	26+ 24 = 78
33	15	78+ 15 =93
38	4	93+ 4 = 97
42	2	97+2 =99
43	1	99+ 1 =100
Total	100	

Here n=100 which is even. Then median will be the average of the $\frac{n}{2}$ th and

observation ie., average of the 50th and 51th observation.

$$50^{th}$$
 observation is = 28

$$50^{th}$$
 observation is = 28 51^{th} observation is = 29

Median =
$$\frac{28+29}{2} = \frac{57}{2} = 28.5$$

Lesson-15 PROBABILITY

(3 marks question)

1. Write formula of probability

$$P(E) = \frac{Number\ of\ favourable\ outcomes}{Total\ number\ of\ outcomes}$$

- 2. A box contains 5 red and 3 green marbles. If a marbles is drawn at random from the box. What is the probability of getting of red marble.
- Sol: Let E be the probability of red marbles.

Number of possible outcomes =
$$5 + 3 = 8$$

$$P(E) = \frac{Number of favourable outcomes}{Total number of outcomes}$$

$$=\frac{5}{8}$$

- 3. What is the probability of getting a head when a coin is tossed once.
- Sol: Total outcomes = 2

P (head) =
$$\frac{1}{2}$$

4. If P(E) = 0.05 What is the probability of 'not E'?

Sol:
$$P(E) + P(\overline{E}) = 1$$

$$P(\overline{E}) = 1 - P(E)$$

$$=1-0.05=0.95$$

- 5. A dice is thrown once, what is the probability of getting a number greater than 4
- Sol: Total outcomes = 6

outcomes greater than
$$4 = 2$$

P(greater than 4) =
$$\frac{2}{6} = \frac{1}{3}$$

(4 marks questions)

- 6. A bag contains 8 red balls and 5 black balls. A ball is drawn at random from the bag. What is the probability that the ball drawn is red?
- Sol: Total outcomes = 8 + 5 = 13

$$P(\text{red ball}) = \frac{8}{13}$$

- 7. A box contains 3 blue, 2 white and 4 red marbles. If a marbles is drawn at random from the box what is the probability that it will be white marble.
- Sol: Total outcomes = 3 + 2 + 4 = 9

P (white) =
$$\frac{2}{9}$$

- 8. A dice is thrown once. Find the probability of getting a number lying between 2 and 6
- Sol: Total outcomes of dice = 6 numbers between 2 and 6 = (3, 4, 5) = 3P(between 2 and 6) = $\frac{3}{6} = \frac{1}{2}$
- 9. A dice is thrown once. Find the probability of getting an odd number.
- Sol: Total outcomes of a dice = 6 odd number = (1,3,5) = 3
 - P (odd number) = $\frac{3}{6} = \frac{1}{2}$
- 10. Write the total outcomes when a dice is thrown once.
- Sol: Total possible outcomes =1,2,3,4,5,6=6
- 11. A child has a die whose six faces show the letters as given below:
 - A B C E D E

The die is thrown once. What is the probability of getting E

- Sol: Total outcomes = 6 Number of E = 2 $P(E) = \frac{2}{6} = \frac{1}{3}$
- 12. When we tossed a coin, the probability of head is greater than tail, less than tail or equal? Answer: When we tossed a coin, the probability to get head and tail are equal.

