Total No. of Printed Pages-12

HS/XII/A. Sc. Com/M/NC/21

2021

MATHEMATICS

(New Course)

Full Marks : 80

Time : 3 hours

The figures in the margin indicate full marks for the questions

General Instructions :

- (i) All questions are compulsory.
- (ii) This question paper contains 36 questions divided into four Sections A, B, C and D. Section—A comprises of 20 questions of 1 mark each, Section—B comprises of 6 questions of 2 marks each, Section—C comprises of 6 questions of 4 marks each and Section—D comprises of 4 questions of 6 marks each.
- (iii) There is no overall choice. However, internal choice has been provided in 9 questions of Section—A, 5 questions of Section—B, 5 questions of Section—C and 2 questions of Section—D. You have to attempt only one of the alternatives in all such questions.
- (iv) Use of calculator is not permitted.

/113

(2)

SECTION-A

1. If $R = \{(1, -1), (2, -2), (3, -1)\}$ is a relation, then find the domain and range of *R*.

Or

Find the principal value of $\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$. 1

- **2.** If $f : \mathbb{R} \to \mathbb{R}$ is a function defined by $f(x) = x^2$, $\forall x \in \mathbb{R}$, then show that f is not one-one. 1
- **3.** Construct a 2×2 matrix $A = [a_{ij}]$, whose elements are given by

$$a_{ij} = \frac{(i+j)^2}{2} \tag{1}$$

Or

Find the value of AB when A = [1234] and

$$B = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$$
 1

4. Use determinant to find the value of K for which the points A(3, -2), B(K, 2) and C(8, 8) are collinear.

HS/XII/A. Sc. Com/M/NC/21/113

[Contd.

(3)

Find the value of $\boldsymbol{\lambda}$ so that the matrix

$$\begin{bmatrix} 5-\lambda & \lambda+1\\ 2 & 4 \end{bmatrix}$$

is singular.

5. If

$$\begin{vmatrix} 4 & m \\ -3 & 5 \end{vmatrix} = 8$$

find the value of m.

Or

If

$$\begin{vmatrix} x-2 & -3 \\ 3x & 2x \end{vmatrix} = 3$$

find the value of x.

6. Show that the matrix

$$A = \begin{bmatrix} 0 & 5\\ -5 & 0 \end{bmatrix}$$

is skew-symmetric.

7. If
$$y = e^{3\log x}$$
, then find $\frac{dy}{dx}$. 1
Or

Find the value of
$$\frac{d}{dx}(\sin^2 x^4 + \cos^2 x^4)^4$$
. 1

HS/XII/A. Sc. Com/M/NC/21/113

[P.T.O.

1

1

1

(4)

8. Find the value of
$$\int_2^3 |x| dx$$
.

Find the value of
$$\int_0^{\pi/2} \cos 2x \, dx$$
. 1

9. Find the slope of the tangent to the curve

$$y = 2x^2 + 3\sin x$$
 at $x = 0$.

1

10. What is the order and the degree of the following differential equation?

$$\left(\frac{d^2y}{dx^2}\right)^3 + 2\left(\frac{dy}{dx}\right)^5 + 9y = \sin x$$

11. If \bar{a} and \bar{b} are two vectors such that $|\bar{a}| = \sqrt{2}$, $|\bar{b}| = 2$ and $\bar{a} \cdot \bar{b} = \sqrt{6}$, find the angle between \bar{a} and \bar{b} .

Or

Find the dot product of the vectors $\overline{a} = \hat{i} - \hat{j} + \hat{k}$ and $\overline{b} = \hat{i} - \hat{k}$.

12. If P(1, 3, 4) and Q(2, 5, 3) be two points in space, find the unit vector along \overrightarrow{PQ} .

HS/XII/A. Sc. Com/M/NC/21/113 [Contd.

13. A and B appear for an interview for two vacancies in a company. The probability of A's selection is $\frac{1}{5}$ and that of B's selection is $\frac{1}{6}$. What is the probability that both of them got selected?

(5)

14. If A and B are events such that

$$P(A) = \frac{5}{11}, P(B) = \frac{6}{11} \text{ and } P(A \cup B) = \frac{7}{11}$$

find $P\left(\frac{B}{A}\right).$ 1

15. Find
$$\overline{a} \times \overline{b}$$
 where $\overline{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ and $\overline{b} = \hat{i} + 2\hat{j} - \hat{k}$. 1

Find the vector equation of the straight line joining the points (1, 2, 3) and (2, 1, 4).

Choose the correct answer :

16. The value of $\int 2^x dx$ is

(a)
$$\frac{2^{x+1}}{x+1} + C$$

$$(b) \quad 2^x \log 2 + C$$

$$(c) \quad \frac{2^x}{\log 2} + C$$

(d) None of the above

HS/XII/A. Sc. Com/M/NC/21/113

[P.T.O.

1

1

17. The derivative of a constant function is

- (a) a non-zero constant
- (b) zero
- (c) the function itself
- (d) None of the above

Or

The second-order derivative of $\log x$ with respect to x is

(a)
$$\frac{1}{x}$$

(b) $\frac{1}{x^2}$
(c) $-\frac{1}{x^2}$
(d) 1 1

18. If f(x) = 2, then the value of f(2) is

(a)	2	2								
(b)	х	x								
(c)	х	x ²								
(d)	2	2 <i>x</i>								1

HS/XII/A. Sc. Com/M/NC/21/113

[Contd.

(7)

19. If
$$\overline{a} = 3\hat{i} + \hat{j} - 2\hat{k}$$
 and $\overline{b} = \hat{i} - 9\hat{j} - 3\hat{k}$, then \overline{a} and \overline{b} are

- (a) perpendicular vectors
- (b) parallel vectors
- (c) equal vectors
- (d) None of the above
- **20.** The maximum value of Z = 4x + 3y, subject to the constraints $x + y \le 4$, $x \ge 0$, $y \ge 0$ is
 - *(a)* 8
 - *(b)* 10
 - *(c)* 12
 - *(d)* 16

1

1

Section-B

- **21.** Show that the relation R in the set of real numbers \mathbb{R} defined by $R = \{(a, b) : a \le b\}$ is transitive but not symmetric.
- **22.** Show that

$$\tan^{-1}\left(\frac{x}{\sqrt{a^2 - x^2}}\right) = \sin^{-1}\left(\frac{x}{a}\right)$$

HS/XII/A. Sc. Com/M/NC/21/113

[P.T.O.

(8)

Evaluate
$$\sin\left\{\frac{\pi}{3} - \sin^{-1}\left(-\frac{1}{2}\right)\right\}$$
. 2

23. If

$$A = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} \text{ and } B = \begin{bmatrix} -2 & 1 \\ 0 & 3 \end{bmatrix}$$

Or

find the matrix X such that 2A + X = B.

2

Or

Find the cofactors of the elements of the second column of the determinant

8	4	2	
2	9	4	
1	4 9 2	8	

24. Is the function defined by

$$f(x) = \begin{cases} 2x + 3 & , & \text{if } x \le 2 \\ 2x - 3 & , & \text{if } x > 2 \end{cases}$$

continuous at x = 2? Justify.

Find
$$\frac{dy}{dx}$$
, when $x = \sin t$ and $y = \cos 2t$. 2

HS/XII/A. Sc. Com/M/NC/21/113

[Contd.

(9)

25. By using the properties of definite integral, show that

$$\int_{0}^{1} x(1-x)^{5} dx = \frac{1}{42}$$
Or

Evaluate
$$\int \frac{(\tan^{-1} x)^2}{4 + 4x^2} dx.$$
 2

26. If
$$y = \sqrt{x + \sqrt{x + \sqrt{x + \sqrt{x + \cdots}}}}$$
 to ∞ , then prove that

$$\frac{dy}{dx} = \frac{1}{2y - 1}$$

2

Solve the following equation :

$$(x^2+1)\frac{dy}{dx} = xy$$

27. (a) Find the value of k, if the function defined by

$$f(x) = \begin{cases} kx+1 & , & \text{if } x \le 5\\ 3x-5 & , & \text{if } x > 5 \end{cases}$$

is continuous at $x = 5$. 2

(b) Use definition to find the derivative of x^2 . 2

28. If $y = \sin^{-1} x$, then prove that

$$(1 - x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} = 0$$
4

HS/XII/A. Sc. Com/M/NC/21**/113** [P.T.O.

(10)

Or

Find the interval in which the function

$$f(x) = 2x^3 - 3x^2 - 36x + 7$$

is

- (a) strictly increasing;
- (b) strictly decreasing.
- **29.** Prove that

$$\int_{0}^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx = \frac{\pi}{4}$$
Or
$$Or$$

Find the equation of the tangent line to the curve $y=x^2-2x+7$ which is parallel to the line 2x-y+9=0. 4

30. Find the Cartesian and vector equation of the line which passes through the point (-2, 4, -5) and parallel to the line given by

$$\frac{x+3}{3} = \frac{y-4}{5} = \frac{z+8}{6}$$
Or 4

Find the vector equation of the plane passing through the intersection of the planes $\overline{r} \cdot (\hat{i} + \hat{j} + \hat{k}) - 6 = 0$ and $\overline{r} \cdot (2\hat{i} + 3\hat{j} + 4\hat{k}) + 5 = 0$ and the point (1, 1, 1).

31. Find two positive numbers whose product is 49 and the sum is minimum.

Or

If $\overline{a} = 3\hat{i} - \hat{j}$ and $\overline{b} = 2\hat{i} + \hat{j} - 3\hat{k}$, then express \overline{b} in the form $\overline{b} = \overline{c} + \overline{d}$ where \overline{c} is parallel to \overline{a} and \overline{d} is perpendicular to \overline{a} .

HS/XII/A. Sc. Com/M/NC/21/113

[Contd.

4

4

4

(11)

32. If A and B are two events such that

$$2P(A) = P(B) = \frac{5}{13}$$
 and $P\left(\frac{A}{B}\right) = \frac{2}{5}$

find P(not A and not B).

Or

Solve the following LPP graphically :

Maximize Z = 4x + y

subject to the constraints

 $x + y \le 50$ $3x + y \le 90$ $x \ge 0, \ y \ge 0$

SECTION-D

33. If

$$A = \begin{bmatrix} 4 & 5 & 3 \\ 1 & 0 & 6 \\ 2 & 7 & 9 \end{bmatrix}$$

verify that $A \cdot (\operatorname{adj} A) = (\operatorname{adj} A) \cdot A = |A| |I_3.$

Or

Solve the system equations by matrix method : 6

$$5x - y + z = 4$$
$$3x + 2y - 5z = 2$$
$$x + 3y - 2z = 5$$

HS/XII/A. Sc. Com/M/NC/21/113

[P.T.O.

6

4

- (12)
- **34.** Integrate the following :

(i)
$$\int \frac{(x+1)e^x}{\cos^2(xe^x)} dx$$

(ii)
$$\int e^x \left(\frac{1}{x} - \frac{1}{x^2}\right) dx$$

35. Find the shortest distance between the lines

$$\overline{r} = (\hat{i} + 2\hat{j} + \hat{k}) + \lambda(\hat{i} - \hat{j} + \hat{k})$$

$$\overline{r} = (2\hat{i} - \hat{j} - \hat{k}) + \mu(2\hat{i} + \hat{j} + 2\hat{k})$$

6

- **36.** State Bayes' theorem on probability. Use this theorem to solve the following [(a) or (b)] : 2+4=6
 - (a) An insurance company insured 2000 scooty drivers, 4000 taxi drivers and 6000 bus drivers in a particular year. The probability of their accidents are 0.01, 0.03 and 0.15 respectively. One of the insured drivers meets with an accident. What is the probability that the person drives a scooty?

Or

(b) First bag contains 3 red and 4 black balls, and second bag contains 5 red and 6 black balls. A ball is drawn at random from one of the bags and it is found to be red. Find the probability that it was drawn from the second bag.

* * *

HS/XII/A. Sc. Com/M/NC/21/113

11-21-5710

3×2=6