Total No. of Printed Pages-12
HS/XII/A. Sc. Com/M/NC/21

2021

MATHEMATICS

(New Course)

Full Marks : 80
Time : 3 hours

The figures in the margin indicate full marks for the questions General Instructions :
(i) All questions are compulsory.
(ii) This question paper contains 36 questions divided into four Sections A, B, C and D. Section-A comprises of 20 questions of 1 mark each, Section-B comprises of 6 questions of 2 marks each, Section-C comprises of 6 questions of 4 marks each and Section-D comprises of 4 questions of 6 marks each.
(iii) There is no overall choice. However, internal choice has been provided in 9 questions of Section-A, 5 questions of Section-B, 5 questions of Section-C and 2 questions of Section-D. You have to attempt only one of the alternatives in all such questions.
(iv) Use of calculator is not permitted.

(2)

SECTION-A

1. If $R=\{(1,-1),(2,-2),(3,-1)\}$ is a relation, then find the domain and range of R.

Or
Find the principal value of $\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)$.
2. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function defined by $f(x)=x^{2}, \forall x \in \mathbb{R}$, then show that f is not one-one.
3. Construct a 2×2 matrix $A=\left[a_{i j}\right]$, whose elements are given by

$$
\begin{aligned}
& a_{i j}=\frac{(i+j)^{2}}{2} \\
& \text { Or }
\end{aligned}
$$

Find the value of $A B$ when $A=[1234]$ and

$$
B=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

4. Use determinant to find the value of K for which the points $A(3,-2), B(K, 2)$ and $C(8,8)$ are collinear.

(3)

Or
Find the value of λ so that the matrix

$$
\left[\begin{array}{cc}
5-\lambda & \lambda+1 \\
2 & 4
\end{array}\right]
$$

is singular.
5. If

$$
\left|\begin{array}{cc}
4 & m \\
-3 & 5
\end{array}\right|=8
$$

find the value of m.
Or
If

$$
\left|\begin{array}{cc}
x-2 & -3 \\
3 x & 2 x
\end{array}\right|=3
$$

find the value of x.
6. Show that the matrix

$$
A=\left[\begin{array}{cc}
0 & 5 \\
-5 & 0
\end{array}\right]
$$

is skew-symmetric.
7. If $y=e^{3 \log x}$, then find $\frac{d y}{d x}$.
Or

Find the value of $\frac{d}{d x}\left(\sin ^{2} x^{4}+\cos ^{2} x^{4}\right)^{4}$.

(4)

8. Find the value of $\int_{2}^{3}|x| d x$.

> Or

Find the value of $\int_{0}^{\pi / 2} \cos 2 x d x$.
9. Find the slope of the tangent to the curve

$$
y=2 x^{2}+3 \sin x
$$

$$
\text { at } x=0 \text {. }
$$

10. What is the order and the degree of the following differential equation?

$$
\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+2\left(\frac{d y}{d x}\right)^{5}+9 y=\sin x
$$

11. If \bar{a} and \bar{b} are two vectors such that $|\bar{a}|=\sqrt{2},|\bar{b}|=2$ and $\bar{a} \cdot \bar{b}=\sqrt{6}$, find the angle between \bar{a} and \bar{b}.

Or

Find the dot product of the vectors $\bar{a}=\hat{i}-\hat{j}+\hat{k}$ and $\bar{b}=\hat{i}-\hat{k}$.
12. If $P(1,3,4)$ and $Q(2,5,3)$ be two points in space, find the unit vector along $\overrightarrow{P Q}$.

(5)

13. A and B appear for an interview for two vacancies in a company. The probability of A 's selection is $\frac{1}{5}$ and that of B 's selection is $\frac{1}{6}$. What is the probability that both of them got selected?
14. If A and B are events such that

$$
P(A)=\frac{5}{11}, P(B)=\frac{6}{11} \text { and } P(A \cup B)=\frac{7}{11}
$$

find $P\left(\frac{B}{A}\right)$.
15. Find $\bar{a} \times \bar{b}$ where $\bar{a}=\hat{i}-2 \hat{j}+3 \hat{k}$ and $\bar{b}=\hat{i}+2 \hat{j}-\hat{k}$. Or
Find the vector equation of the straight line joining the points $(1,2,3)$ and $(2,1,4)$.

Choose the correct answer :
16. The value of $\int 2^{x} d x$ is
(a) $\frac{2^{x+1}}{x+1}+C$
(b) $2^{x} \log 2+C$
(c) $\frac{2^{x}}{\log 2}+C$
(d) None of the above

(6)

17. The derivative of a constant function is
(a) a non-zero constant
(b) zero
(c) the function itself
(d) None of the above

Or
The second-order derivative of $\log x$ with respect to x is
(a) $\frac{1}{x}$
(b) $\frac{1}{x^{2}}$
(c) $-\frac{1}{x^{2}}$
(d) 1
18. If $f(x)=2$, then the value of $f(2)$ is
(a) 2
(b) x
(c) x^{2}
(d) 2^{x}

(7)

19. If $\bar{a}=3 \hat{i}+\hat{j}-2 \hat{k}$ and $\bar{b}=\hat{i}-9 \hat{j}-3 \hat{k}$, then \bar{a} and \bar{b} are
(a) perpendicular vectors
(b) parallel vectors
(c) equal vectors
(d) None of the above
20. The maximum value of $Z=4 x+3 y$, subject to the constraints $x+y \leq 4, x \geq 0, y \geq 0$ is
(a) 8
(b) 10
(c) 12
(d) 16

1

SECTION—B

21. Show that the relation R in the set of real numbers \mathbb{R} defined by $R=\{(a, b): a \leq b\}$ is transitive but not symmetric.
22. Show that

$$
\begin{equation*}
\tan ^{-1}\left(\frac{x}{\sqrt{a^{2}-x^{2}}}\right)=\sin ^{-1}\left(\frac{x}{a}\right) \tag{2}
\end{equation*}
$$

(8)

$$
\begin{gathered}
O r \\
\text { Evaluate } \sin \left\{\frac{\pi}{3}-\sin ^{-1}\left(-\frac{1}{2}\right)\right\} .
\end{gathered}
$$

23. If

$$
A=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
-2 & 1 \\
0 & 3
\end{array}\right]
$$

find the matrix X such that $2 A+X=B$.

Or

Find the cofactors of the elements of the second column of the determinant

$$
\left|\begin{array}{lll}
8 & 4 & 2 \tag{2}\\
2 & 9 & 4 \\
1 & 2 & 8
\end{array}\right|
$$

24. Is the function defined by

$$
f(x)=\left\{\begin{array}{lll}
2 x+3, & \text { if } x \leq 2 \\
2 x-3, & \text { if } x>2
\end{array}\right.
$$

continuous at $x=2$? Justify.

Or

Find $\frac{d y}{d x}$, when $x=\sin t$ and $y=\cos 2 t$.

(9)

25. By using the properties of definite integral, show that

$$
\begin{equation*}
\int_{0}^{1} x(1-x)^{5} d x=\frac{1}{42} \tag{2}
\end{equation*}
$$

Or

Evaluate $\int \frac{\left(\tan ^{-1} x\right)^{2}}{4+4 x^{2}} d x$
26. If $y=\sqrt{x+\sqrt{x+\sqrt{x+\sqrt{x+\cdots}}}}$ to ∞, then prove that

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{2 y-1} \\
& \text { Or }
\end{aligned}
$$

Solve the following equation :

$$
\left(x^{2}+1\right) \frac{d y}{d x}=x y
$$

SECTION-C

27. (a) Find the value of k, if the function defined by

$$
f(x)=\left\{\begin{array}{lll}
k x+1 & , & \text { if } \\
3 x-5 & , & \text { if } \\
3>5
\end{array}\right.
$$

is continuous at $x=5$.
(b) Use definition to find the derivative of x^{2}.
28. If $y=\sin ^{-1} x$, then prove that

$$
\begin{equation*}
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=0 \tag{4}
\end{equation*}
$$

(10)

Or
Find the interval in which the function

$$
f(x)=2 x^{3}-3 x^{2}-36 x+7
$$

is
(a) strictly increasing;
(b) strictly decreasing.
29. Prove that

$$
\begin{gathered}
\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x=\frac{\pi}{4} \\
\text { Or }
\end{gathered}
$$

Find the equation of the tangent line to the curve $y=x^{2}-2 x+7$ which is parallel to the line $2 x-y+9=0$.
30. Find the Cartesian and vector equation of the line which passes through the point $(-2,4,-5)$ and parallel to the line given by

$$
\begin{gathered}
\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6} \\
\text { Or }
\end{gathered}
$$

Find the vector equation of the plane passing through the intersection of the planes $\bar{r} \cdot(\hat{i}+\hat{j}+\hat{k})-6=0$ and $\bar{r} \cdot(2 \hat{i}+3 \hat{j}+4 \hat{k})+5=0$ and the point $(1,1,1)$.
31. Find two positive numbers whose product is 49 and the sum is minimum.
Or

If $\bar{a}=3 \hat{i}-\hat{j}$ and $\bar{b}=2 \hat{i}+\hat{j}-3 \hat{k}$, then express \bar{b} in the form $\bar{b}=\bar{c}+\bar{d}$ where \bar{c} is parallel to \bar{a} and \bar{d} is perpendicular to \bar{a}.

(11)

32. If A and B are two events such that

$$
2 P(A)=P(B)=\frac{5}{13} \text { and } P\left(\frac{A}{B}\right)=\frac{2}{5}
$$

find $P($ not A and not $B)$.
Or
Solve the following LPP graphically :
Maximize $Z=4 x+y$
subject to the constraints

$$
\begin{aligned}
x+y & \leq 50 \\
3 x+y & \leq 90 \\
x \geq 0, y & \geq 0
\end{aligned}
$$

SECTION—D

33. If

$$
A=\left[\begin{array}{lll}
4 & 5 & 3 \\
1 & 0 & 6 \\
2 & 7 & 9
\end{array}\right]
$$

verify that $A \cdot(\operatorname{adj} A)=(\operatorname{adj} A) \cdot A=|A| I_{3}$.
Or
Solve the system equations by matrix method :

$$
\begin{array}{r}
5 x-y+z=4 \\
3 x+2 y-5 z=2 \\
x+3 y-2 z=5
\end{array}
$$

(12)

34. Integrate the following :
(i) $\int \frac{(x+1) e^{x}}{\cos ^{2}\left(x e^{x}\right)} d x$
(ii) $\int e^{x}\left(\frac{1}{x}-\frac{1}{x^{2}}\right) d x$
35. Find the shortest distance between the lines

$$
\begin{aligned}
& \bar{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k}) \\
& \bar{r}=(2 \hat{i}-\hat{j}-\hat{k})+\mu(2 \hat{i}+\hat{j}+2 \hat{k})
\end{aligned}
$$

36. State Bayes' theorem on probability. Use this theorem to solve the following [(a) or (b)] :
(a) An insurance company insured 2000 scooty drivers, 4000 taxi drivers and 6000 bus drivers in a particular year. The probability of their accidents are $0.01,0.03$ and 0.15 respectively. One of the insured drivers meets with an accident. What is the probability that the person drives a scooty?

Or
(b) First bag contains 3 red and 4 black balls, and second bag contains 5 red and 6 black balls. A ball is drawn at random from one of the bags and it is found to be red. Find the probability that it was drawn from the second bag.

