

Time: 3 Hours
MATHEMATICS (E)
(For Children with Special Needs)

Subject Code

S	0	2	5

Total No. of Questions : 7
(Printed Pages : 7)
Maximum Marks : 65
INSTRUCTIONS: i) Answereach main question on a new page.
ii) All questions are compulsory.
iii) The question paper consists of seven questions.
iv) There is no overall choice. However, internal choice have been provided in two questions of three marks each.
v) In question on constructions, the drawing should be neat and exactly as per the given measurement. The construction lines and arcs should also be maintained.
vi) Chart of tables from 2 to 9 will be supplied on request.
vii) Use of calculator and mathematical tables is not permitted.
viii) The numbers on the right side indicate marks.

1. A) Select and write the most appropriate alternative from those provided in the bracket:

If $x-y=3$ and $x+y=7$, then the value of $x=$ \qquad .
[2;3;4;5]
B) The following is a given pair of linear equation
$x+3 y=5$
$2 x+6 y=11$
Answer the following questions:
i) Write the condition for no solution of the given pair of linear equation.
ii) Verify whether the equations have no solution.
C) By elimination method, find the solution of any one of the following equations.
i) $3 x+y=7$

$$
5 x-y=9
$$

ii) $3 x+y=8$
$x-2 y=5$
D) Attemptany one of the following :
i) The cost of 1 pencil and 3 erasers is together Rs. 14, while the cost of 2 pencils and 5 erasers is together Rs. 25. Find the cost of each pencil and eraser.
ii) The sum of two odd numbers is 18 and their difference is 4 . Find these two odd numbers.
2. A) Select and write the most appropriate alternative from those provided in the bracket:
In a quadratic polynomial $x^{2}+3 x-6$, the value of x is \qquad
[1;0;3;6]
B) Attempt the following :
i) Find the sum of the zeroes of the polynomial $2 x^{2}+11 x-21$.
ii) Find the product of the zeroes of the polynomial $3 x^{2}+17 x+10$.
C) Divide $x^{3}+6 x^{2}+11 x+6$ by $x+1$ and find the quotient and the remainder.
D) A child has a die whose six faces show the letters as given below :

A E O U 1 A
The die is thrown once
Find the probability of getting
i) A
ii) I
iii) B
3. A) Select and write the most appropriate alternative from those provided in the bracket :
The value of $b^{2}-4 a c$ in the quadratic equation $x^{2}-5 x+6$ is \qquad [1;5;10;12]
B) Attempt the following :
i) Find the roots of quadratic equation $x^{2}-25=0$.
ii) Write the quadratic equation $x^{2}-15=2 x$ in the form of $a x^{2}+b x+c=0$.
C) Find the roots of any one of the following :
i) $x^{2}+10 x+24=0$ (By factorisation method).
ii) $x^{2}+4 x+3=0$ (By quadratic formula method).
D) The following frequency distribution table shows the daily expenses (in Rs.) of students:

Daily expenses (in Rs.) C.I	No. of students $\mathbf{f}_{\mathbf{i}}$	Class mark $\mathbf{x}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}$
$0-10$	2		
$10-20$	8		
$20-30$	7		
$30-40$	3		
$40-50$	4		
$50-60$	$\sum \mathbf{f}_{\mathbf{i}}=$		$\sum \mathbf{f}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}=$

Rewrite and complete the table and also find the mean of daily expenses.
4. A) Select and write the most appropriate alternative from those provided in the bracket:
The decimal form of $\frac{4}{5}$ is \qquad [0.2;0.4;0.5;0.8]
B) The product of two numbers is 180 . If their LCM is 60 , then find the HCF of two numbers.
C) Using Euclid's division method, find the HCF of 30 and 55.
D) Find the sum of the first 10 terms of the AP 4, 8, 12, $16 \ldots$
5. A) Select and write the most appropriate alternative from those provided in the bracket:

In the above $\triangle T E N, E=90^{\circ}$. If $T E=5 \mathrm{~cm}, E N=12 \mathrm{~cm}$ and $T N=13 \mathrm{~cm}$, Then $\cos \mathrm{N}=$ \qquad $\left[\frac{5}{13} ; \frac{12}{13} ; \frac{13}{12} ; \frac{12}{5}\right]$
B) In \triangle SUN, $\underline{U}=90^{\circ}$, If $\operatorname{Tan} N=\frac{6}{8}$, then find

i) The length of SN
ii) The value of $\sin \mathrm{N}$
C) Substitute the known numerical values of trigonometric ratio and find the value of
$4 \cos ^{2} 45^{\circ}+2 \sin ^{2} 30^{\circ}+5 \tan ^{2} 45^{\circ}$
D) $Q(5,7)$ and $R(2,3)$ are any two points. Find the distance between points Q and R.
6. A) Select and write the most appropriate alternative from those provided in the bracket:
In $\Delta \mathrm{PQR} \sim \Delta X Y Z$, then $\frac{\mathrm{PQ}}{-}=\frac{\mathrm{QR}}{\mathrm{YZ}}$
[XY; XZ ; PR ; YZ]
B) In $\triangle D E F, M N \| E F$. If $D M=2 \mathrm{~cm}, \mathrm{ME}=3 \mathrm{~cm}, \mathrm{DN}=6 \mathrm{~cm}$, find
i) The length of NF
ii) The length of DF

C) In $\triangle R A Y, \underline{A}=90^{\circ}, A X \perp R Y$. With reference to the figure, fill in the blanks and complete the proof.

Statement Reason

In \triangle RAY and \triangle RXA
i) $\mathrm{RAY}=$ \qquad Each is a right angle
ii) $\underline{R}=\underline{R}$
iii) $\triangle R A Y \sim \Delta R X A$
\qquad
D) In the following figure $A C$ and $A D$ are two tangents drawn from the point A outside the circle with centre ' O '. With reference to the figure answer the following questions:

i) Name the side equal to OC.
ii) Name the common side of $\triangle A O C$ and $\triangle A O D$.
iii) Name the right angles of $\triangle A O C$ and $\triangle A O D$.
iv) By which criterion/theorem $\triangle \mathrm{AOC}$ and $\triangle \mathrm{AOD}$ are congruent?
7. A) Select and write the most appropriate alternative from those provided in the bracket:
If the radius of a circle is 6 cm , then its diameter is \qquad
[0;10;12;15]
B) In the adjoining figure, O is the centre of the circle. $O-A C B$ is a sector.
$\triangle A O B=90^{\circ}$ and radius $O A=8 \mathrm{~cm}$.
(Do not substitute the value of π)

Find:
i) Area of sector O-ACB
ii) The length of $\operatorname{arc} A C B$
C) Draw a line segment GH $=8.5 \mathrm{~cm}$ and divide it into 5 equal parts. (Use compass and ruler only)
D) Draw a line segment $\mathrm{OZ}=7 \mathrm{~cm}$ and taking O as a centre and radius 3 cm draw a circle. Then using a pair of compasses and ruler construct two tangents from point Z to the circle. Measure and state the length of a tangent segment.

