MATHEMATICS

Section – A

Choose the correct answer from the given alternatives

1.	value of p is			$x^2 - 2x + 3p$ and $\alpha + \beta = \alpha\beta$, then the	1
	(i) $\frac{-2}{3}$	(ii) $\frac{2}{3}$	(iii) $\frac{1}{3}$	(iv) $\frac{-1}{3}$	
2.				ynomial $x^2 - 4x + 3$ are	1
	(i) 3, 3	(ii) 4, 3	(iii) 3, –4	(iv) 4, $\frac{1}{3}$	
3.				3 represent coincident lines, then	1
	(i) $k = -\frac{5}{6}$	(ii) $k = \frac{6}{5}$	(iii) $k = \frac{5}{6}$	(iv) $k = -\frac{6}{5}$	
4.	If a pair of lineat two equations as		vo variables is co	onsistent then the lines represented by	1
	(i) intersecting	cident	(ii) parallel (iv) intersecting	y or coincident	T
5.				then a is equal to	1
	(i) 8	(ii) 7		(iv) -4	
6.	roots are		_	$16x^2 + 4kx + 9 = 0$ has real and equal	1
	(i) 6, $-\frac{1}{6}$	(ii)36, -36	(iii) 6, –6	(iv) $\frac{3}{4}, -\frac{3}{4}$	
7.				an A.P., the value of k is	1
8.		(ii) -3 the A.P. 5, 12, 19	(iii) 3 Densis	(iv) 6	1
0.	(i) 343	(ii) 348	(iii) 353		-
9.	The coordinates	of A are		x-axis lying below <i>x</i> -axis.	1
10.	(i) $(4, 0)$ The coordinates		(iii) $(-4, 0)$ (iv)	(0, -4) vertices are (0, 6), (8, 12)	
10.	and (8, 0) is		C		1
	(i) $\left(\frac{16}{3}, 6\right)$	(ii) $\left(\frac{14}{5}, 6\right)$	(iii) $\left(\frac{10}{3}, 5\right)$	(iv) $\left(\frac{22}{3}, 6\right)$	
11.	If in $\triangle ABC$ right	angled at B, AB =	= 5 cm and sin C	$=\frac{1}{2}$, the length of AC is	1
12.	(i) 10 cm If $\tan 2\theta = \cot(\theta)$	(ii) 2.5 cm ∂ + 15°) are acute	(iii) 7.5 cm e, the value of θ i	(iv) 6 cm s	1
10	(i) 22°	(ii) 25°	(iii) 30°	(iv) 35°	
13.	·	he length of the ta ntre is 25 cm. The (ii) 12 cm	U U	is 24 cm and the distance cle is (iv) 24.5 cm	1

14.	If the tangents PA and PB from a p to each other at an angle of 80°, the	hen ∠POA is equa	al to	1
	(i) 50° (ii) 60°	(iii) 70°	(iv) 80°	
15.	The perimeter of quadrant of a circ	cle whose radius is	$s \frac{7}{2}$ cm is	1
	(i) 3.5 cm (ii) 5.5 cm	(iii) 7.5 cm	(iv) 12.5 cm	
16.	An arc of a circle is of length 5π c		bounds has an area of	
	20π cm ² . The radius of the circle			1
17	(i) 16 cm (ii) 4 cm	(iii) 8 cm	(iv) 12 cm	
17.	The ratio of the total surface area t base radius 80 cm and height 20 c		ce area of a cylinder with	1
	(i) 2 : 1 (ii) 3 : 1	(iii) 4 : 1	(iv) 5 : 1	1
18.	A frustrum of a right circular cone			
	as 8 cm and 20 cm has its slant he	-		1
	(i) 18 cm (ii) 16 cm	(iii) 20 cm	(iv) 24 cm	
19.			1	
	probability that the card drawn is	-	a queen is	1
	(i) $\frac{11}{13}$ (ii) $\frac{12}{13}$	(iii) $\frac{2}{13}$	(iv) $\frac{1}{26}$	
20.	13 13 Which of the following cannot be	15		1
20.				1
	(i) $\frac{2}{3}$ (ii) - 1.5	(iii)15%	(iv) 0.7	
		Section – B		
1.	Prove that $7\sqrt{5}$ is irrational			2
2.	Use Euclid's division algorithm to	o find the HCF of	135 and 225.	2
3.	Find the roots of the quadratic equ			
	formula			2
4.	Find the roots of the quadratic equ	uation $2x^2 + x - 6$	= 0 by factorisation.	2
5.	In the trapezium ABCD, AB DO			
	diagonals AC and BD intersect at	O. Find the lengt	h of BO.	2
6.	Let $\triangle ABC \sim \triangle DEF$ and their area	s be respectively	$54 \text{ cm}^2 \text{ and } 121 \text{ cm}^2$. If	
_	EF = 15.4 cm, find BC.			2
7.	Find the values of y for which the $O(10, y)$ is 10 yrits	distance between	the points $P(2, -3)$ and	2
8.	Q(10, y) is 10 units. Find the value of <i>k</i> for which the	points $(7 \ 2)$ (5	10) and $(3, k)$ are collinear	2 2
8. 9.	The radii of two circles are 19 cm	• • • • • • • •		-
	circle which has circumference ed	-	•	
	two circles.	•		2
10				

10. In a circle of radius 21 cm, an arc subtends an angle of 60° at the centre. Find:(i) the length of the arc, (ii) the area of the sector formed by the arc.

Section – C

1. If α and β are the zeros of the quadratic polynomial $2x^2 - 5x + 7$, then find the quadratic polynomial whose zeros are $(3\alpha + 4\beta)$ and $(4\alpha + 3\beta)$.

3

2. 3.	It is given that 1 is a zero of the polynomial $7x - x^3 - 6$. Find the other zeros. Solve the following pair of linear equations by substitution method:	3 3
	$s - t = 3$ and $\frac{5}{3} + \frac{t}{2} = 6$.	
4.	Solve the following pair of linear equations by cross-multiplication method: x - 3y - 7 = 0 and $3x - 3y - 15 = 0$.	3
5.	Find the roots of the quadratic equation $2x^2 + x - 4 = 0$ by the method of	
-	completing the square.	3
6.	Determine the A. P. whose third term is 16 and the 7 th term exceeds the 5 th term by 12.	3
7.	The first and the last terms of an A.P. are 17 and 350 respectively. If the common	_
0	difference is 9, how many terms are there and what is their sum?	3
8. 9.	Find the sum of the odd numbers between 0 and 50. Find the ratio in which the line segment joining the points $(-3, 10)$ and $(6, -8)$ is	3
).	divided by $(-1, 6)$.	3
10.	Find the area of the quadrilateral whose vertices, taken in order, are $(-4, -2)$, $(-3, -5)$,	-
	(3, -2) and (2, 3).	3
11.	If 3 cot A = 4, then prove that $\frac{1 - \tan^2 A}{1 + \tan^2 A} = \cos^2 A - \sin^2 A$	3
12.	Prove that : $\frac{1 + \sec A}{\sec A} = \frac{\sin^2 A}{1 - \cos^2 A}$	3
13.	Prove that : $\frac{\cos A}{1 + \sin A} + \frac{1 + \sin A}{\cos A} = 2 \sec A$	3
14	Evaluate : $\frac{\sin 30^\circ + \tan 45^\circ - \csc 60^\circ}{200}$	2
14.	Evaluate : $\frac{1}{\sec 30^\circ + \cos 60^\circ + \cot 45^\circ}$	3
15.	Draw a triangle ABC with side BC = 6 cm, AB = 5 cm and $\angle ABC = 60^{\circ}$. Then	
	construct a triangle whose sides are $\frac{3}{4}$ of the corresponding sides of $\triangle ABC$.	3
16.	Draw a circle of radius 6 cm. From a point 10 cm away from its centre, construct	3
17.	the pair of tangents to the circle and measure their lengths. A chord of a circle of radius 15 cm subtends an angle of 60° at the centre. Find the	3
17.	areas of the corresponding minor and major segments of the circle. (Use $\pi = 3.14$	
	and $\sqrt{3} = 1.73$).	3
18.	Find the area of the shaded region in the	
	adjoining figure, given that $PQ = 24$ cm,	
	PR = 7 cm and O is the centre of the Correle.	
	R	•
	Í.	3

19. Two cubes each of volume 64 cm^3 are joined end to end. Find the surface area of the resulting cuboid.

- 20. How many silver coins, 1.75 cm in diameter and of thickness 2 mm must be melted to form a cuboid of dimensions $5.5 \text{ cm} \times 10 \text{ cm} \times 3.5 \text{ cm}$?
- 21. The following data gives the information on the observed lifetimes (in hours) of 225 electrical components:

Lifetimes (in hours)	0-20	20-40	40-60	60-80	80-100	100-120
Frequency	10	35	52	61	38	29

Determine the modal lifetimes of the components.

22. The following frequency distribution gives the monthly consumption of electricity of 68 consumers of a locality. Find the median of the data.

Monthly consumption (in 1 units)	65-85	85-105	105-125	125-145	145-165	165-185	185-205
No. of consumers	4	5	13	20	14	8	4

- 23. One card is drawn from a well-shuffled deck of 52 cards. Find the probability of getting (i) a face card (ii) a red face card (iii) a spade.
- A box containing 90 discs which are numbered from 1 to 90. If one disc is drawn at random from the box, find the probability that it bears: (i) a two-digit number (ii) a perfect square number (iii) a number divisible by 5.
- 25. A die is thrown twice. What is the probability that: (i) 5 will not come up either time?(ii) 5 will come up at least once?

Section – D

1.	The sum of the digits of a two-digit number is 9. Also, 9 times this number is twice the number obtained by reversing the order of the digits. Find the number.	5
2.	The area of a rectangle gets reduced by 9 square units if its length is reduced by 5 units and breadth is increased by 3 units. If we increase the length by 3 units	5
	and breadth by 2 units, the area increases by 67 square units. Find the dimensions	
	of the rectangle.	5
3.	A train travels 360 km at a uniform speed. If the speed had been 5 km/hr more,	
	it would have taken 1 hour less for the same journey. Find the speed of the train.	5
4.	State and prove Basic Proportionality theorem.	5 5
5.	State and prove Pythagoras theorem.	5
6.	ABCD is a trapezium in which AB DC and its diagonals intersect each other at	
	the point O. Show that $\frac{AO}{BO} = \frac{CO}{DO}$	5
7.	In an equilateral triangle ABC, D is a point on the side BC such that $BD = \frac{1}{3}BC$.	
	Prove that $9AD^2 = 7AB^2$	5
8.	From the top of a 7 m high building, the angle of elevation of the top of a cable	
	tower is 60° and the angle of depression of its foot is 45° . Determine the height of	
	the tower.	5
9.	A statue, 1.6 m tall, stands on the top of a pedestal. From a point on the ground,	
	the angle of elevation of the top of the statue is 60° and from the same point, the	
	angle of elevation of the top of the pedestal is 45°. Find the height of the pedestal.	5

3

3

3

3

3

10. Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line segment joining the points of contact at the centre.

Ρ

А

0

- 11. PAQ is a tangent to the circle with centre O at a point A as shown in the adjoining figure. If $\angle OBA = 35^\circ$, find the value of $\angle BAQ$ and $\angle ACB$.
- 12. A toy is in the form of a cone of radius 3.5 cm mounted on a hemisphere of same radius. The total height of the toy is 15.5 cm. Find the total surface area and the volume of the toy.
- 13. The slant height of a frustrum of a cone is 4 cm and the perimeters of its circular ends are 18 cm and 6 cm. Find the curved surface area of the frustrum.
- 14. The following table gives the production yield per hectare of wheat of 100 farms of a village.

Production yield	50-55	55-60	60-65	65-70	70-75	75-80
(in kg/ha)						
Number of farms	2	8	12	24	38	16

Change the distribution to a more than type distribution, and draw its ogive. The following distribution shows the daily pocket allowance of children of a

15. The following distribution shows the daily pocket allowance of children of a locality. The mean pocket allowance is 18. Find the missing frequency f by the step-deviation method.

Daily pocket allowance	11-13	13-15	15-17	17-19	19-21	21-23	23-25
(in`)							
Number of children	7	6	9	13	f	5	4

5

5 5

5

5