MATHEMATICS

Section - A

Choose the correct answer from the given alternatives

1. If α and β are the zeros of the polynomial $f(x)=p x^{2}-2 x+3 p$ and $\alpha+\beta=\alpha \beta$, then the value of p is
(i) $\frac{-2}{3}$
(ii) $\frac{2}{3}$
(iii) $\frac{1}{3}$
(iv) $\frac{-1}{3}$
2. The sum \& product respectively of zeros of the polynomial $x^{2}-4 x+3$ are
(i) 3,3
(ii) 4,3
(iii) $3,-4$
(iv) $4, \frac{1}{3}$
3. If the pair of equations $3 x+2 y=5 k$ and $4 x+y=3$ represent coincident lines, then
(i) $k=-\frac{5}{6}$
(ii) $k=\frac{6}{5}$
(iii) $k=\frac{5}{6}$
(iv) $k=-\frac{6}{5}$
4. If a pair of linear equations in two variables is consistent then the lines represented by two equations are
(i) intersecting
(ii) parallel
(iii) always coincident
(iv) intersecting or coincident
5. If one root of the equation $2 x^{2}+a x+6=0$ is 2 , then a is equal to
(i) 8
(ii) 7
(iii) -8
(iv) -4
6. The values of k for which the quadratic equation $16 x^{2}+4 k x+9=0$ has real and equal roots are
(i) $6,-\frac{1}{6}$
(ii) $36,-36$
(iii) $6,-6$
(iv) $\frac{3}{4},-\frac{3}{4}$
7. If $k, 2 k-1 \& 2 k+1$ are three consecutive terms of an A.P., the value of k is
(i) -2
(ii) -3
(iii) 3
(iv) 6
8. The $50^{\text {th }}$ term of the A.P. $5,12,19, \ldots$ is
(i) 343
(ii) 348
(iii) 353
(iv) 362
9. A is a point on y-axis at a distance of 4 units from x-axis lying below x-axis. The coordinates of A are
(i) $(4,0)$
(ii) $(0,4)$
(iii) $(-4,0)$ (iv) $(0,-4)$
10. The coordinates of the centroid of a triangle whose vertices are $(0,6),(8,12)$ and $(8,0)$ is
(i) $\left(\frac{16}{3}, 6\right)$
(ii) $\left(\frac{14}{5}, 6\right)$
(iii) $\left(\frac{16}{3}, 5\right)$
(iv) $\left(\frac{22}{3}, 6\right)$
11. If in $\triangle A B C$ right angled at $B, A B=5 \mathrm{~cm}$ and $\sin C=\frac{1}{2}$, the length of $A C$ is
(i) 10 cm
(ii) 2.5 cm
(iii) 7.5 cm
(iv) 6 cm
12. If $\tan 2 \theta=\cot \left(\theta+15^{\circ}\right)$ are acute, the value of θ is
(i) 22°
(ii) 25°
(iii) 30°
(iv) 35°
13. From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm . The radius of the circle is
(i) 7 cm
(ii) 12 cm
(iii) 15 cm
(iv) 24.5 cm
14. If the tangents PA and PB from a point P to a circle with centre O are inclined to each other at an angle of 80°, then $\angle \mathrm{POA}$ is equal to
(i) 50°
(ii) 60°
(iii) 70°
(iv) 80°
15. The perimeter of quadrant of a circle whose radius is $\frac{7}{2} \mathrm{~cm}$ is
(i) 3.5 cm
(ii) 5.5 cm
(iii) 7.5 cm
(iv) 12.5 cm
16. An arc of a circle is of length $5 \pi \mathrm{~cm}$ and the sector it bounds has an area of $20 \pi \mathrm{~cm}^{2}$. The radius of the circle is
(i) 16 cm
(ii) 4 cm
(iii) 8 cm
(iv) 12 cm
17. The ratio of the total surface area to the lateral surface area of a cylinder with base radius 80 cm and height 20 cm is
(i) $2: 1$
(ii) $3: 1$
(iii) $4: 1$
(iv) $5: 1$
18. A frustrum of a right circular cone of height 16 cm with radii of its circular ends as 8 cm and 20 cm has its slant height equal to
(i) 18 cm
(ii) 16 cm
(iii) 20 cm
(iv) 24 cm
19. A card is drawn at random from a well- shuffled deck of playing cards. The probability that the card drawn is neither a king nor a queen is
(i) $\frac{11}{13}$
(ii) $\frac{12}{13}$
(iii) $\frac{2}{13}$
(iv) $\frac{1}{26}$
20. Which of the following cannot be the probability of an event?
(i) $\frac{2}{3}$
(ii) -1.5
(iii) 15%
(iv) 0.7

Section - B

1. Prove that $7 \sqrt{5}$ is irrational
2. Use Euclid's division algorithm to find the HCF of 135 and 225.
3. Find the roots of the quadratic equation $2 x^{2}-7 x+3=0$ by applying the quadratic formula
4. Find the roots of the quadratic equation $2 x^{2}+x-6=0$ by factorisation.
5. In the trapezium $\mathrm{ABCD}, \mathrm{AB} \| \mathrm{DC}, \mathrm{AB}=9 \mathrm{~cm}, \mathrm{DC}=6 \mathrm{~cm}$ and $\mathrm{BD}=12 \mathrm{~cm}$. The diagonals $A C$ and $B D$ intersect at O. Find the length of BO.
6. Let $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$ and their areas be respectively $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $\mathrm{EF}=15.4 \mathrm{~cm}$, find BC .
7. Find the values of y for which the distance between the points $\mathrm{P}(2,-3)$ and $\mathrm{Q}(10, y)$ is 10 units.
8. Find the value of k for which the points $(7,-2),(5,10)$ and $(3, k)$ are collinear.
9. The radii of two circles are 19 cm and 9 cm respectively. Find the radius of the circle which has circumference equal to the sum of the circumferences of the two circles.
10. In a circle of radius 21 cm , an arc subtends an angle of 60° at the centre. Find:
(i) the length of the arc, (ii) the area of the sector formed by the arc.

Section - C

1. If α and β are the zeros of the quadratic polynomial $2 x^{2}-5 x+7$, then find the quadratic polynomial whose zeros are $(3 \alpha+4 \beta)$ and $(4 \alpha+3 \beta)$.
2. It is given that 1 is a zero of the polynomial $7 x-x^{3}-6$. Find the other zeros.
3. Solve the following pair of linear equations by substitution method:

$$
s-t=3 \quad \text { and } \quad \frac{5}{3}+\frac{t}{2}=6 .
$$

4. Solve the following pair of linear equations by cross-multiplication method:

$$
x-3 y-7=0 \quad \text { and } \quad 3 x-3 y-15=0
$$

5. Find the roots of the quadratic equation $2 x^{2}+x-4=0$ by the method of completing the square.
6. Determine the A. P. whose third term is 16 and the $7^{\text {th }}$ term exceeds the $5^{\text {th }}$ term by 12 .
7. The first and the last terms of an A.P. are 17 and 350 respectively. If the common difference is 9 , how many terms are there and what is their sum?
8. Find the sum of the odd numbers between 0 and 50 . 3
9. Find the ratio in which the line segment joining the points $(-3,10)$ and $(6,-8)$ is divided by $(-1,6)$.
10. Find the area of the quadrilateral whose vertices, taken in order, are $(-4,-2),(-3,-5)$, $(3,-2)$ and $(2,3)$.
11. If $3 \cot \mathrm{~A}=4$, then prove that $\frac{1-\tan ^{2} \mathrm{~A}}{1+\tan ^{2} \mathrm{~A}}=\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}$
12. Prove that : $\frac{1+\sec \mathrm{A}}{\sec \mathrm{A}}=\frac{\sin ^{2} \mathrm{~A}}{1-\cos ^{2} \mathrm{~A}}$
13. Prove that : $\frac{\cos \mathrm{A}}{1+\sin \mathrm{A}}+\frac{1+\sin \mathrm{A}}{\cos \mathrm{A}}=2 \sec \mathrm{~A}$
14. Evaluate : $\frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}$
15. Draw a triangle ABC with side $\mathrm{BC}=6 \mathrm{~cm}, \mathrm{AB}=5 \mathrm{~cm}$ and $\angle \mathrm{ABC}=60^{\circ}$. Then construct a triangle whose sides are $\frac{3}{4}$ of the corresponding sides of $\triangle A B C$.
16. Draw a circle of radius 6 cm . From a point 10 cm away from its centre, construct the pair of tangents to the circle and measure their lengths.
17. A chord of a circle of radius 15 cm subtends an angle of 60° at the centre. Find the areas of the corresponding minor and major segments of the circle. (Use $\pi=3.14$ and $\sqrt{3}=1.73$).
18. Find the area of the shaded region in the adjoining figure, given that $P Q=24 \mathrm{~cm}$, $\mathrm{PR}=7 \mathrm{~cm}$ and O is the centre of the circle.

19. Two cubes each of volume $64 \mathrm{~cm}^{3}$ are joined end to end. Find the surface area of the resulting cuboid.
20. How many silver coins, 1.75 cm in diameter and of thickness 2 mm must be melted to form a cuboid of dimensions $5.5 \mathrm{~cm} \times 10 \mathrm{~cm} \times 3.5 \mathrm{~cm}$?
21. The following data gives the information on the observed lifetimes (in hours) of 225 electrical components:

Lifetimes (in hours)	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$	$100-120$
Frequency	10	35	52	61	38	29

Determine the modal lifetimes of the components.
22. The following frequency distribution gives the monthly consumption of electricity of 68 consumers of a locality. Find the median of the data.

Monthly consumption (in 1 units)	$65-85$	$85-105$	$105-125$	$125-145$	$145-165$	$165-185$	$185-205$
No. of consumers	4	5	13	20	14	8	4

23. One card is drawn froma well-shuffled deck of 52 cards. Find the probability of getting (i) a face card (ii) a red face card (iii) a spade.
24. A box containing 90 discs which are numbered from 1 to 90 . If one disc is drawn at random from the box, find the probability that it bears: (i) a two-digit number (ii) a perfect square number (iii) a number divisible by 5 .
25. A die is thrown twice. What is the probability that: (i) 5 will not come up either time?
(ii) 5 will come up at least once?

Section - D

1. The sum of the digits of a two-digit number is 9 . Also, 9 times this number is twice the number obtained by reversing the order of the digits. Find the number.
2. The area of a rectangle gets reduced by 9 square units if its length is reduced by 5 units and breadth is increased by 3 units. If we increase the length by 3 units and breadth by 2 units, the area increases by 67 square units. Find the dimensions of the rectangle.
3. A train travels 360 km at a uniform speed. If the speed had been $5 \mathrm{~km} / \mathrm{hr}$ more, it would have taken 1 hour less for the same journey. Find the speed of the train.
4. State and prove Basic Proportionality theorem.
5. State and prove Pythagoras theorem.
6. ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC}$ and its diagonals intersect each other at the point O. Show that $\frac{A O}{B O}=\frac{C O}{D O}$
7. In an equilateral triangle $A B C, D$ is a point on the side $B C$ such that $B D=\frac{1}{3} B C$. Prove that $9 A D^{2}=7 A B^{2}$
8. From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 45°. Determine the height of the tower.
9. A statue, 1.6 m tall, stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point, the angle of elevation of the top of the pedestal is 45°. Find the height of the pedestal.
10. Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line segment joining the points of contact at the centre.
11. PAQ is a tangent to the circle with centre O at a point A as shown in the adjoining figure. If $\angle \mathrm{OBA}=35^{\circ}$, find the value of $\angle \mathrm{BAQ}$ and $\angle \mathrm{ACB}$.

5
12. A toy is in the form of a cone of radius 3.5 cm mounted on a hemisphere of same radius. The total height of the toy is 15.5 cm . Find the total surface area and the volume of the toy.
13. The slant height of a frustrum of a cone is 4 cm and the perimeters of its circular ends are 18 cm and 6 cm . Find the curved surface area of the frustrum.
14. The following table gives the production yield per hectare of wheat of 100 farms of a village.

Production yield (in kg/ha)	$50-55$	$55-60$	$60-65$	$65-70$	$70-75$	$75-80$
Number of farms	2	8	12	24	38	16

Change the distribution to a more than type distribution, and draw its ogive.
5
15. The following distribution shows the daily pocket allowance of children of a locality. The mean pocket allowance is ' 18 . Find the missing frequency f by the step-deviation method.

\begin{tabular}{|c|c|c|c|c|c|c|c|}

\hline | Daily pocket allowance |
| :---: |
| (in `) | \& $11-13$ \& $13-15$ \& $15-17$ \& $17-19$ \& $19-21$ \& $21-23$ \& $23-25$

\hline Number of children \& 7 \& 6 \& 9 \& 13 \& f \& 5 \& 4

\hline
\end{tabular}

