JEE-Main-25-07-2022-Shift-2 (Memory Based)

Physics

Question: A potentiometer shows reading of 36 cm when connected with 1.2 V battery, then the same potentiometer is connected to a 1.8 V battery, find the difference in the lengths
Options:
(a) 10 cm
(b) 18 cm
(c) 20 cm
(d) 54 cm

Answer: (b)

Solution:

Balancing point $=36 \mathrm{~cm}$
Voltage of cell $=1.2 \mathrm{~V}$
\therefore Potential gradient $=\frac{1.2}{36}=\frac{1}{30} \mathrm{~V} / \mathrm{cm}$
Now, new voltage $=1.8 \mathrm{~V}$
\therefore Balancing length $=\frac{1.8}{\frac{1}{30}}$ or $\frac{1.8}{1.2} \times 36=54 \mathrm{~cm}$
\therefore Difference $=54-36=18 \mathrm{~cm}$
Question: Two billiard balls of mass 0.05 kg moving in opposite directions with velocity of $10 \mathrm{~m} / \mathrm{s}$ and the time of contact between is 0.005 sec , find the force of contact.

Options:

(a) 50 N
(b) 100 N
(c) 180 N
(d) 200 N

Answer: (d)

Solution:

$|F|=\left|\frac{\Delta \vec{P}}{\Delta t}\right|$
$=\frac{0.05(\Delta V)}{0.005}$
$=\frac{0.05(20)}{0.005}=200 \mathrm{~N}$

Question: Max amplitude of AM modulated wave is $6 \&$ min amplitude of AM modulated wave is 2 , modulation index in percentage is $\mathrm{x} \%$ find x .

Options:

(a) 50 N
(b) 80 N
(c) 120 N
(d) 140 N

Answer: (a)

Solution:

Modulation index $=\frac{A_{\text {max }}-A_{\text {min }}}{A_{\text {max }}+A_{\text {min }}}$
$=\frac{6-2}{6+2}=\frac{4}{8}=0.5=50 \%$

Question: A coil is having 2 turns then the magnetic field at the centre is B_{1} when the coil is unwound and recoiled to 5 turns then the magnetic field would become B_{2}, find $\frac{B_{2}}{B_{1}}$

Options:

(a) $\frac{20}{3}$
(b) $\frac{15}{6}$
(c) $\frac{25}{4}$
(d) $\frac{4}{25}$

Answer: (c)

Solution:

$B=\frac{\mu_{0} i}{2 \pi}\left(\frac{N}{r}\right)$
Now initial turns $=n_{1}($ say $)$ and radius $=r_{1}$ (say)
$n_{1}\left(2 \pi r_{1}\right)=n_{2}\left(2 \pi r_{2}\right)$
$\therefore \frac{n_{1}}{n_{2}}=\frac{r_{2}}{r_{1}}$
$\frac{B_{1}}{B_{2}}=\frac{n_{1}}{n_{2}} \times \frac{r_{2}}{r_{1}}=\left(\frac{n_{1}}{n_{2}}\right)^{2}$
$=\left(\frac{2}{5}\right)^{2}=\frac{4}{25}$
$\therefore \frac{B_{2}}{B_{1}}=\frac{25}{4}$

Question: An isolated sphere with radius R_{1}, when it is surrounded by concentric sphere of R_{2} grounded to earth, capacity becomes n times ratio of $\frac{R_{2}}{R_{1}}$ is

Options:

(a) $\frac{n}{(n-1)}$
(b) $\frac{(n-1)}{n}$
(c) $\frac{1-n}{n}$
(d) n

Answer: (a)

Solution:

Capacity of isolated sphere $=4 \pi \varepsilon_{0} R_{1}$
Capacity of isolated sphere enclosed $=\frac{4 \pi \varepsilon_{0} R_{1} R_{2}}{R_{2}-R_{1}}$
$\therefore n 4 \pi \varepsilon_{0} R_{1}=\frac{4 \pi \varepsilon_{0} R_{1} R_{2}}{R_{2}-R_{1}}$
$\Rightarrow n R_{2}-n R_{1}=R_{2}$
$\Rightarrow(n-1) R_{2}=n R_{1}$
$\frac{R_{2}}{R_{1}}=\frac{n}{n-1}$

Question: Heat produced in a resistance R , carrying current l in time t is given as $H=l^{2} R t$. If percentage error in measurement of current, resistance and time are $2 \%, 1 \%$ and 1% respectively, then error in measurement of heat would be

Options:

(a) 4%
(b) 3%
(c) 6%
(d) 5%

Answer: (c)

Solution: As $H=I^{2} R t$
$\therefore\left[\frac{\Delta H}{H}=\frac{2 \Delta I}{I}+\frac{\Delta R}{R}+\frac{\Delta t}{t}\right] \times 100 \%$
$\Rightarrow \Delta H \%=2 \times 2+1+1 \%=6 \%$

Question: A ball is projected with $15 \mathrm{~m} / \mathrm{s}$ at an angle θ such that the range and maximum height is same, then find $\tan \theta$

Options:

(a) 0
(b) 2
(c) 4
(d) 6

Answer: (c)
Solution:
$R=H$
$\frac{v^{2} \sin 2 \theta}{g}=\frac{u^{2} \sin ^{2} \theta}{2 g}$
$\Rightarrow 2 \sin \theta \cos \theta=\frac{\sin ^{2} \theta}{2}$
$\Rightarrow \tan \theta=4$

Question: It's the FBD given for an object, then find the value of force required and its angle with positive x -axis such that its net acceleration becomes zero

Options:

(a) $\sqrt{2}$ and angle 45°
(b) $\sqrt{6}$ and angle 55°
(c) $\sqrt{10}$ and angle 60°
(d) $\sqrt{15}$ and angle 30°

Answer: (a)

Solution:

1 N with angle 45 degrees with x -axis
Net force in x - direction $=-1 \mathrm{~N}$
Net force in y-direction $=-1 \mathrm{~N}$
\therefore Force required to balance $=1 \hat{i}+1 \hat{j}$
\therefore Angle it makes is 45° with x -axis
Question: The phenomenon which makes metal detector alarm is?

Options:

(a) Hall effect
(b) EMI
(c) Interference of EM waves
(d) Gauss law

Answer: (b)

Solution:

The operation of metal detectors is based upon the principles of electromagnetic induction. Metal detectors contain one or more inductor coils that are used to interact with metallic elements on the ground.

Question: A 9.8 kg bag is hanging with a rope then a bullet of 200 g moving with $10 \mathrm{~m} / \mathrm{s}$ get embedded in it, find the loss in kinetic energy

Options:

(a) 9.8 J
(b) 5.8 J
(c) 7.8 J
(d) 4.8 J

Answer: (a)

Solution:

$m_{1} u_{1}+m_{2} u_{2}=\left(m_{1}+m_{2}\right) v$
$0.2(10)+9.8(0)=(9.8+2) v$
$2=0.2 \mathrm{~m} / \mathrm{s}$
Initial K.E $=\frac{1}{2}(0.2)(10)^{2}$
$=10 \mathrm{~J}$
Final K.E $=\frac{1}{2}(0.2)(0.2)^{2}$
$+\frac{1}{2}(9.8)(0.2)^{2}$
$=\frac{1}{2}(10)(0.2)^{2}$
$=0.2 \mathrm{~J}$
\therefore Loss in K.E $=9.8 \mathrm{~J}$

Question: A body is taken from surface of earth to a height of $5 \mathrm{R} / 4$ from length of earth, where R is radius of earth. Percentage decrease in weight of body at height is
Options:
(a) 33.33%
(b) 64%
(c) 25%
(d) 36%

Answer: (d)

Solution:

$g_{h}=\frac{G M}{\left(5 \frac{R}{4}\right)^{2}}$
$=\frac{16}{25} g_{e}$
$\%$ change $=\frac{g_{h}-g_{e}}{g_{e}} \times 100 \%$
$=\left[\left(\frac{16}{25}\right)-1\right] \times 100 \%$
$=-36 \%$

Question: A second pendulum is taken to a height of $h=2 R$, find the length of the pendulum at that place.

Options:

(a) $\frac{1}{7} m$
(b) $\frac{1}{9} m$
(c) $\frac{1}{5} m$
(d) $\frac{1}{6} m$

Answer: (b)
Solution:
$T=2 \pi \sqrt{\frac{l}{g}}$
At $h=2 R$
$g=\frac{G M}{(R+2 R)^{2}}=\frac{G M}{9 R^{2}}=\frac{g}{9}$
$\therefore T=2 \pi \sqrt{\frac{l}{g / 9}}=6 \pi \sqrt{\frac{l}{g}}$
But it's a second's pendulum
So time period is 2 sec
$\therefore 2=6 \pi \sqrt{\frac{l}{g}} \Rightarrow l \approx \frac{1}{9} m$

Question: Find potential difference at AB

Options:

(a) 475 V
(b) 385 V
(c) 275 V
(d) 365

Answer: (c)

Solution:

Equivalent resistance
$=5+(5 \& 10$ in parallel $)$
$+10$
$=5+\frac{50}{15}+10$
$=15+\frac{10}{3}=\frac{55}{3}$
$\therefore V=i R$
$=15 \times 10^{-3} \times \frac{55}{3} \times 10^{3}$
$=275 \mathrm{~V}$

Question: The heat developed in a resistor H has a $\%$ error of $\mathrm{x} \%$ if $\%$ error in i is $2 \%, \mathrm{R}$ is $2 \%, \mathrm{t}=3 \%, \mathrm{t}=3 \%$ find x .

Options:

(a) 9%
(b) 11%
(c) 6%
(d) 10%

Answer: (a)
Solution:
$H=i^{2} R t$
$\frac{D H}{H}=\frac{2 \Delta i}{i}+\frac{\Delta R}{R}+\frac{\Delta t}{t}$
$\therefore \%$ error in $\mathrm{H}=2(2)+2+3$
$=9 \%$

Question: Magnetic flux as a function of time is given as $8 t^{2}-9 t+5$, and a resistor of 20Ω is connected with t , find the value of induced current at $\mathrm{t}=0.25 \mathrm{sec}$.

Options:

(a) 0.35 mA
(b) 0.15 mA
(c) 0.45 mA
(d) 0.25 mA

Answer: (d)

Solution:

$\phi=8 t^{2}-9 t+5$
$R=20 \Omega$
$\varepsilon=-\frac{d \phi}{d t}=-(16 t-9)$
At $t=0.25$
$\varepsilon=5 \mathrm{~V}$
$\therefore i=\frac{\varepsilon}{R}=\frac{5}{20}$
$=0.25$

Question: De Broglie wavelength of proton and neutron have ratio $1: \sqrt{2}$ find the ratio of their potential difference through which they were accelerated

Options:

(a) $6: 1$
(b) $3: 1$
(c) $1: 1$
(d) $4: 1$

Answer: (d)
Solution:
$\lambda=\frac{h}{\sqrt{2 m q v}}$
$\frac{\lambda_{p}}{\lambda_{d}}=\sqrt{\frac{m_{d} v_{d} q_{d}}{m_{p} v_{p} q_{p}}}$
$\frac{1}{\sqrt{2}}=\sqrt{\frac{m_{d} v_{d} q_{d}}{m_{p} v_{p} q_{p}}}$
$\frac{1}{2}=\frac{m_{d} v_{d} q_{d}}{m_{p} v_{p} q_{p}}=\left(\frac{2}{1}\right)\left(\frac{v_{d}}{v_{p}}\right)\left(\frac{1}{1}\right)$
$\Rightarrow \frac{v_{d}}{v_{p}}=\frac{1}{4}$ or $\frac{v_{p}}{v_{d}}=4: 1$

Question: If electric field of EM wave is $540 \sin \pi \times 10^{4}(x-c t)$ and speed of light is 3×10^{8} m / s then find the amplitude of magnetic field

Options:

(a) $15 \times 10^{7} \mathrm{~T}$
(b) $18 \times 10^{-7} \mathrm{~T}$
(c) $14 \times 10^{-6} \mathrm{~T}$
(d) $11 \times 10^{-7} \mathrm{~T}$

Answer: (b)
Solution:
$B_{0}=\frac{E_{0}}{C}=\frac{540}{3 \times 10^{8}}$
$=180 \times 10^{-8}$
$=18 \times 10^{-7} \mathrm{~T}$

JEE-Main-25-07-2022-Shift-2 (Memory Based)

Chemistry

Question: Which of the following is herbicides?
Options:
(a) DDT
(b) Aldrin
(c) Sodium arsenite
(d) Dieldrin

Answer: (c)
Solution: Sodium arsenite is a herbicide
Question: Micelle formation is

Options:

(a) Exothermic, $\Delta S>0$
(b) Endothermic, $\Delta \mathrm{S}<0$
(c) Exothermic, $\Delta \mathrm{S}<0$
(d) Endothermic, $\Delta \mathrm{S}>0$

Answer: (d)
Solution: $\Delta \mathrm{S}>0$ for micelle formation and the process is endothermic at low temperature.
Question: Glycosidic linkage between alpha glucose and beta fructose is present in Options:
(a) lactose
(b) Sucrose
(c) Maltose
(d) None of these

Answer: (b)
Solution: Sucrose: One of the Common disaccharides is sucrose which on hydrolysis gives equimolar mixture of $\mathrm{D}-(+)$-glucose and $\mathrm{D}-(-)$ fructose.

$$
\underset{\text { Surose }}{\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}}+\mathrm{H}_{2} \mathrm{O} \rightarrow \underset{\text { D-(}) \text {--Glucose }}{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}+\underset{\text { D-(-)-Fructose }}{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}
$$

These two monosaccharides are held together by a glycosidic linkage between C 1 of α-Dglucose and C 2 of β-D-fructose. Since the reducing groups of glucose and fructose are involved in glycosidic bond formation, sucrose is a non reducing sugar.

Sucrose

Question: What is the correct order of density for group 2 elements?
Options:
(a) $\mathrm{Be}>\mathrm{Mg}>\mathrm{Ca}>\mathrm{Sr}$
(b) $\mathrm{Ca}>\mathrm{Mg}>\mathrm{Be}>\mathrm{Sr}$
(c) $\mathrm{Mg}<\mathrm{Ca}<\mathrm{Sr}<\mathrm{Be}$
(d) $\mathrm{Ca}<\mathrm{Mg}<\mathrm{Be}<\mathrm{Sr}$

Answer: (d)
Solution: The size of alkali metals increases down the group, and volume also shows an increase. Since volume is inversely proportional to the density, there is an increase in the volume, which is lesser than increasing mass in the case of Sr and Ba . So as moving down the group, density decreases first and then increases.

Question: What is the hybridization of Xe in the following compounds $\mathrm{XeO}_{3}, \mathrm{XeF}_{6}, \mathrm{XeO}_{2} \mathrm{~F}_{2}$ Options:
(a) $\mathrm{XeO}_{3}-\mathrm{sp}^{3}, \mathrm{XeF}_{6}-\mathrm{sp}^{3} \mathrm{~d}^{3}, \mathrm{XeO}_{2} \mathrm{~F}_{2}-\mathrm{sp}^{3} \mathrm{~d}$
(b) $\mathrm{XeO}_{3}-\mathrm{sp}^{3} \mathrm{~d}, \mathrm{XeF}_{6}-\mathrm{sp}^{3}, \mathrm{XeO}_{2} \mathrm{~F}_{2}-\mathrm{sp}^{3} \mathrm{~d}^{3}$
(c) $\mathrm{XeO}_{3}-\mathrm{sp}^{3} \mathrm{~d}^{2}, \mathrm{XeF}_{6}-\mathrm{sp}^{3}, \mathrm{XeO}_{2} \mathrm{~F}_{2}-\mathrm{sp}^{3}$
(d) $\mathrm{XeO}_{3}-\mathrm{sp}^{3} \mathrm{~d}, \mathrm{XeF}_{6}-\mathrm{sp}^{3} \mathrm{~d}^{2}, \mathrm{XeO}_{2} \mathrm{~F}_{2}-\mathrm{sp}^{3} \mathrm{~d}$

Answer: (a)
Solution: Hybridization of Xe in
$\mathrm{XeO}_{3} \Rightarrow \mathrm{sp}^{3}$
$\mathrm{XeF}_{6} \Rightarrow \mathrm{sp}^{3} \mathrm{~d}^{3}$
$\mathrm{XeO}_{2} \mathrm{~F}_{2} \Rightarrow \mathrm{sp}^{3} \mathrm{~d}$
Question: 99.9 \% pure dihydrogen can be prepared by Options:
(a) Reaction of methane with steam
(b) Mixing natural hydrocarbons of high molecular weight
(c) Electrolysis of water
(d) Reaction of salts like hydride with water

Answer: (c)
Solution: Highly pure hydrogen can be obtained by electrolysis of water.
It is the decomposition of water into $\mathrm{O}_{2} \& \mathrm{H}_{2}$ gas by passing electric current.
At anode, $6 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}_{3} \mathrm{O}^{+}+4 \mathrm{e}^{-}$
cathode, $4 \mathrm{e}^{-}+4 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+4 \mathrm{OH}^{-}(\mathrm{ag})$

Overall $\rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

Question: The first ionization energy order B, Be, C, O, N among is \qquad

Options:

(a) B $<$ Be $<$ C $<$ O $<$ N
(b) B $<$ Be $<$ C $<$ N $<$ O
(c) $\mathrm{Be}<$ B $<$ C $<$ N $<$ O
(d) $\mathrm{Be}<$ B $<$ C $<$ O $<\mathrm{N}$

Answer: (a)
Solution: The ionisation energy increases across a period as atomic size decrease Therefore, correct order is $\mathrm{B}<\mathrm{Be}<\mathrm{C}<\mathrm{O}<\mathrm{N}$

Question: Drugs which do not bind to its active site is called Options:
(a) Allosteric site
(b) Non active site
(c) Both (a) and (b)
(d) None of the above

Answer: (a)
Solution: Some drugs do not bind to enzyme's active site.
These bind to a different site of enzyme called allosteric site
Question: Match the following.

Column-I (polymer)	Column-II (Uses)
(A) Nylon 6	(i) non sticking Utensils
(B) HDP	(ii) Buckets
(C) LDP	(iii) Brush Bristles
(D) Teflon	(iv) Toys

Options:

(a) $\mathrm{A} \rightarrow$ (i); $\mathrm{B} \rightarrow$ (iii); $\mathrm{C} \rightarrow$ (iv); $\mathrm{D} \rightarrow$ (ii)
(b) $\mathrm{A} \rightarrow$ (iii); $\mathrm{B} \rightarrow$ (ii); $\mathrm{C} \rightarrow$ (iv); $\mathrm{D} \rightarrow$ (i)
(c) $\mathrm{A} \rightarrow$ (ii); $\mathrm{B} \rightarrow$ (i); $\mathrm{C} \rightarrow$ (iv); $\mathrm{D} \rightarrow$ (iii)
(d) $\mathrm{A} \rightarrow$ (iv); $\mathrm{B} \rightarrow$ (iii); $\mathrm{C} \rightarrow$ (ii); $\mathrm{D} \rightarrow$ (i)

Answer: (b)
Solution:
(A) Nylon $6 \Rightarrow$ (iii) Brush Bristles
(B) $\mathrm{HDP} \Rightarrow$ (ii) Buckets
(C) LDP \Rightarrow (iv) Toys
(D) Teflon \Rightarrow (i) non sticking Utensils

Question: Statement-I: Pig iron can be obtained from cast Iron.
Statement-II: Cast iron has least carbon content

Options:

(a) Both Statement I and Statement II are correct.
(b) Both Statement I and Statement II are incorrect.
(c) Statement I is correct, but Statement II is incorrect.
(d) Statement I is incorrect, but Statement II is correct.

Answer: (b)
Solution: Cast iron is made from pig iron
Wrought iron has least carbon content
Both S-I and S-II are false

Question: $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CN} \xrightarrow{\mathrm{CH}_{3} \mathrm{MgBr}} \mathrm{A} \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} \mathrm{B} \xrightarrow{\mathrm{Zn.Hg} / \mathrm{HCl}} \mathrm{C}$
What is C ?

Options:

(a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}$

Answer: (c)

Solution:

(B)

(C)

Question: Which of the following is correct decreasing order of acidity?
(A)

(B)

(C)

(D)

Options:
(a) A $>$ B $>$ C $>$ D
(b) B $>$ C $>$ A $>$ D
(c) C $>$ A $>$ B $>$ D
(d) D $>$ A $>$ B $>$ C

Answer: (a)

Solution:

A shows -I effect, -m effect
B shows $-I$ effect due to $-\mathrm{NO}_{2}$ group
C shows -I effect due to $-\mathrm{OCH}_{3}$ group
D shows +m effect and -I but +m effect is dominating here
\therefore Order is $\mathrm{A}>\mathrm{B}>\mathrm{C}>\mathrm{D}$
Question: Methyl orange structure at end point?

Options:

(a) Quinoid form
(b) Benzenoid form
(c) Both (a) and (b)
(d) None of these

Answer: (a)

Solution:

Question: $\mathrm{Mn}^{3+} / \mathrm{Mn}^{2+}, \mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}, \mathrm{Cr}^{3+} / \mathrm{Cr}^{2+}, \mathrm{Co}^{3+} / \mathrm{Co}^{2+}$.
Find the magnetic moment in M^{2+} which has negative Ered.
Answer: 4.90

Solution:

$\mathrm{E}_{\mathrm{Mn}^{3+} / \mathrm{Mn}^{2+}}^{0}=+1.57$
$\mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{0}=+0.77$
$\mathrm{E}_{\mathrm{C}_{0}{ }^{3+} / \mathrm{C}^{2+}}^{\mathrm{o}}=+1.97$
$\mathrm{E}_{\mathrm{Cr}^{3+} / \mathrm{Cr}^{2+}}^{0}=-0.41$
Magnetic moment of $\mathrm{Cr}^{2+}=\sqrt{4(4+2)}=4.9 \mathrm{BM}$
Question: $\mathrm{XeO}_{3}, \mathrm{XeF}_{6}, \mathrm{XeO}_{2} \mathrm{~F}_{2}$ sum of lone pair of central atom is \qquad
Answer: 3.00

Solution:

$\mathrm{XeO}_{3} \Rightarrow 1$ lone pair
$\mathrm{XeF}_{6} \Rightarrow 1$ lone pair
$\mathrm{XeO}_{2} \mathrm{~F}_{2} \Rightarrow 1$ lone pair
Sum $=1+1+1=3$ lone pair
Question: Total number of spectral line emitted when electrons jumps from $\mathrm{n}=5$ to ground state?
Answer: 10.00
Solution: If the electron jumps from $\mathrm{n}_{2}=5$ to $\mathrm{n}_{1}=1$
Then following transition possible
$5 \rightarrow 4,5 \rightarrow 3,5 \rightarrow 2,5 \rightarrow 1$
$4 \rightarrow 3,4 \rightarrow 2,4 \rightarrow 1$
$3 \rightarrow 3,3 \rightarrow 1$
$2 \rightarrow 1$
Hence, 10 transitions are possible
Question: Total number of acidic oxides among is/are \qquad
$\mathrm{N}_{2} \mathrm{O}, \mathrm{CO}, \mathrm{N}_{2} \mathrm{O}_{5}, \mathrm{CO}_{2}, \mathrm{P}_{2} \mathrm{O}_{5}$
Answer: 3.00
Solution:
$\mathrm{CO}, \mathrm{N}_{2} \mathrm{O}$ are neutral oxide
$\mathrm{N}_{2} \mathrm{O}_{5}, \mathrm{CO}_{2}, \mathrm{P}_{2} \mathrm{O}_{5}$ are acidic oxides

JEE-Main-25-07-2022-Shift-2 (Memory Based)

MATHEMATICS

Question: The number of bijective function $f(1,3,5,7, \ldots, 99) \rightarrow(2,4,6,8, \ldots, 100)$ if $f(3) \geq f(5) \geq \ldots \geq f(99)$ is:

Options:

(a) ${ }^{50} C_{1}$
(b) ${ }^{50} C_{2}$
(c) $\frac{50!}{2}$
(d) ${ }^{50} C_{3} \times 3$!

Answer: (a)
Solution:
Bijective function means one-one and onto.
That means for every input unique output which is non-repeating so, set $A(1,3,5,7, \ldots, 99)$ has 50 elements and set $B(2,4,6, \ldots, 100)$ has 50 elements.
Such that $f(3) \geq f(5) \geq \ldots \geq f(99)$
This can be done in ${ }^{50} C_{1}$ ways

Question: If $P(A)=\frac{1}{3}, P(B)=\frac{1}{5}$ and $P(A \cup B)=\frac{1}{2}$ then $P\left(\frac{A}{B^{\prime}}\right)+P\left(\frac{A^{\prime}}{B}\right)=$
Options:
(a) $\frac{5}{8}$
(b) $\frac{4}{9}$
(c) $\frac{29}{24}$
(d) 3

Answer: (c)

Solution:

As $P(A)=\frac{1}{3}, P(B)=\frac{1}{5}$ and $P(A \cup B)=\frac{1}{2}$
So, $P(A \cap B)=\frac{1}{30}$

Now, $P\left(\frac{A}{B^{\prime}}\right)=\frac{P\left(A \cap B^{\prime}\right)}{P\left(B^{\prime}\right)}=\frac{\frac{1}{3}-\frac{1}{30}}{\frac{4}{5}}=\frac{3}{8}$
And $P\left(\frac{A^{\prime}}{B}\right)=\frac{P\left(A^{\prime} \cap B\right)}{P(B)}=\frac{\frac{1}{5}-\frac{1}{30}}{\frac{1}{5}}=\frac{5}{6}$
So, $P\left(\frac{A}{B^{\prime}}\right)+P\left(\frac{A^{\prime}}{B}\right)=\frac{3}{8}+\frac{5}{6}=\frac{29}{24}$

Question: Let $f(x)=\left[x^{2}-2 x\right]+|5 x-7|$, and let m be minimum value of $f(x)$ and M be maximum value of $f(x)$ in $\left[\frac{5}{4}, 2\right]$, then:

Options:

(a) $m=-1, M=2$
(b) $m=0, M=3$
(c) $m=-1, M=4$
(d) $m=-2, M=2$

Answer: (a)

Solution:

For $x \in\left[\frac{5}{4}, 2\right],\left[x^{2}-2 x\right]=-1$
So, $f(x)=-1+|5 x-7|$ is lost at $x=\frac{7}{5}$ and greatest at $x=2$
$m=f\left(\frac{7}{5}\right)=-1$
And $M=f(2)=2$

Question: The tangent at the point at $A(1,3) \& B(1,-1)$ on the parabola $y^{2}-2 x-2 y=1$ meet at point P. Find area of $\triangle P A B$.
Options:
(a) 4
(b) 6
(c) 7
(d) 8

Answer: (b)

Solution:

Tangent at $A(1,3)$
$3 y-(x+1)-(y+3)=1$
$\Rightarrow x-2 y+5=0$
Tangent at $B(1,-1)$
$-y-(x+1)-(y-1)=1$
$x+2 y-1=0$
$\therefore \mathrm{P}$ is $\left(-2, \frac{3}{2}\right)$
\therefore Area of $\triangle P A B=\frac{1}{2}\left|\begin{array}{ccc}1 & 3 & 1 \\ 1 & -1 & 1 \\ -2 & \frac{3}{2} & 1\end{array}\right|$
$=\frac{1}{2}\left[1-\left(-1-\frac{3}{2}\right)-3(1+2)+1\left(\frac{3}{2}-2\right)\right]$
$=\frac{1}{2}\left[-\frac{5}{2}-9-\frac{1}{2}\right]$
$=6$

Question: If $\vec{a}=\hat{i}-\hat{j}+2 \hat{k} \& \vec{a} \times \vec{b}=2 \hat{i}-\hat{k}, \vec{a} . \vec{b}=3$, find projection of \vec{b} on $\vec{a}-\vec{b}$ Options:
(a) $\frac{2}{\sqrt{21}}$
(b) $\frac{\sqrt{3}}{7}$
(c) $\frac{\sqrt{7}}{3}$
(d) $\frac{2}{3}$

Answer: (a)

Solution:

As $|a \times b|^{2}+(\vec{a} \cdot \vec{b})^{2}=|a|^{2}|b|^{2}$
$(\sqrt{5})^{2}+(3)^{2}=(\sqrt{6})^{2}|b|^{2}$
Now, projection of \vec{b} on $\vec{a}-\vec{b}=\frac{(\vec{b}) \cdot(\vec{a}-\vec{b})}{|\vec{a}-\vec{b}|}$
$=\frac{\vec{a} \cdot \vec{b}-|b|^{2}}{|\vec{a}-\vec{b}|}$

Now, $|\vec{a}-\vec{b}|^{2}=|a|^{2}+|b|^{2}-2 \vec{a} \cdot \vec{b}=\frac{7}{3}$
$|a-b|=\frac{\sqrt{7}}{3}$
\therefore Projection is $\frac{3-\frac{7}{3}}{\frac{\sqrt{7}}{3}}=\frac{2}{\sqrt{21}}$

Question: Shortest distance between the lines $\frac{x+7}{-6}=\frac{y-6}{7}=7$ and $\frac{7-x}{2}=y-2=z-6$ is Options:
(a) $2 \sqrt{29}$
(b) 1
(c) $\frac{\sqrt{37}}{29}$
(d) $\frac{\sqrt{29}}{22}$

Answer: (a)

Solution:

$L_{1}: \frac{x+7}{-6}=\frac{y-6}{7}=\frac{z-0}{1}$
$L_{2}=\frac{x-7}{-2}=\frac{y-2}{1}=\frac{z-6}{1}$
$d=\left|\frac{\left(\vec{a}_{2}-\vec{a}_{1}\right) \cdot\left(\vec{b}_{1} \times \vec{b}_{2}\right)}{\left|b_{1} \times b_{2}\right|}\right|$
Here, $\vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ -6 & 7 & 1 \\ -2 & 1 & 1\end{array}\right|=6 \hat{i}+4 \hat{j}+8 \hat{k}$
$\vec{a}_{2}-\vec{a}_{1}=14 \hat{i}-4 \hat{j}+6 \hat{k}$
$\therefore d=\left|\frac{(14 \hat{i}-4 \hat{j}+6 \hat{k}) \cdot(6 \hat{i}+4 \hat{j}+8 \hat{k})}{\sqrt{36+16+64}}\right|=2 \sqrt{29}$
Question: $\sin \left(\frac{\pi}{22}\right) \sin \left(\frac{3 \pi}{22}\right) \sin \left(\frac{5 \pi}{22}\right) \sin \left(\frac{7 \pi}{22}\right) \sin \left(\frac{9 \pi}{22}\right)=$?
Answer: $\frac{1}{32}$

Solution:

$\sin \left(\frac{\pi}{22}\right) \sin \left(\frac{3 \pi}{22}\right) \sin \left(\frac{5 \pi}{22}\right) \sin \left(\frac{7 \pi}{22}\right) \sin \left(\frac{9 \pi}{22}\right)$
$\cos \left(\frac{\pi}{2}-\frac{\pi}{22}\right) \cos \left(\frac{\pi}{2}-\frac{3 \pi}{22}\right) \cos \left(\frac{\pi}{2}-\frac{5 \pi}{22}\right) \cos \left(\frac{\pi}{2}-\frac{7 \pi}{22}\right) \cos \left(\frac{\pi}{2}-\frac{9 \pi}{22}\right)$
$\cos \left(\frac{10 \pi}{22}\right) \cos \left(\frac{8 \pi}{22}\right) \cos \left(\frac{6 \pi}{22}\right) \cos \left(\frac{4 \pi}{22}\right) \cos \left(\frac{2 \pi}{22}\right)$
$\cos \left(\frac{\pi}{11}\right) \cos \left(\frac{2 \pi}{11}\right) \cos \left(\frac{3 \pi}{11}\right) \cos \left(\frac{4 \pi}{11}\right) \cos \left(\frac{5 \pi}{11}\right)=\frac{1}{2^{5}}=\frac{1}{32}$

Question: $\sum_{n=1}^{21} \frac{3}{(4 n-3)(4 n+1)}=$?
Answer: $\frac{63}{85}$

Solution:

$T_{n}=\frac{3}{(4 n-3)(4 n+1)}$
$T_{n}=\frac{3}{4}\left(\frac{4}{(4 n-3)(4 n+1)}\right)$
$=\frac{3}{4}\left[\frac{(4 n+1)-(4 n-3)}{(4 n-3)(4 n+1)}\right]$
$T_{n}=\frac{3}{4}\left[\frac{1}{4 n-3}-\frac{1}{4 n+1}\right]$
$\Rightarrow T_{1}=\frac{3}{4}\left(\frac{1}{1}-\frac{1}{5}\right)$
$\Rightarrow T_{2}=\frac{3}{4}\left(\frac{1}{5}-\frac{1}{9}\right)$
\vdots
$T_{21}=\frac{3}{4}\left(\frac{1}{81}-\frac{1}{85}\right)$
$S_{21}=\frac{3}{4}\left(1-\frac{1}{85}\right)$
$=\frac{3}{4}\left(\frac{84}{85}\right)=\frac{63}{85}$

Question: Find remainder when $(11)^{1011}+(1011)^{11}$ is divided by 9 .
Answer: 8.00

Solution:

Given, $(11)^{1011}+(1011)^{11}$
$\Rightarrow(9+2)^{1011}+(1008+3)^{11}$
$\Rightarrow 9$ Integer $+2^{1011}+9$ Integer +311
$\Rightarrow\left(2^{3}\right)^{337}+3\left(3^{2}\right)^{5}$
$\Rightarrow(9-1)^{337}$
$\Rightarrow 9$ Integer -1
$\Rightarrow 9$ Integer $-1-8+8$
\therefore Remainder will be 8 .

Question: $\lim _{x \rightarrow \frac{\pi}{4}} \frac{2 \sqrt{2}-(\cos x+\sin x)^{7}}{\sqrt{2}-\sqrt{2} \sin 2 x}$

Answer: 14.00

Solution:

$\lim _{x \rightarrow \frac{\pi}{4}} \frac{2 \sqrt{2}-(\cos x+\sin x)^{7}}{\sqrt{2}-\sqrt{2} \sin 2 x}$
Since its $\frac{0}{0}$ form, lets apply L-Hospital rule
$\lim _{x \rightarrow \frac{\pi}{4}} 0-\frac{7(\cos x+\sin x)^{6}(-\sin x+\cos x)}{0-\sqrt{2} \cos 2 x .(2)}$
$\lim _{x \rightarrow \frac{\pi}{4}} \frac{7}{2 \sqrt{2}} \frac{(\cos x+\sin x)^{5}\left(\cos ^{2} x-\sin ^{2} x\right)}{\cos ^{2} x}$
$\frac{7}{2 \sqrt{2}}(\sqrt{2})^{5}=\frac{7(2 \times 2 \sqrt{2})}{2 \sqrt{2}}=14$

Question: If $x^{2}+p x^{2}+q x+1=0(p<q)$ has only one root α, then α belongs to:

Answer:

Solution:

$f(0)=1$
\& $f(-1)=-1+p-q+1=p-q<0$
$\therefore f(0)>0 \& f(-1)<0$
$\therefore f(x)$ must have root between $(-1,0)$

