PHYSICAL / INORGANIC CHEMISTRY

1. Same mass of 2 solutes X \& Y are added to 2 samples of same amount of same solvent. If ratio of depression in freezing point $\Delta \mathrm{T}_{\mathrm{f}}$ is 4:1 respectively, ratio of molar mass of solutes $\mathrm{X} \& \mathrm{Y}$ is:
Ans. 1:4
Sol. $\quad \Delta \mathrm{T}_{\mathrm{f}(\mathrm{X})}: \Delta \mathrm{T}_{\mathrm{f}(\mathrm{Y})}=4: 1$
$\mathrm{n}_{\mathrm{X}}: \mathrm{n}_{\mathrm{Y}}=4: 1$
$\therefore \mathrm{M}_{\mathrm{X}}: \mathrm{M}_{\mathrm{Y}}=1: 4$
2. $\quad 5 \rightarrow 1$ transition in a H -atom sample. Maximum number of different spectral lines observed $=$?

Ans. 10
Sol. $\quad \Delta \mathrm{n}=5-1=4$
Max. lines $=\frac{\Delta \mathrm{n}(\Delta \mathrm{n}+1)}{2}=\frac{4 \times 5}{2}=10$
3. Sum of lone pairs on central atom in $\mathrm{XeF}_{6}, \mathrm{XeO}_{2} \mathrm{~F}_{2} \& \mathrm{XeOF}_{4}$ is :

Ans. 3

Sol.

Sum $=1+1+1=3$
4. $\quad \mathrm{A}(\mathrm{g}) \longrightarrow$ products

Half life = ?
Ans. 1980 sec.
Sol. $\quad \ln \left(\frac{\mathrm{p}}{\mathrm{p}_{\mathrm{o}}}\right)=-\mathrm{kt}$

$$
\begin{aligned}
& \mathrm{k}=3.5 \times 10^{-4} \mathrm{sec}^{-1} \\
& \mathrm{t}_{1 / 2}=\frac{0.693}{3.5 \times 10^{-4}}=\frac{6930}{3.5}
\end{aligned}
$$

$$
=1980 \mathrm{sec} .
$$

5. Number of acidic oxides among following are
$\mathrm{B}_{2} \mathrm{O}_{3}, \mathrm{NO}, \mathrm{NO}_{2}, \mathrm{~N}_{2} \mathrm{O}, \mathrm{CO}, \mathrm{P}_{4} \mathrm{O}_{10}, \mathrm{~N}_{2} \mathrm{O}_{5}$
Ans. (4) (Except NO, $\mathrm{N}_{2} \mathrm{O}$ \& CO)
Sol. Acidic oxide $\left(\mathrm{B}_{2} \mathrm{O}_{3}, \mathrm{NO}_{2}, \mathrm{P}_{4} \mathrm{O}_{10}, \mathrm{~N}_{2} \mathrm{O}_{5}\right)$
Neutral oxide [$\mathrm{NO}, \mathrm{N}_{2} \mathrm{O}, \mathrm{CO}$]
6. $56 \mathrm{~L} \mathrm{~N} \mathrm{~N}_{2}$ is made to react with excess of H_{2} to give $20 \mathrm{~L} \mathrm{NH}_{3}$. Find volume of unused $\mathrm{N}_{2}(\mathrm{~L})$.

Ans. (46)
Sol. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
56L Excess -
46L
20L
7. First ionisation energy order of $\mathrm{Be}, \mathrm{B}, \mathrm{N} \& \mathrm{O}$ is :

Ans. $\quad \mathbf{B}<\mathbf{B e}<\mathbf{O}<\mathbf{N}$
Sol. Be
$1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}$
B
$1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}^{1}$
N
$1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}^{3}$

O

$1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}^{4}$

IE

$$
\mathrm{N}>\mathrm{O} \text { [Due to Half filled configuration] }
$$

IE $\mathrm{Be}>\mathrm{B}$ [Due to penetration effect]
So order of IE

$$
\mathrm{B}<\mathrm{Be}<\mathrm{O}<\mathrm{N}
$$

8. Correct order of density of $\mathrm{Be}, \mathrm{Mg}, \mathrm{Ca} \& \mathrm{Sr}$ is :

Ans. $\mathbf{C a}<\mathbf{M g}<\mathbf{B e}<\mathbf{S r}$
Sol. $\mathrm{Be}-1.84 \mathrm{~g} / \mathrm{cm}^{3}$
$\mathrm{Mg}-1.74 \mathrm{~g} / \mathrm{cm}^{3}$
$\mathrm{Ca}-1.55 \mathrm{~g} / \mathrm{cm}^{3}$
$\mathrm{Sr}-2.63 \mathrm{~g} / \mathrm{cm}^{3}$
9. At equivalence point of acid-base titration methyl orange exist in which form?
(1) Benzenoid form
(2) Quinonoid form
(3) Phenolic form

Ans. (2)
Sol.

10. Determine the ratio of molar conductivities of 2 solutions where solution I contains 10 mmole of NaCl in 20 ml solution \& solution II contains 20 mmole NaCl in 80 ml solution.
(Assume conductivities of both solution as same)
Ans. (2/1)
Sol. $\quad \Lambda_{\mathrm{m}}=\frac{\mathrm{K} \times 1000}{\mathrm{C}}$
$\frac{\Lambda_{\mathrm{m}(\text { solution })_{\mathrm{I}}}}{\Lambda_{\mathrm{m}(\text { solution })_{\mathrm{I}}}}=\frac{\mathrm{C}_{\text {(solution }_{\mathrm{I}}}}{\mathrm{C}_{(\text {solution })_{\mathrm{I}}}}=\frac{10 / 20}{20 / 80}=\frac{2}{1}$
11. (A) Micelle formation is an endothermic process
(B) Micelle formation is an exothermic process
(C) Entropy change for micelle formation is negative
(D) Entropy change for micelle formation is positive

Option containing correct statements is :
(1) A \& C
(2) B \& C
(3) A \& D
(4) B \& D

Ans. (2)
Sol. For micelle formation, $\Delta \mathrm{S}=-\mathrm{ve}$

$$
\Delta \mathrm{H}=-\mathrm{ve}
$$

12. Column-I

(A) XeOF_{4}
(B) $\mathrm{XeO}_{2} \mathrm{~F}_{2}$
(C) XeO_{3}
(D) XeF_{6}
(P) sp^{3}, Pyramidal
(Q) $\mathrm{sp}^{3} \mathrm{~d}$, see-saw
(R) $\mathrm{sp}^{3} \mathrm{~d}^{2}$, square pyramidal
(S) $\mathrm{sp}^{3} \mathrm{~d}^{3}$, distorted octahedral

Column-II

Ans. $\mathrm{A} \rightarrow \mathrm{R}$
$\mathrm{B} \rightarrow \mathrm{Q}$
$\mathrm{C} \rightarrow \mathrm{P}$
D \rightarrow S

Sol.

$s p^{3} d^{2}$ Square pyramidal

$\operatorname{sp}^{3} \mathrm{~d}$
See-saw

$\mathrm{sp}^{3} \quad$ Trigonal pyramidal

$\operatorname{sp}^{3} \mathrm{~d}^{3}$
Distorted octahedral
13. $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HC}_{2} \mathrm{O}_{4}^{-} \quad \mathrm{Ka}_{1}$
$\mathrm{HC}_{2} \mathrm{O}_{4}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \quad \mathrm{Ka}_{2}$
$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \quad \mathrm{Ka}_{3}$
Relation between $\mathrm{Ka}_{1}, \mathrm{Ka}_{2} \& \mathrm{Ka}_{3}$ is :
Sol. $\mathrm{Ka}_{3}=\mathrm{Ka}_{1} \times \mathrm{Ka}_{2}$

ORGANIC CHEMISTRY

1. Which of the following is correct decreasing order of acidic strength ?
(a)

(b)

(c)

(d)

(1) $a>b>d>c$
(2) $b>c>a>d$
(3) $a>b>c>d$
(4) $c>a>b>d$

Ans. (1)
2. Match the column-I to column-II

Column-I

(A) Nylon-6,6
(B) Teflon
(C) High density polythene
(D) Low density polythene
(1) A-P, B-Q, C-R, D-S
(3) A-R, B-S, C-Q, D-P
(Q) Squeeze bottle, toys

Column-II

(P) Non-stick surface coating
(R) Buckets dustbins, bottles
(S) Bristles for brushes
(2) A-S, B-P, C-R, D-Q
(4) A-Q, B-R, C-S, D-P

Ans. (2)
3. From the given scheme, identify C.

(A)

(B)

(C)

(D)

Ans. (A)
Sol.

\qquad

4. A compound which has linkage of $\mathrm{C}_{1}-\alpha-\mathrm{D}$-glucose and $\mathrm{C}_{2}-\beta$-D-fructose is :
(1) Sucrose
(2) Lactose
(3) Galactose
(4) Maltose

Ans. (1)
5. Some drugs do not bind to the enzyme's active site. These bond to a different site of enzyme which is called :
(1) Active site
(2) Inactive site
(3) Allosteric site
(4) Competative site

Ans. (3)
6. $>\mathrm{CH}_{2}-\mathrm{CHO} \xrightarrow[\Delta]{\mathrm{OH}^{-}}$Product

Product would be :
(A)

Ans. (A)
7. Match the column
(A) Sulphate
(P) Herbicide
(B) Fluorides
(Q) Pesticide
(C) Nicotine
(R) Bone Breaking
(D) Sodium arsenite
(S) laxative effect

Ans. $\quad(\mathrm{A} \rightarrow \mathrm{S})(\mathrm{B} \rightarrow \mathrm{R})(\mathrm{C} \rightarrow \mathrm{Q})(\mathrm{D} \rightarrow \mathrm{P})$
8. $\quad \mathrm{C}_{5} \mathrm{H}_{12} \xrightarrow{\mathrm{Br}_{2} / \mathrm{hv}}$ Total number of monobromo products including stereochemistry are-

Ans. (11)

