

JEE-MAIN 2022 JULY ATTEMPT

MEMORY BASED

DATE : 25-07-2022 (SHIFT-II)

PHYSICS

SECTION-A

- 1. If proton is accelerated by potential difference of V_p and deuteron is by V_D and ratio of de-broglie wavelength of proton and deuteron is 1 : $\sqrt{2}$. $\frac{V_{P}}{v_{T}}$ is equal to :
 - (1) 1 : 4 (2) 4 : 1(3)1:2(4) 2:1
- (2) Ans.
- A bullet of mass 200 gm moving with 10 m/s collides a stationary block of 9.8 Kg and sticks 2. to it. Find loss in kinetic energy of bullet:
 - (3) 9.8 J (1) 98.6 J (2) 4.9 J
- Ans. (3)
- 3. Distance of com from point O is :

m A 3m m 0 3m m (3) $\frac{1}{\sqrt{2}}$ m (4) $\frac{2}{\sqrt{2}}$ m (2) 2 m

Ans. (1)

(1) $\sqrt{2}m$

4. For a ground to ground projectile Range is equal of maximum height attained. Find $\tan \theta$?

(1) 3 (2) 4 (3) 2 (4) $\frac{1}{4}$

Ans. (2)

- 5. If velocity of a particle increases 5m/s per meter, then find the acceleration of the particle at the instant when velocity became 20 m/s.
- Ans. 100
- Sol. $a = \frac{v dv}{dx}$ = 20 × 5 = 100 m/s²
- 6. If we want to keep it in equilibrium then find the magnitude and direction (angle from +ve x-axis) that is required to keep this body in equilibrium.

(2) 2N, 45°

(3) $2\sqrt{2}N,60^{\circ}$ (4) $2\sqrt{2}N,30^{\circ}$

Ans. (A)

(1) $\sqrt{2}N,45^{\circ}$

7.	Heat Engine-1		Heat Engine-2					
	T _{source} = 447°c		$T_{source} = 627^{\circ}c$					
	$T_{sink} = 147^{\circ} c$		$T_{sink} = 47^{\circ}c$					
	Find the ratio of efficiencies if both the engine $\left(\frac{n_1}{n_2}\right)$							
	(1) 0.65	(2) 0.79	(3) 0.83	(4) 0.92				
Ans. (1)								
8.	Maximum present error in Resistance, Current and time are 1%, 2% & 3% respectively.							
	Find maximum error in calculation of heat dissipated (in %)							
	(1) 4%	(2) 8%	(3) 2%	(4) 6%				
Ans.	(2)							
9.	A solid spherical ball is half submerged in liquid is at equilibrium. Density ball is ρ kg/m ³							
	density of liquid is σ kg/m ³ and surface tension of liquid is T. Find radius of ball.							
Ans.	$\sqrt{\frac{3T}{g(2\rho-\sigma)}}$			sie				
	¥ 5(2p 0)			00.				
10.								
10.	120 gm ice at 0° C is mixed with 300 gm water at 25 °C, find out amount of ice at 0°C temperature ($L = 80$ Cal/gm specific heat of water 1 Cal/gm °C)							
Ans.	temperature (L _f = 80 Cal/gm, specific heat of water 1 Cal/gm °C) 26.25 gm							
Sol.	For water $Q_1 = 300 \times 1 \times 25 = 75 \times 10^2$ cal							
501	For water $Q_1 = 300 \times 1 \times 23 = 75 \times 10^{\circ}$ cal $Q_2 = 300 \times 80 = 24 \times 10^{\circ}$ cal							
	So total heat is released by water = $Q_1 + Q_2 = 315 \times 10^2$ cal							
	Now total ice = $300 + 120 = 420$							
	Mass of water = $\frac{315 \times 10^2}{80}$ = 393.75 gm							
	So mass of ice = 420 - 393.75 = 26.25 gm							
11. If electric field expression in an EM wave is given by $E = 540 \sin \pi \times 10^4 (x - ct)$. Find peak value of magnetic field if c is speed of light in vacuum?								
Ans. $B_0 = 18 \times 10^{-7} \mathrm{T}$								
3								

Sol.
$$C = \frac{E_0}{B_0}$$

 $B_0 = \frac{E_0}{C} = \frac{540}{3 \times 10^8}$
 $B_0 = 180 \times 10^{-8} \text{ T}$
 $B_0 = 18 \times 10^{-7} \text{ T}$

- **12.** In a sample of H atom, e⁻ make transition from state n = 5. Find total number of distinct wavelength in emission spectrum?
- (1) 10 (2) 20 (3) 30 (4) 40 Ans. (1) Sol. $=\frac{(n)(n-1)}{2}$ $=\frac{(5)\times(4)}{2}$ =10
- 13. Using given diodes circuit find out equivalent resistance between terminals A and B.

Ans. 25Ω

Sol.

For an amplitude modulated wave the maximum and minimum amplitude of wave is given 14. as 6 units and 2 units. Find modulation index of the wave.

(1)
$$\frac{1}{3}$$
 (2) $\frac{1}{2}$ (3) $\frac{1}{4}$ (4) $\frac{1}{5}$

(2) Ans.

Sol. Modulation Index =
$$\frac{A_{max}-A_{min}}{A_{max}+A_{min}} = \frac{6-2}{6+2}$$

$$=\frac{4}{8}=\frac{1}{2}$$

A proton and deuteron are moving with same kinetic energy in uniform perpendicular 15. magnetic field. Find out ratio of time period.

	(1) $\frac{1}{5}$	(2) $\frac{1}{4}$	(3) $\frac{1}{2}$	(4) $\frac{1}{3}$
•	(3)			
	$T = \frac{2\pi m}{qB}$			s s terre
	$\frac{T_{\rm P}}{T} = \frac{m_{\rm p}}{m} \times \frac{q_{\rm d}}{q}$	$=\frac{m}{2m}\times\frac{q}{q}=\frac{1}{2}$		80.

Ans. (3)

 $T = \frac{2\pi m}{qB}$ Sol.

 $\frac{T_{\rm P}}{T_{\rm d}} = \frac{m_{\rm p}}{m_{\rm d}} \times \frac{q_{\rm d}}{q_{\rm p}} = \frac{m}{2m}$

A coil having 2 turns with current I flowing in it has a magnetic field B at its centre. If the 16. same coil is used and number of turns is increased to 5 and same current flows through coil. Find the new magnetic field at the centre of coil.

Ans.
$$\frac{25}{4}$$
B

Sol.

17. A second pendulum is at height h = 2R from earth surface then, find length of pendulumAns. 1/9

sin

Sol.
$$T = 2\pi \sqrt{\frac{\ell}{g'}};$$
 $g' = \frac{g}{\left(1 + \frac{h}{R}\right)^2} = \frac{g}{9}$
 $2 = 2\pi \sqrt{\frac{\ell}{g/9}}$

- $\ell = 1/9 \text{ m}$
- 18. When we pass through a metallic detection then it beeps due to the phenomena of :-
 - (1) Electro–magnetic induction
 - (2) EM interference
 - (3) L-C resonance
 - (4) Mutual inductance in AC circuit
- Ans. (1)

19. A part of closed circuit is shown in figure find potential difference between A and B ($v_A - v_B$):

20. A conductor of radius R_1 , having capacitance C is placed in free space. Now, a concentric conducting shell of radius R_2 is placed as shown, so that capacitance of the system is increased to nC. Find $\frac{R_1}{R_2}$.

(1)
$$\left(1-\frac{1}{n}\right)$$
 (2) (n - 1) (3) $\left(1+\frac{1}{n}\right)$ (4) n
Ans. (1)

Sol.
$$\frac{kq}{R_1} - \frac{kq}{R_2} = \frac{q}{nC} \implies nC = \frac{1}{k\left(\frac{1}{R_1} - \frac{1}{R_2}\right)}$$

 $\Rightarrow n4\pi\varepsilon_0 R_1 = \frac{4\pi\varepsilon_0}{\left(\frac{1}{R_1} - \frac{1}{R_2}\right)} \Rightarrow R_1\left(\frac{1}{R_1} - \frac{1}{R_2}\right) = \frac{1}{n}$
 $\Rightarrow \left(1 - \frac{1}{R_2}\right) = \frac{1}{n} \Rightarrow \frac{R_1}{R_2} = \left(1 - \frac{1}{n}\right)$

21. An electron jumps from nth orbit to the first orbit. The wavelength of emitted photon is ' λ '. Find the value of 'n'. [Given : $RZ^2 = A$]

Ans.
$$\sqrt{\frac{\lambda A}{\lambda A}}$$

Sol. $\frac{1}{\lambda} = \mathbf{R}\mathbf{Z}^2\left(1 - \frac{1}{n^2}\right) = \mathbf{A}\left(1 - \frac{1}{n^2}\right)$

$$\Rightarrow n^2 = \frac{\lambda A}{\lambda A - 1} \Rightarrow n = \sqrt{\frac{\lambda A}{\lambda A - 1}}$$

22. An electron moving with kinetic energy 0.1 keV enters perpendicularly to the field $B = 10^{-4}T$. Find frequency of revolution.

Ans. $2.8 \times 10^{+6} \, \mathrm{s}^{-1}$

- 23. A potentiometer shows reading of 38cm when connected with 1.2V battery, then the same potentiometer is connected to a 1.8V battery. Find the difference in the length (in cm)
- Ans. 18
- Sol. Let Potential gradient is A.

Then, $A \times 36$ cm = 1.2 V

and $A \times x cm = 1.8 V$

$$\therefore \frac{x}{36} = \frac{1.8}{1.2} = 1.5$$

- \Rightarrow x = 1.5 × 36 cm \Rightarrow x = 54 cm
- $\therefore \Delta \ell = 54 \text{ cm} 36 \text{ cm} = 18 \text{ cm}$