JEE-MAIN 2022 JULY ATTEMPT
 MEMORY BASED

DATE : 25-07-2022 (SHIFT-II)

PHYSICS

SECTION-A

1. If proton is accelerated by potential difference of V_{p} and deuteron is by V_{D} and ratio of de-broglie wavelength of proton and deuteron is $1: \sqrt{2} \cdot \frac{V_{P}}{V_{D}}$ is equal to:
(1) $1: 4$
(2) $4: 1$
(3) $1: 2$
(4) $2: 1$

Ans. (2)
2. A bullet of mass 200 gm moving with $10 \mathrm{~m} / \mathrm{s}$ collides a stationary block of 9.8 Kg and sticks to it. Find loss in kinetic energy of bullet:
(1) 98.6 J
(2) 4.9 J
(3) 9.8 J
(4) 98 J

Ans. (3)
3. Distance of com from point O is :

(1) $\sqrt{2} \mathrm{~m}$
(2) 2 m
(3) $\frac{1}{\sqrt{2}} \mathrm{~m}$
(4) $\frac{2}{\sqrt{2}} \mathrm{~m}$

Ans. (1)

Sol.

4. For a ground to ground projectile Range is equal of maximum height attained. Find $\tan \theta$?
(1) 3
(2) 4
(3) 2
(4) $\frac{1}{4}$

Ans. (2)

Sol.

5. If velocity of a particle increases $5 \mathrm{~m} / \mathrm{s}$ per meter, then find the acceleration of the particle at the instant when velocity became $20 \mathrm{~m} / \mathrm{s}$.
Ans. 100
Sol. $\mathrm{a}=\frac{\mathrm{vdv}}{\mathrm{dx}}$

$$
=20 \times 5
$$

$$
=100 \mathrm{~m} / \mathrm{s}^{2}
$$

6. If we want to keep it in equilibrium then find the magnitude and direction (angle from +ve x-axis) that is required to keep this body in equilibrium.

(1) $\sqrt{2} \mathrm{~N}, 45^{\circ}$
(2) $2 \mathrm{~N}, 45^{\circ}$
(3) $2 \sqrt{2} \mathrm{~N}, 60^{\circ}$
(4) $2 \sqrt{2} \mathrm{~N}, 30^{\circ}$

Ans. (A)

Heat Engine-2

$$
\begin{aligned}
& \mathrm{T}_{\text {source }}=447^{\circ} \mathbf{c} \\
& \mathrm{T}_{\text {sink }}=147^{\circ} \mathbf{c}
\end{aligned}
$$

Find the ratio of efficiencies if both the engine $\left(\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}\right)$
(1) 0.65
(2) 0.79
(3) 0.83
(4) 0.92

Ans. (1)
8. Maximum present error in Resistance, Current and time are $1 \%, 2 \% \& 3 \%$ respectively. Find maximum error in calculation of heat dissipated (in \%)
(1) 4%
(2) 8%
(3) 2%
(4) 6%

Ans. (2)
9. A solid spherical ball is half submerged in liquid is at equilibrium. Density ball is $\rho \mathrm{kg} / \mathrm{m}^{3}$ density of liquid is $\sigma \mathrm{kg} / \mathrm{m}^{3}$ and surface tension of liquid is T. Find radius of ball.

Ans.
$\sqrt{\frac{3 T}{g(2 \rho-\sigma)}}$
10. 120 gm ice at $0^{\circ} \mathrm{C}$ is mixed with 300 gm water at $25^{\circ} \mathrm{C}$, find out amount of ice at $0^{\circ} \mathrm{C}$ temperature ($L_{f}=80 \mathrm{Cal} / \mathrm{gm}$, specific heat of water $1 \mathrm{Cal} / \mathrm{gm}{ }^{\circ} \mathrm{C}$)

Ans. 26.25 gm
Sol. For water $Q_{1}=300 \times 1 \times 25=75 \times 10^{2}$ cal

$$
\mathrm{Q}_{2}=300 \times 80=24 \times 10^{2} \mathrm{cal}
$$

So total heat is released by water $=Q_{1}+Q_{2}=315 \times 10^{2}$ cal
Now total ice $=\mathbf{3 0 0}+\mathbf{1 2 0}=\mathbf{4 2 0}$
Mass of water $=\frac{315 \times 10^{2}}{80}=393.75 \mathbf{~ g m}$
So mass of ice $=420-393.75=26.25 \mathbf{g m}$
11. If electric field expression in an $E M$ wave is given by $E=540 \sin \pi \times 10^{4}(x-c t)$. Find peak value of magnetic field if \mathbf{c} is speed of light in vacuum?

Ans. $\mathrm{B}_{0}=18 \times 10^{-7} \mathrm{~T}$
$\mathrm{B}_{0}=\frac{\mathrm{E}_{0}}{\mathrm{C}}=\frac{540}{3 \times 10^{8}}$

$$
\begin{aligned}
& \mathbf{B}_{\mathbf{0}}=\mathbf{1 8 0} \times \mathbf{1 0}^{-\mathbf{8}} \mathbf{T} \\
& \mathrm{B}_{0}=18 \times 10^{-7} \mathrm{~T}
\end{aligned}
$$

12. In a sample of H atom, e^{-}make transition from state $n=5$. Find total number of distinct wavelength in emission spectrum?
(1) 10
(2) 20
(3) 30
(4) 40

Ans. (1)
Sol. $=\frac{(\mathrm{n})(\mathrm{n}-1)}{2}$

$$
\begin{aligned}
& =\frac{(5) \times(4)}{2} \\
& =\mathbf{1 0}
\end{aligned}
$$

13. Using given diodes circuit find out equivalent resistance between terminals \mathbf{A} and \mathbf{B}.

Ans. $\quad 25 \Omega$

Sol.

$=25 \Omega$
14. For an amplitude modulated wave the maximum and minimum amplitude of wave is given as 6 units and 2 units. Find modulation index of the wave.
(1) $\frac{1}{3}$
(2) $\frac{1}{2}$
(3) $\frac{1}{4}$
(4) $\frac{1}{5}$

Ans. (2)
Sol. Modulation Index $=\frac{A_{\text {max }}-A_{\text {min }}}{A_{\text {max }}+A_{\text {min }}}=\frac{6-2}{6+2}$ $=\frac{4}{8}=\frac{1}{2}$
15. A proton and deuteron are moving with same kinetic energy in uniform perpendicular magnetic field. Find out ratio of time period.
(1) $\frac{1}{5}$
(2) $\frac{1}{4}$
(3) $\frac{1}{2}$
(4) $\frac{1}{3}$

Ans. (3)
Sol. $\mathrm{T}=\frac{2 \pi \mathrm{~m}}{\mathrm{qB}}$
$\frac{\mathrm{T}_{\mathrm{p}}}{\mathrm{T}_{\mathrm{d}}}=\frac{\mathrm{m}_{\mathrm{p}}}{\mathrm{m}_{\mathrm{d}}} \times \frac{\mathrm{q}_{\mathrm{d}}}{\mathrm{q}_{\mathrm{p}}}=\frac{\mathrm{m}}{2 \mathrm{~m}} \times \frac{\mathrm{q}}{\mathrm{q}}=\frac{1}{2}$
16. A coil having 2 turns with current I flowing in it has a magnetic field B at its centre. If the same coil is used and number of turns is increased to 5 and same current flows through coil. Find the new magnetic field at the centre of coil.

Ans. $\quad \frac{25}{4} B$
Sol.

$\mathbf{B}_{\mathbf{0}}=\mathrm{N} . \frac{\mu_{0} \mathrm{i}}{2 \mathrm{R}}$
Case-I : $\mathrm{N}=2$

$$
\begin{equation*}
\mathbf{B}=\frac{2 \mu_{0} \mathrm{i}}{2 \mathrm{R}}=\frac{\mu_{0} \mathrm{i}}{\mathrm{R}} \tag{1}
\end{equation*}
$$

$5 \times 2 \pi R^{\prime}=2 \times 2 \pi R$
$\mathbf{R}^{\prime}=\frac{2}{5} \times \mathrm{R}$

$\mathbf{B}^{\prime}=5 \times \frac{\mu_{0} \mathrm{i}}{2 \times \frac{2}{5} \mathrm{R}}=\frac{25}{4} \frac{\mu_{0} \mathrm{i}}{\mathrm{R}}$
B' $=\frac{25}{4} B$
17. A second pendulum is at height $h=2 R$ from earth surface then, find length of pendulum

Ans. 1/9
Sol. $\quad \mathbf{T}=2 \pi \sqrt{\frac{\ell}{\mathrm{~g}^{\prime}}} ; \quad \quad \mathrm{g}^{\prime}=\frac{\mathrm{g}}{\left(1+\frac{\mathrm{h}}{\mathrm{R}}\right)^{2}}=\frac{\mathrm{g}}{9}$
$2=2 \pi \sqrt{\frac{\ell}{\mathrm{~g} / 9}}$
$\ell=1 / 9 \mathrm{~m}$
18. When we pass through a metallic detection then it beeps due to the phenomena of :-
(1) Electro-magnetic induction
(2) EM interference
(3) $\mathrm{L}-\mathrm{C}$ resonance
(4) Mutual inductance in AC circuit

Ans. (1)
19. A part of closed circuit is shown in figure find potential difference between A and $B\left(v_{A}-v_{B}\right)$:

(1) 275 v
(2) 250 v
(3) $\mathbf{3 0 0} \mathbf{~ v}$
(4) 225 v

Ans. (1)

Sol.

$R e q=15+\frac{10}{3}=\frac{55}{3}$
$\mathbf{v}_{\mathrm{A}}-\mathbf{v}_{\mathrm{B}}=\mathbf{i} \operatorname{Req}$
$=\mathbf{1 5} \times 10^{-3} \frac{55}{3} \times 10^{3} v=\mathbf{2 7 5} \mathrm{v}$
20. A conductor of radius R_{1}, having capacitance C is placed in free space. Now, a concentric conducting shell of radius R_{2} is placed as shown, so that capacitance of the system is increased to nC . Find $\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}$.

(1) $\left(1-\frac{1}{\mathrm{n}}\right)$
(2) $(\mathrm{n}-1)$
(3) $\left(1+\frac{1}{\mathrm{n}}\right)$
(4) n

Ans. (1)
\qquad
Sol. $\frac{\mathrm{kq}}{\mathrm{R}_{1}}-\frac{\mathrm{kq}}{\mathrm{R}_{2}}=\frac{\mathrm{q}}{\mathrm{nC}} \quad \Rightarrow \mathrm{nC}=\frac{1}{\mathrm{k}\left(\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right)}$
$\Rightarrow \mathbf{n} 4 \pi \varepsilon_{0} \mathbf{R}_{\mathbf{1}}=\frac{4 \pi \varepsilon_{0}}{\left(\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right)} \Rightarrow \mathrm{R}_{\mathbf{1}}\left(\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right)=\frac{1}{\mathrm{n}}$
$\Rightarrow\left(1-\frac{1}{\mathrm{R}_{2}}\right)=\frac{1}{\mathrm{n}} \Rightarrow \frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\left(1-\frac{1}{\mathrm{n}}\right)$
21. An electron jumps from $n^{\text {th }}$ orbit to the first orbit. The wavelength of emitted photon is ' λ '. Find the value of ' n '. [Given : $R^{2}=A$]

Ans. $\sqrt{\frac{\lambda \mathrm{A}}{\lambda \mathrm{A}-1}}$
Sol. $\frac{1}{\lambda}=\mathrm{RZ}^{2}\left(1-\frac{1}{\mathrm{n}^{2}}\right)=\mathrm{A}\left(1-\frac{1}{\mathrm{n}^{2}}\right) \quad \Rightarrow \quad \frac{1}{\lambda \mathrm{~A}}=1-\frac{1}{\mathrm{n}^{2}} \quad \Rightarrow \quad \frac{1}{\mathrm{n}^{2}}=1-\frac{1}{\lambda \mathrm{~A}}$
$\Rightarrow \mathrm{n}^{2}=\frac{\lambda \mathrm{A}}{\lambda \mathrm{A}-1} \Rightarrow \quad \mathrm{n}=\sqrt{\frac{\lambda \mathrm{A}}{\lambda \mathrm{A}-1}}$
22. An electron moving with kinetic energy 0.1 keV enters perpendicularly to the field $B=10^{-4} \mathrm{~T}$. Find frequency of revolution.
Ans. $\quad 2.8 \times 10^{+6} \mathrm{~s}^{-1}$
23. A potentiometer shows reading of 38 cm when connected with 1.2 V battery, then the same potentiometer is connected to a 1.8 V battery. Find the difference in the length (in $\mathbf{c m}$)

Ans. 18
Sol. Let Potential gradient is A .
Then, $\mathrm{A} \times 36 \mathrm{~cm}=1.2 \mathrm{~V}$
and $\mathrm{A} \times \mathbf{x ~ c m}=1.8 \mathrm{~V}$
$\therefore \frac{\mathrm{x}}{36}=\frac{1.8}{1.2}=1.5$
$\Rightarrow \mathrm{x}=1.5 \times \mathbf{3 6} \mathrm{cm} \Rightarrow \mathrm{x}=54 \mathrm{~cm}$
$\therefore \Delta \ell=54 \mathrm{~cm}-36 \mathrm{~cm}=18 \mathrm{~cm}$

