JEE-Main-26-07-2022-Shift-1 (Memory Based)

Physics

Question: A charged particle is having acceleration $\bar{a}=2 \hat{i}+4 \hat{j}$ while moving in an uniform magnetic field $\bar{B}=\alpha \hat{i}-3 \hat{j}$. Find α

Options:

(a) 10
(b) 2.5
(c) 3
(d) 4.5

Answer: (d)

Solution:

$\because \bar{F}=q(\bar{v} \times \bar{B})$
By property of cross product,
$\bar{F} \perp \bar{B}$
$\bar{a} \perp \bar{B}$
$\therefore \bar{a} \cdot \bar{B}=0$
$(2 \hat{i}+3 \hat{j}) \cdot(\alpha \hat{i}-3 \hat{j})=0$

Question: If in adiabatic process gas is compressed to $1 / 8$ th of its volume, what will be the final pressure if Initial pressure is P_{o} (gas is monatomic)

Options:

(a) $12 \mathrm{P}_{0}$
(b) $32 \mathrm{P}_{0}$
(c) $42 \mathrm{P}_{0}$
(d) $22 \mathrm{P}_{0}$

Answer: (b)

Solution:

For monoatomic gas $r=\frac{5}{3}$
In adiabatic process
$P_{1} V_{1}^{r}=P_{2} V_{2}^{r}$
$\therefore \frac{P_{2}}{P_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{r}=\left(\frac{V_{0}}{V_{0} / 8}\right)^{5 / 3}$
$=(8)^{5 / 3}=32$
$\therefore P_{2}=32 P_{1}=32 P_{0}$

Question: What is the current through battery?

Options:
(a) 15 A
(b) 20 A
(c) 10 A
(d) 15 A

Answer: (c)

Solution:

Since it's a balanced Wheatstone bridge equivalent resistance becomes 4Ω. Since 2Ω resistance will not be considered.
$\therefore i=\frac{40}{4}=10 \mathrm{~A}$

Question: A monkey of 50 kg climbs a rope having maximum torsion 3.50 N
Case A:Monkey climbs up with $5 \mathrm{~ms}^{-2}$
Case B: Monkey climbs down with $4 \mathrm{~ms}^{-2}$
In which case Rope will not break

Options:

(a) Case B: Break, Case A : break
(b) Case A: Not Break, Case B : break
(c) Case A: Break, Case B : Not break
(d) Case B: Not Break, Case A : Not break

Answer: (c)

Solution:

Breaking tension $=350 \mathrm{~N}$
Case $\mathrm{A} \mathrm{T}_{\mathrm{A}}=\mathrm{m}(\mathrm{g}+\mathrm{a})=50(10+5)$
$=750 \mathrm{~N}$
Case B TB $=\mathrm{m}(\mathrm{g}-\mathrm{a})=50(10-4)$
$=300 \mathrm{~N}$
\therefore Rope will break in case A

Question: A neutron and an electron of rest masses m_{n} and m_{e} are moving with speeds v and xv resp. If their de Broglie wavelength are equal then approximate value of x is consider $\mathrm{m}_{\mathrm{e}}=$ $9.1 \times 10^{-31} \mathrm{~kg}$ and $\mathrm{m}_{\mathrm{n}}=1.6 \times 10^{-27} \mathrm{~kg}$. Do not consider relativistic effect

Options:

(a) 1600
(b) 1758
(c) 1880
(d) 1990

Answer: (b)

Solution:

Using de Broglie eq.
$\lambda=\frac{h}{m v}$
$\therefore \lambda_{e}=\lambda_{n}$
or $\frac{h}{m_{e} \times v}=\frac{h}{m_{n} v}$
$x=\frac{m_{n}}{m_{e}}=1758$

Question: A meter Bridge is an shown if a resistance of $x \mathrm{r}$ is connected in series with 4 r , new null point comes at 80 cm . Find x ?

Options:

(a) $x=30$
(b) $x=20$
(c) $x=10$
(d) $x=30$

Answer: (b)

Solution:

$\frac{4 r}{40}=\frac{R^{\prime}}{60}$.
$\& \frac{4 r+x r}{80}=\frac{R^{\prime}}{20}$.
Solving 1 and 2
$\frac{4 r+x r}{8 r}=3$
$x=20$

Question: If intensity of a wave is $10 \mathrm{wm}^{-2} \&$ it is passing through area of $1 \mathrm{~cm}^{2} \&$ wavelength of wave is 900 nm . Find No. of photons passing per second.
Options:
(a) 6.51×10^{16} photos $/ \mathrm{sec}$
(b) 8.51×10^{16} photos $/ \mathrm{sec}$
(c) 3.51×10^{16} photos $/ \mathrm{sec}$
(d) 4.51×10^{16} photos $/ \mathrm{sec}$

Answer: (d)

Solution:

G. that
$\mathrm{I}=100 \mathrm{w} / \mathrm{m}^{2}$
$\mathrm{A}=1 \mathrm{~cm}^{2}=1 \times 10^{-4} \mathrm{~m}^{2}$
$\lambda=900 \mathrm{~nm}=900 \times 10^{-9} \mathrm{~m}$
No. of photos $=\frac{I A d}{G C}$
$=\frac{100 \times 1 \times 10^{-4} \times 900 \times 10^{-9}}{6.64 \times 10^{-34} \times 3 \times 10^{2}}$
$=4.51 \times 10^{16}$ photos $/ \mathrm{sec}$
Question: If in YDSE fringe width is 12 mm . What is new fringe width if whole setup is immersed in water $\mu=\frac{4}{3}$

Options:

(a) 3 mm
(b) 9 mm
(c) 4 mm
(d) 12 mm

Answer: (b)

Solution:

Given that $\beta=12 \mathrm{~mm}$
Now set up is immersed in water $\left(\mu=\frac{4}{3}\right)$
$\beta^{\prime}=\frac{\beta}{\mu}$
$\beta^{\prime}=\frac{12}{4} \times 3$
$\beta^{\prime}=9 \mathrm{~mm}$

Question: Ratio of magnetic field at centre of two circular coils carrying same current and same radius with number of turns 200 and 400 . Radius given was 20 cm for both
Options:
(a) $\frac{1}{2}$
(b) $\frac{2}{3}$
(c) $\frac{3}{2}$
(d) $\frac{5}{2}$

Answer: (a)

Solution:

$B=N \frac{\mu_{0} i}{2 R}$
$\frac{B_{1}}{B_{2}}=\frac{N_{1}}{N_{2}}=\frac{200}{400}=\frac{1}{2}$

Question: In linear SHM, variation of velocity of body against it's displacement is best represented by,

Options:

(a)

(c)

(d)

Answer: (c)
Solution:
$v= \pm \omega \sqrt{A^{2}-x^{2}}$
$v^{2}=\omega^{2}\left(A^{2}-x^{2}\right)$
$v^{2}=\omega^{2} A^{2}-\omega^{2} x^{2}$
$v^{2}+\omega^{2} x^{2}=\omega^{2} A^{2}$
$\frac{v^{2}}{\omega^{2} A^{2}}+\frac{\omega^{2} x^{2}}{\omega^{2} A^{2}}=1$
$\frac{v^{2}}{(\omega A)^{2}}+\frac{x^{2}}{A^{2}}=1 \quad($ ellipse $)$

Question: In LR circuit $X_{L}=R$ and in LCR circuit $X_{L}=X_{C}$. Ratio of power factor in wo situations is.

Options:

(a) $\frac{1}{2}$
(b) $\frac{1}{\sqrt{2}}$
(c) $\sqrt{2}$
(d) $\frac{2}{3}$

Answer: (b)
Solution:
Given that
For LR circuit
$X_{L}=R$
$\cos \phi=\frac{R}{Z}$
$\cos \phi=\frac{R}{\sqrt{R^{2}+R^{2}}}$
$(\cos \phi)=\frac{1}{\sqrt{2}}$
$X_{L}=X_{C}$
$\cos \phi=\frac{R}{Z}$
$(\cos \phi)_{Z}=\frac{R}{R}=1$
From equation (1) and (2)
$\frac{(\cos \phi)}{(\cos \phi)_{Z}}=\frac{1}{\sqrt{2}}$

Question: Two projectiles at angles 30° and 45° reach their maximum heights in same time. Find the ratio of their initial velocities.

Options:

(a) $1: 1$
(b) $1: 2$
(c) $2: 1$
(d) $\sqrt{2}: 1$

Answer: (d)

Solution:

$\frac{2 u_{1} \sin 30^{\circ}}{g}=\frac{2 u_{2} \sin 45^{\circ}}{g}$
$\frac{u_{1}}{u_{2}}=\frac{\sin 45^{\circ}}{\sin 30^{\circ}}=\frac{\left(\frac{1}{\sqrt{2}}\right)}{\frac{1}{2}}=\sqrt{2}: 1$

Question: If in EM wave $B_{0}=2 \times 10^{-8} T$ find the amplitude of electric field

Options:

(a) $2 N C^{-1}$
(b) $3 \mathrm{NC}^{-1}$
(c) $6 \mathrm{NC}^{-1}$
(d) $8 N C^{-1}$

Answer: (c)

Solution:

Given that $B_{0}=2 \times 10^{-8} \mathrm{~T}$
$E_{0}=$?
$E_{0}=B_{0} C$
$E_{0}=2 \times 10^{-8} \times 3 \times 10^{8}$
$E_{0}=6 \mathrm{~N} / \mathrm{C}$

Question: For an equiconvex lens made of refractive index 1.5, following graph is given. Find radius of curvature of lens.

Options:

(a) 10 cm
(b) 20 cm
(c) 15 cm
(d) 20 cm

Answer: (a)

Solution:

$\frac{1}{f}=\frac{1}{v}-\frac{1}{u}$
$\frac{1}{f}=y-x$
From graph
$\frac{1}{f}=0-\left(-\frac{1}{10}\right)$
$f=10 \mathrm{~cm}$
$\frac{1}{f}=\left(\mu_{R}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
$\frac{1}{10}=(1.5-1)\left(\frac{1}{R}+\frac{1}{R}\right)$
$\frac{1}{10}=\frac{1}{2}\left(\frac{2}{R}\right)$
$R=10 \mathrm{~cm}$

Question: Radio can tune into 6 MHz . Find the corresponding wavelength band Options:
(a) 20 m
(b) 30 m
(c) 50 m
(d) 70 m

Answer: (a)

Solution:

We know $\lambda=\frac{c}{f}$
So, $\lambda=\frac{C}{f_{1}}$
$\lambda_{1}=\frac{3 \times 10^{8}}{6 \times 10^{6}}=50 \mathrm{~m}$
And $\lambda_{2}=\frac{c}{f_{2}}$
$=\frac{3 \times 10^{8}}{10 \times 10^{6}}=30 \mathrm{~m}$
So wavelength bond $=\lambda_{1}-\lambda_{2}$
$=50-30=20 \mathrm{~m}$

Question: Find the work done in splitting water droplet of radius $\mathrm{R}=1 \mathrm{~cm}$ into 729 droplets. Surface tension $T=75$ dyne $/ \mathrm{cm}^{2}$.

Options:

(a) $7.536 \times 10^{-3} \mathrm{~J}$
(b) $7.536 \times 10^{2} J$
(c) $7.536 \times 10^{3} \mathrm{~J}$
(d) $75.36 \times 10^{-3} \mathrm{~J}$

Answer: (a)

Solution:

According to question $\frac{4}{3} \pi r^{3}=n \times \frac{4}{3} \pi r^{3}$
$(1)^{3}=729(r)^{3}$
$(r)^{3}=\frac{1}{729}$
$r=\frac{1}{9} m$
$W_{D}=$ Surface tension \times crave in area
$W_{D}=75 \times 10^{-5+4} \times 4 \pi$
$\left(729 \times\left(\frac{1}{9}\right)^{2}-(1)^{2}\right)$
$W_{D}=7.536 \times 10^{-3} \mathrm{~J}$

Question: Four capacitors having capacity $1,2,3,4 \mu F$ connected in parallel. If 20 V battery is connected across the system then find the charge flown through the battery

Options:

(a) $50 \mu \mathrm{C}$
(b) $100 \mu \mathrm{C}$
(c) $150 \mu \mathrm{C}$
(d) $200 \mu \mathrm{C}$

Answer: (d)

Solution:

If $1,2,3,4 \mu F$ capacitors are connected in parallel then
$C_{e q}=1+2+3+4=10 \mu F$
Given: $V=20 \mathrm{volt}$
So charge flown from the battery
$q=C_{e q} V$
$q=10 \times 20 \mu C$
$q=200 \mu C$

Question: A mass of M is attached at Top of find disc of same mass M and radius R. If point mass is given gentle push. Find ω of disc when mass reaches bottom.

Options:

(a) $\sqrt{\frac{9 g}{3 R}}$
(b) $\sqrt{\frac{8 g}{3 R}}$
(c) $\sqrt{\frac{R}{3 g}}$
(d) $\sqrt{\frac{g}{R}}$

Answer: (b)
Solution:

$\omega=$ angular velocity at the instant.
When ball is at bottom.
As here is no friction as well as external force,
So, from conservation of mechanical energy
We have, $\Delta k=-\Delta v$
Let as assume $K_{i}($ Initial kinetic energy $=0)$

$$
\begin{aligned}
& \therefore K_{f}-K_{i}=-(m g \times 2 R) \\
& \Rightarrow \frac{1}{2} I \omega^{2}=m g \times 2 R \\
& \Rightarrow \frac{1}{2} \times\left(\frac{m R^{2}}{2}+m R^{2}\right) \omega^{2}=m g \times 2 R \\
& \Rightarrow \frac{3}{4} m R^{2} \omega^{2}=m g \times 2 R \\
& \Rightarrow \omega^{2}=\frac{8 g}{3 R} \\
& \Rightarrow \omega=\sqrt{\frac{8 g}{3 R}}
\end{aligned}
$$

JEE-Main-26-07-2022-Shift-1 (Memory Based)

Chemistry

Question: The product formed in the given reaction
$\mathrm{BeCl}_{2}+\mathrm{LiAlH}_{4} \rightarrow$

Options:

(a) H_{2}
(b) BeH_{2}
(c) Both (a) and (b)
(d) None of the above

Answer: (b)
Solution: $2 \mathrm{BeCl}_{2}+\mathrm{LiAlH}_{4} \rightarrow 2 \mathrm{BeH}_{2}+\mathrm{LiCl}+\mathrm{AlCl}_{3}$
Question: Which of the following can help in preventing decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$?

Options:

(a) Formaldehyde
(b) Formic acid
(c) Ethanol
(d) Urea

Answer: (d)
Solution: In the presence of metal surfaces or traces of akali (present in glass containers), the reaction is catalysed. It is, therefore, stored in wax-lined glass or plastic vessels in dark. Urea can be added as a stabiliser.

Question: Difference in spin magnetic moment of $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$ and $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right)\right] \mathrm{Cl}_{3}$ Options:
(a) 1 BM
(b) 0 BM
(c) 2 BM
(d) 3 BM

Answer: (a)

Solution:

$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right){ }_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$ and $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right)\right] \mathrm{Cl}_{3}$
Co is in +3 oxidation state
It means valence shell configuration is $3 \mathrm{~d}^{6}$ and high spin complex
Co^{3+}

$\mathrm{n}=4$
$\mu=\sqrt{4(4+2)}=\sqrt{24} \quad \mathrm{~B} \mathrm{M}=4.89 \mathrm{BM}$
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right)\right] \mathrm{Cl}_{3}$
Cr^{3+} has valence shell configuration $3 \mathrm{~d}^{3}$
cre 11111 —
$\mathrm{n}=3$
$\mu=\sqrt{\mathrm{n}(\mathrm{n}+2)}=\sqrt{3(3+2)}=\sqrt{15} \quad$ B M $=3.87 \mathrm{BM}$
Difference between spin magnetic moment $=4.89-3.87 \simeq 1 \mathrm{BM}$

Question: Find the order of the reaction if concentration changes from 0.5 to 1 and half life changes from 100 s to 50 s

Options:

(a) Zero order
(b) First order
(c) Second Order
(d) None of these

Answer: (c)
Solution:
$t_{1 / 2} \propto \frac{1}{\left[A_{o}\right]^{n-1}}$
$\frac{\left(\mathrm{t}_{1 / 2}\right)_{1}}{\left(\mathrm{t}_{1 / 2}\right)_{2}}=\frac{\left[\mathrm{A}_{\mathrm{o}}\right]_{2}^{\mathrm{n}-1}}{\left[\mathrm{~A}_{\mathrm{o}}\right]_{1}^{\mathrm{n}-1}}=\left[\frac{\left[\mathrm{A}_{\mathrm{o}}\right]_{2}}{\left[\mathrm{~A}_{\mathrm{o}}\right]_{1}}\right]^{\mathrm{n}-1}$
$\frac{100}{50}=\left(\frac{1}{0.5}\right)^{\mathrm{n}-1} \Rightarrow 2=(2)^{\mathrm{n}-1}$
$\Rightarrow \mathrm{n}=2$ (Second order)
Question: Identify ' X '

Options:

(a)

(b) $\mathrm{PhCH}_{2} \mathrm{OH}$
(c)

(d)

Answer: (a)

Solution:

Question: Identify the product B

Options:

(a)

(b)

(c)

(d) None of these

Answer: (a)

Solution:

Question: Assertion: Dark purple colour of KMnO_{4} in titration with Oxalic acid in acidic medium disappears
Reason: Change in oxidation number of Mn from 7 to 2

Options:

(a) Both assertion and reason are true, reason is correct explanation of assertion
(b) Both assertion and reason are true, but reason is not a correct explanation of the assertion.
(c) Assertion is true, but reason is false.
(d) Assertion is false, but reason is true

Answer: (a)
Solution: $\underset{\text { (Pink colour) }}{2 \mathrm{MnO}_{4}^{-}}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+16 \mathrm{H}^{+} \rightarrow \underset{\text { (Colourless) }}{2 \mathrm{Mn}^{2+}}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$

Question: A mixture of hydrogen and oxygen contains 40% by mass hydrogen at total pressure 2.2 bar then partial pressure will be

Options:

(a) 2.01 bar
(b) 3.81 bar
(c) 5.2 bar
(d) 1.2 bar

Answer: (a)

Solution:

$\%$ by mass $=40 \%$ hydrogen
$\%$ by mass $=60 \%$ oxygen
Let total weight $=100 \mathrm{~g}$
So, amount of $\mathrm{H}_{2}=40 \mathrm{~g}$
Moles of $\mathrm{H}_{2}=\frac{40}{2}=20 \mathrm{~mol}$
Amount of $\mathrm{O}_{2}=\frac{60}{32}=1.8 \mathrm{~mol}$
$\mathrm{X}_{\mathrm{H}_{2}}=\frac{20}{20+1.8}=0.9$
$\mathrm{P}_{\mathrm{H}_{2}}=\mathrm{P}_{\mathrm{T}} \times \mathrm{X}_{\mathrm{H}_{2}}$
$\mathrm{P}_{\mathrm{H}_{2}}=2.2 \times 0.9=2.01 \mathrm{bar}$

Question: Match the column Reaction Catalyst

(A) Hydrogenation of oils	(i) Pt
(B) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$	(ii) Fe
(C) $\mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{3}$	(iii) Ni
(D) Contact process	(iv) $\mathrm{V}_{2} \mathrm{O}_{5}$

Options:

(a) $\mathrm{A} \rightarrow$ (ii); $\mathrm{B} \rightarrow$ (i); $\mathrm{C} \rightarrow$ (iii); $\mathrm{D} \rightarrow$ (iv)
(b) $\mathrm{A} \rightarrow$ (iii); $\mathrm{B} \rightarrow$ (ii); $\mathrm{C} \rightarrow$ (i); $\mathrm{D} \rightarrow$ (iv)
(c) $\mathrm{A} \rightarrow$ (i); $\mathrm{B} \rightarrow$ (iii); $\mathrm{C} \rightarrow$ (iv); $\mathrm{D} \rightarrow$ (ii)
(d) A \rightarrow (iv); $\mathrm{B} \rightarrow$ (ii); $\mathrm{C} \rightarrow$ (i); $\mathrm{D} \rightarrow$ (iii)

Answer: (b)

Solution:

$2 \mathrm{SO}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{Pt}(\mathrm{s})} 2 \mathrm{SO}_{3}(\mathrm{~g})$
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{Fe}(\mathrm{s})} 2 \mathrm{NH}_{3}(\mathrm{~g})$
Vegetable oils $(l)+\mathrm{H}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{Ni}(\mathrm{s})}$ Vegetable ghee (s)
Contact process for the manufacture of sulphuric acid require $\mathrm{V}_{2} \mathrm{O}_{5}$ catalyst
Question: Match the following.

Compounds	Shape
(A) PCl_{5}	(i) Square Pyramidal
(B) O_{3}	(ii) Trigonal Bipyramidal
(C) BrF_{5}	(iii) Bent shape

Options:

(a) $\mathrm{A} \rightarrow$ (i); $\mathrm{B} \rightarrow$ (ii); $\mathrm{C} \rightarrow$ (iii)
(b) $\mathrm{A} \rightarrow$ (ii); $\mathrm{B} \rightarrow$ (iii); $\mathrm{C} \rightarrow$ (i)
(c) $\mathrm{A} \rightarrow$ (i); $\mathrm{B} \rightarrow$ (iii); $\mathrm{C} \rightarrow$ (ii)
(d) $\mathrm{A} \rightarrow$ (iii); $\mathrm{B} \rightarrow$ (ii); $\mathrm{C} \rightarrow$ (i)

Answer: (b)
Solution:
(A) $\mathrm{PCl}_{5} \Rightarrow$ Trigonal Bipyramidal
(B) $\mathrm{O}_{3} \Rightarrow$ Bent shape
(C) $\mathrm{BrF}_{5} \Rightarrow$ Square Pyramidal

Question: Liquation refining is based on
Options:
(a) Low melting point
(b) High melting point
(c) Less soluble impurities
(d) More soluble impurities

Answer: (a)
Solution: Liquation is used for the refining of metals having low melting point and are associated with high melting impurities. For example, $\mathrm{Pb}, \mathrm{Sn}, \mathrm{Sb}, \mathrm{Bi}$ and Hg .

Question: If stearic acid and polyethylene glycol reacts then which of the following soap/detergent will be formed?

Options:

(a) Cationic Detergent
(b) Soap
(c) Anionic detergent
(d) Non Ionic Detergent

Answer: (d)
Solution: If sodium stearate and polyethylene glycol reacts, then non-ionic detergents are formed

Question: $\mathrm{Cl}^{\bullet}+\mathrm{CH}_{4}$ in atmosphere gives
Options:
(a) $\dot{\mathrm{C}} \mathrm{H}_{3}$
(b) Cl_{2}
(c) HOCl
(d) None of these

Answer: (a)
Solution: $\dot{\mathrm{C}}(\mathrm{g})+\mathrm{CH}_{4}(\mathrm{~g}) \rightarrow \dot{\mathrm{C}} \mathrm{H}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$

Question: Phenol $+\mathrm{Br}_{2}\left(\right.$ in $\left.\mathrm{CCl}_{4}\right) \rightarrow$ Product
Phenol $+\mathrm{Br}_{2}$ (in water) \rightarrow Product
The difference in two products due to

Options:

(a) Polarity of solvent
(b) Electronegativity
(c) High activating effect of OH group
(d) Both (a) and (c)

Answer: (d)
Solution: In case of phenol, polarization of bromine takes place even in the absence of Lewis acid due to high activating effect of - OH group attached to benzene

Question: Which of the following is not an aromatic compound?

Options:

(a)

(b)

(c)

(d)

Answer: (d)
Solution: It doesn't satisfy the condition of an aromatic compound
Question: The correct order of stability

I

II

III

IV

Options:

(a) II $>$ III $>$ I $>$ IV
(b) II $>$ IV $>$ III $>$ I
(c) III $>$ II $>$ I $>$ IV
(d) I $>$ II $>$ IV $>$ III

Answer: (b)
Solution: More is the electron withdrawing group deactivating, the order of stability of diazonium salt decreases on benzene ring.

Question: Borazine is an inorganic benzene like compound formed by 3 equivalent of element X and 6 equivalent of element Y , Identify X and Y
Options:
(a) $\mathrm{B}_{2} \mathrm{H}_{6}, \mathrm{NH}_{3}$
(b) $\mathrm{B}_{2} \mathrm{H}_{6}, \mathrm{HN}_{3}$
(c) $\mathrm{NH}_{3}, \mathrm{~B}_{2} \mathrm{O}_{3}$
(d) $\mathrm{NH}_{3}, \mathrm{~B}_{2} \mathrm{H}_{6}$

Answer: (a)
Solution: $3 \mathrm{~B}_{2} \mathrm{H}_{6}+6 \mathrm{NH}_{3} \rightarrow 3\left[\mathrm{BH}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}\left[\mathrm{BH}_{4}\right]^{-} \xrightarrow{\text { Heat }} 2 \mathrm{~B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}+12 \mathrm{H}_{2}$
Question: If wavelength of first line of Lyman series of H spectrum is λ and wavelength difference between second transition of Balmer and third transition of Paschen series of line spectrum of H atom is $x \lambda$. Find the value of x.
Answer: 5.00

Solution:

$\frac{1}{\lambda}=\mathrm{R}\left[\frac{1}{1}-\frac{1}{4}\right]=\frac{3 \mathrm{R}}{4} \Rightarrow \lambda=\frac{4}{3 \mathrm{R}}$
$\frac{1}{\lambda_{1}}=\mathrm{R}\left[\frac{1}{4}-\frac{1}{16}\right]=\frac{12 \mathrm{R}}{64} \Rightarrow \lambda_{1}=\frac{16}{3 \mathrm{R}}$
$\frac{1}{\lambda_{2}}=\mathrm{R}\left[\frac{1}{9}-\frac{1}{36}\right]=\frac{27 \mathrm{R}}{9 \times 36} \Rightarrow \lambda_{2}=\frac{36}{3 \mathrm{R}}$
$\lambda_{2}-\lambda_{1}=x \lambda=\frac{36}{3 \mathrm{R}}-\frac{16}{3 \mathrm{R}}=\frac{20}{3 \mathrm{R}}$
$\frac{20}{3 \mathrm{R}}=5 \times \frac{4}{3 \mathrm{R}}=x \lambda=x=5$

Question:

Number of hydrogen atoms in the product are
Answer: 6.00
Solution:

Question: The velocity of electron is x times the velocity of a neutron. If the wavelength of electron is equal to the wavelength of neutron, find the value of x.
Given: Mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$.
Mass of neutron $=1.6 \times 10^{-27} \mathrm{~kg}$. (Round off to the nearest integer)
Answer: 1758.00

Solution:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{e}}=x \mathrm{~V}_{\mathrm{n}} \\
& \lambda_{\mathrm{e}}=\lambda_{\mathrm{n}} \\
& \frac{\mathrm{~h}}{\mathrm{~m}_{\mathrm{e}} \mathrm{v}_{\mathrm{e}}}=\frac{\mathrm{h}}{\mathrm{~m}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}} \\
& \mathrm{~m}_{\mathrm{e}} x \mathrm{v}_{\mathrm{n}}=\mathrm{m}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}} \\
& x=\frac{\mathrm{m}_{\mathrm{n}}}{\mathrm{~m}_{\mathrm{e}}}=\frac{1.6 \times 10^{-27}}{9.1 \times 10^{-31}}=0.17582 \times 10^{4} \\
& =1758.2 \\
& x \approx 1758
\end{aligned}
$$

JEE-Main-26-07-2022-Shift-1 (Memory Based)

MATHEMATICS

Question: How many 5 digit number can be formed such that product of digits is 30 .
Answer: $\mathbf{8 0 . 0 0}$

Solution:

$x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4} \cdot x_{5}=30=5 \times 2 \times 3$
$11235 \rightarrow \frac{5!}{2!}=60$
$11165 \rightarrow \frac{5!}{3!}=20$
$60+20=80$

Question: $f(3 x)-f(x)=x, f(8)=7$, find $f(14)$.
Answer: 10.00

Solution:

$f(3 x)-f(x)=x$
$f(x)-f\left(\frac{x}{3}\right)=\frac{x}{3}$
$f\left(\frac{x}{3}\right)-f\left(\frac{x}{3^{2}}\right)=\frac{x}{3^{2}}$
!
On adding, we get
$f(x)-\lim _{n \rightarrow \infty} f\left(\frac{x}{3^{n}}\right)=x\left(\frac{1}{3}+\frac{1}{3^{2}}+\ldots+\infty\right)$
$\Rightarrow f(x)-f(0)=\frac{x}{2}$
$\because f(8)=7$, so $f(0)=3$
$\therefore f(x)=\frac{x}{2}+3$
$\therefore f(14)=10$

Question: Coefficient of $x \& x^{2}$ in $(1+x)^{p} \times(1-x)^{q}$ are $-3 \&-5$ respectively. Find coefficient of x^{3}.
Answer: 23.00

Solution:

Given $(1+x)^{p} \times(1-x)^{q}$
$\left({ }^{p} C_{0}+{ }^{p} C_{1} x+{ }^{p} C_{2} x^{2}+{ }^{p} C_{3} x^{3} \ldots\right)\left({ }^{q} C_{0}-{ }^{q} C_{1} x+{ }^{q} C_{2} x^{2}-{ }^{q} C_{3} x^{3} \ldots\right)$
$p-q=-3$
$-p q+\frac{q(q-1)}{2}+\frac{p(p-1)}{2}=-5$
$-2 p q+q^{2}-q+p^{2}-p=-10$
$(p-q)^{2}-p-q=-10$
$9-p-q=-10$
$p+q=19$
$\Rightarrow p=8, q=11$
Coefficient of $x^{3}=-{ }^{q} C_{3}+{ }^{p} C_{3}+p^{q} C_{2}-q^{p} C_{2}$
$=-{ }^{11} C_{3}+{ }^{8} C_{3}+8{ }^{11} C_{2}-11{ }^{8} C_{2}$
$=\frac{-11 \cdot 10 \cdot 9}{6}+\frac{8 \cdot 7 \cdot 6}{6}+\frac{8 \cdot 11 \cdot 10}{2}-\frac{11 \cdot 8 \cdot 7}{2}$
$=23$

Question: $\frac{d y}{d x}+(2 \tan x) y=\sin x, y\left(\frac{\pi}{3}\right)=0$, find $\left.f(x)\right|_{\max }$
Answer: $\frac{1}{8}$

Solution:

$\frac{d y}{d x}+(2 \tan x) y=\sin x$
IF $=e^{\int 2 \tan x d x}=e^{-2 \ln \cos x}=\frac{1}{\cos ^{2} x}$
$\frac{y}{\cos ^{2} x}=\int \frac{\sin x}{\cos ^{2} x} d x$
$\frac{y}{\cos ^{2} x}=\frac{1}{\cos x}+C$
$0=\frac{1}{\cos \frac{x}{3}}+C$
$C=-2$
$y=\cos x-2 \cos ^{2} x$
$=-2\left[\cos ^{2} x-\frac{1}{2} \cos x\right]$
$=-2\left[\cos ^{2} x-\frac{1}{2} \cos x+\frac{1}{16}-\frac{1}{16}\right]$

$$
\begin{aligned}
& =-2\left[\cos x-\frac{1}{4}\right]^{2}+\frac{1}{8} \\
& y_{\max }=\frac{1}{8}
\end{aligned}
$$

Question: Find sum of elements in $11^{\text {th }}$ term: $(3) ;(6,9,12) ;(15,18,21,24,27) ; \ldots$.
Answer: 6993.00

Solution:

(3);(6,9,12);(15,18,21, 24, 27);.....
$1+3+5+\ldots .10$ terms $=\frac{10}{2}[2 \times 1+(10-1) 2]$
$=100$
$a_{146}=3+(99) 3=300$
$11^{\text {th }}$ term $=(303+\ldots21$ terms $)$
$=\frac{21}{2}[2 \times 303+(20) 3]$
$=6993$

Question: $\tan \left[2 \tan ^{-1}\left(\frac{1}{5}\right)+\sec ^{-1}\left(\frac{\sqrt{5}}{2}\right)+2 \tan ^{-1}\left(\frac{1}{8}\right)\right]=$?
Answer: 2.00

Solution:

$$
\begin{aligned}
& 2\left(\tan ^{-1}\left(\frac{1}{8}\right)+\tan ^{-1}\left(\frac{1}{5}\right)\right)=2 \tan ^{-1}\left(\frac{\frac{1}{8}+\frac{1}{5}}{1-\frac{1}{40}}\right) \\
& =2 \tan ^{-1}\left(\frac{1}{3}\right)
\end{aligned}
$$

$=\tan ^{-1}\left(\frac{\frac{2}{3}}{1-\frac{1}{9}}\right)$
$=\tan ^{-1}\left(\frac{3}{4}\right)$
\therefore The given terms reduces to
$\tan \left(\tan ^{-1}\left(\frac{3}{4}\right)+\tan ^{-1}\left(\frac{1}{2}\right)\right)$
$=\tan \left(\tan ^{-1} \frac{\frac{3}{4}+\frac{1}{2}}{1-\frac{3}{8}}\right)$
$=2$

Question: $x+y-z=0=x-2 y+3 z-5$. There is a line parallel to this \& passing through $(1,-2,3)$. Find distance of this line from $(1,4,5)$.
Answer: ()

Solution:

$x+y-z=0, x-2 y+3 z-5=0$
$n=\left|\begin{array}{ccc}i & j & k \\ 1 & 1 & -1 \\ 1 & -2 & 3\end{array}\right|=i(3-2)-j(3+1)+k(-2-1)$
$=i-4 j-3 k$
Line $\Rightarrow \frac{x-1}{1}=\frac{y+2}{-4}=\frac{z-3}{-3}=\lambda$
$P \equiv x=\lambda+1, y=-4 \lambda+2, z=-3 \lambda+3$
$P Q=(\lambda,-4 \lambda-2,-3 \lambda-2)$
Now, $\lambda-4(-4 \lambda-2)-3(-3 \lambda-2)=0$
$\lambda+16 \lambda+8+9 \lambda+6=0$
$26 \lambda+14=0$
$\lambda=\frac{-14}{26}=\frac{-7}{13}$
$P Q=\sqrt{\lambda^{2}+(-4 \lambda-2)^{2}+(-3 \lambda-2)^{2}}$
$=\sqrt{\lambda^{2}+16 \lambda^{2}+16 \lambda+4+9 \lambda^{2}+12 \lambda+4}$
$=\sqrt{26 \lambda^{2}+18 \lambda+4}$
$=\sqrt{26\left(\frac{-7}{13}\right)^{2}+18\left(\frac{-7}{13}\right)+4}$
$=\sqrt{\frac{2 \times 49}{13}-\frac{7 \times 18}{13}+4}$
$=\sqrt{\frac{24}{13}}$

Question: Area under $y=f(x)$ from 3 to x (where $x>3$) is $\left(\frac{y}{x}\right)^{3} \cdot f(3)=3$ then for $y=6 \sqrt{10}$, what will be x ?
Answer: $\mathbf{6 . 0 0}$

Solution:

$$
\begin{aligned}
& \int_{3}^{x} f(t) d t=\left(\frac{y}{x}\right)^{3} \\
& f(x)=3\left(\frac{y}{x}\right)^{2}\left(\frac{y^{\prime} x-y}{x^{2}}\right) \\
& y=\frac{3 y^{2}}{x^{2}}\left(\frac{y^{\prime} x-y}{x^{2}}\right) \\
& \Rightarrow x^{4}=3 y\left(y^{\prime} x-y\right) \\
& \Rightarrow x^{2} d x=3 y\left(\frac{x d y-y d x}{x^{2}}\right) \\
& \Rightarrow x^{2} d x=3 y d\left(\frac{y}{x}\right) \\
& \Rightarrow x d x=3 \frac{y}{x} d\left(\frac{y}{x}\right) \\
& \Rightarrow \frac{x^{2}}{2}=\frac{3}{2}\left(\frac{y}{x}\right)^{2}+C \\
& \Rightarrow x^{2}=\frac{3 y^{2}}{x^{2}}+C \\
& \Rightarrow 3^{2}=3+C \\
& \Rightarrow C=6 \\
& \Rightarrow x^{2}=\frac{3 y^{2}}{x^{2}}+6 \\
& y=6 \sqrt{10} \\
& \Rightarrow x^{2}=\frac{3 \cdot 36 \times 10}{x^{2}}+6 \\
& \Rightarrow x=6
\end{aligned}
$$

Question: From a group of 10 boys $B_{1}, B_{2}, \ldots, B_{10}$ and 5 girls $G_{1}, G_{2}, \ldots G_{5}$, the number of ways of selection of group of 3 boys and 3 girls, such that $B_{1} \& B_{2}$ are not together in group is \qquad .

Answer: 1120.00

Solution:

Number of ways to select 3 boys $=$ Total ways - No. of ways when both $B_{1} \& B_{2}$ are selected $={ }^{10} C_{3}-{ }^{8} C_{1}=112$
Number of ways to select 3 girls $={ }^{5} C_{3}=10$
Required number of ways $=112 \times 10=1120$

Question: $f(x)=\sqrt{\frac{1-\cos 2 x}{1+\cos 2 x}}$, find relation between $f\left(\frac{a}{2}\right) \& f^{\prime}\left(\frac{a}{2}\right)$

Options:

(a) $\sqrt{2 f\left(\frac{a}{2}\right)}=f^{\prime}\left(\frac{a}{2}\right)$
(b)
(c)
(d)

Answer: ()

Solution:

$f(x)=\sqrt{\frac{1-\cos 2 x}{1+\cos 2 x}}$
$f(x)=\sqrt{\frac{\sin ^{2} x}{\cos ^{2} x}}=\tan x$
$f^{\prime}(x)=\sec ^{2} x=1+\tan ^{2} x$
$f^{\prime}(x)=1+f^{2}(x)$
$f^{\prime}\left(\frac{a}{2}\right)=1+f^{2}\left(\frac{a}{2}\right)$
Question: $f(x)=\left\{\begin{array}{cl}\frac{\ln \left(1-x+x^{2}\right)+\ln \left(1+x+x^{2}\right)}{\sec x-\cos x} & ; x<0 \\ k & ; x \geq 0\end{array}\right.$ is continuous, find k.

Answer: 1.00

Solution:

$$
\lim _{x \rightarrow 0} \frac{\ln \left(1-x+x^{2}\right)+\ln \left(1+x+x^{2}\right)}{\sec x-\cos x}
$$

$$
\lim _{x \rightarrow 0} \frac{\frac{1}{1-x+x^{2}}(-1+2 x)+\frac{1}{1+x+x^{2}}(1+2 x)}{\sec x \tan x+\sin x}
$$

$$
\lim _{x \rightarrow 0} \frac{(2 x-1)\left(1+x+x^{2}\right)+(2 x+1)\left(1-x+x^{2}\right)}{\left(1+x^{2}+x^{4}\right)(\sec x \tan x+\sin x)}
$$

$$
=\lim _{x \rightarrow 0} \frac{2 x+2 x^{2}+2 x^{3}-1-x-x^{2}+2 x-2 x^{2}+2 x^{3}+1-x+x^{2}}{\left(1+x^{2}+x^{4}\right)(\sec x \tan x+\sin x)}
$$

$$
=\lim _{x \rightarrow 0} \frac{4 x^{3}+2 x}{\left(1+x^{2}+x^{4}\right)\left(\sec ^{2} x \sin x+\sin x\right)}
$$

$$
=\lim _{x \rightarrow 0} \frac{4 x^{2}+2}{\left(1+x^{2}+x^{4}\right)\left(\sec ^{2} x+1\right)}
$$

$$
=\frac{2}{1 \times 2}=1
$$

Question: Normal to $y^{2}=24 x$ at (α, β) is perpendicular to $2 x+2 t=5$. Find equation of normal to $\frac{x^{2}}{\alpha^{2}}-\frac{y^{2}}{\beta^{2}}=1$ at $(\alpha+4, \beta+10)$.
Answer: ()
Solution:
$\frac{x^{2}}{\alpha^{2}}-\frac{y^{2}}{\beta^{2}}=1 \quad(\alpha+4, \beta+10)$
$\beta^{2}=24 \alpha$
$2 y y^{\prime}=24$
$y^{\prime}=\frac{12}{y}=\frac{12}{\beta}$
$\Rightarrow \frac{12}{\beta}=1 \Rightarrow \beta=12$
$12^{2}=24 \cdot \alpha$
$\Rightarrow \alpha=6$
$\frac{x^{2}}{36}-\frac{y^{2}}{144}=1$
$\frac{2 x}{36}-\frac{2 y y^{\prime}}{144}=0$
$\frac{x}{36}=\frac{y y^{\prime}}{144}$
$\Rightarrow y^{\prime}=\frac{144}{136} \cdot \frac{x}{y}=\frac{4 x}{y}=\frac{4 \times 10}{22}$
$=\frac{20}{11}$
$y-22=\frac{20}{11}(x-10)$
$11 y-242=20 x-200$
$\Rightarrow 20 x-11 y+42=0$

