

JEE-Main-26-07-2022-Shift-1 (Memory Based)

Physics

Question: A charged particle is having acceleration $\overline{a} = 2\hat{i} + 4\hat{j}$ while moving in an uniform magnetic field $\overline{B} = \alpha \hat{i} - 3\hat{j}$. Find α

Options: (a) 10

(b) 2.5

(c) 3

(d) 4.5

Answer: (d)

Solution: $\therefore \overline{F} = q(\overline{v} \times \overline{B})$

By property of cross product, $\overline{F} \perp \overline{B}$

 $\overline{a} \perp \overline{B}$ $\therefore \overline{a}.\overline{B} = 0$ $(2\hat{i} + 3\hat{j}).(\alpha\hat{i} - 3\hat{j}) = 0$

Question: If in adiabatic process gas is compressed to $\frac{1}{8}$ th of its volume, what will be the final pressure if Initial pressure is P₀ (gas is monatomic)

Options: (a) 12 P₀ (b) 32 P₀ (c) 42 P₀ (d) 22 P₀ Answer: (b) Solution:

For monoatomic gas $r = \frac{5}{3}$

In adiabatic process

$$P_{1}V_{1}^{r} = P_{2}V_{2}^{r}$$

$$\therefore \frac{P_{2}}{P_{1}} = \left(\frac{V_{1}}{V_{2}}\right)^{r} = \left(\frac{V_{0}}{V_{0} / 8}\right)^{5/3}$$
$$= \left(8\right)^{5/3} = 32$$

$$\therefore P_{2} = 32P_{1} = 32P_{0}$$

Question: What is the current through battery?

Options:

- (a) 15 A
- (b) 20 A
- (c) 10 A
- (d) 15 A

Answer: (c)

Solution:

Since it's a balanced Wheatstone bridge equivalent resistance becomes 4Ω . Since 2Ω resistance will not be considered.

$$\therefore i = \frac{40}{4} = 10A$$

Question: A monkey of 50 kg climbs a rope having maximum torsion 3.50 N

Case A:Monkey climbs up with 5 ms⁻²

Case B: Monkey climbs down with 4 ms⁻²

In which case Rope will not break

Options:

(a) Case B: Break, Case A : break

- (b) Case A: Not Break, Case B : break
- (c) Case A: Break, Case B : Not break

(d) Case B: Not Break, Case A : Not break

Answer: (c)

Solution:

Breaking tension = 350 NCase A T_A = m (g +a) = 50 (10 + 5)= 750 NCase B T_B = m(g-a) = 50 (10-4)= 300 N

 \therefore Rope will break in case A

Question: A neutron and an electron of rest masses m_n and m_e are moving with speeds v and xv resp. If their de Broglie wavelength are equal then approximate value of x is consider $m_e = 9.1 \times 10^{-31} \text{ kg}$ and $m_n = 1.6 \times 10^{-27} \text{ kg}$. Do not consider relativistic effect **Options:**

(a) 1600
(b) 1758
(c) 1880
(d) 1990
Answer: (b)

Solution:

Using de Broglie eq.

$$\lambda = \frac{h}{mv}$$

$$\therefore \lambda_e = \lambda_n$$

or

$$\frac{h}{m_e \times v} = \frac{h}{m_n v}$$

$$x = \frac{m_n}{m_e} = 1758$$

Question: A meter Bridge is an shown if a resistance of x r is connected in series with 4r, new null point comes at 80 cm. Find x?

4 r	R'	
40 cm	Null pt	
Options:		
(a) $x = 30$		
(b) $x = 20$		
(c) $x = 10$		
(d) $x = 30$		
Answer: (b)		
Solution:		
$\frac{4r}{40} = \frac{R'}{60} \dots (1)$		
$\&\frac{4r+xr}{80} = \frac{R'}{20}$	$\frac{1}{5}$ (2)	
Solving 1 and 2	2	
$\frac{4r+xr}{8r} = 3$		
<i>x</i> = 20		

Question: If intensity of a wave is 10 wm^{-2} & it is passing through area of 1 cm^2 & wavelength of wave is 900 nm. Find No. of photons passing per second. **Options:**

(a) $6.51 \ge 10^{16}$ photos / sec (b) $8.51 \ge 10^{16}$ photos / sec (c) $3.51 \ge 10^{16}$ photos / sec (d) $4.51 \ge 10^{16}$ photos / sec **Answer:** (d) **Solution:** G. that $I = 100 \le 100^{-4} \le 10^{-4} \le 10^{-4} \le 10^{-9} \le 10^{-4} \le 10^{-4} \le 900 \le 10^{-9} = \frac{100 \le 1 \le 10^{-4} \le 900 \le 10^{-9}}{6.64 \le 10^{-34} \le 3 \le 10^{-9}} = 4.51 \ge 10^{16} \ge 100 \le 10^{-9} \le 10^{-9}$

Question: If in YDSE fringe width is 12 mm. What is new fringe width if whole setup is

immersed in water $\mu = \frac{4}{3}$

Options:

(a) 3 mm (b) 9 mm (c) 4 mm (d) 12 mm **Answer:** (b) **Solution:** Given that $\beta = 12mm$

Now set up is immersed in water $\left(\mu = \frac{4}{3}\right)$

$$\beta' = \frac{\beta}{\mu}$$
$$\beta' = \frac{12}{4} \times 3$$
$$\beta' = 9mm$$

Question: Ratio of magnetic field at centre of two circular coils carrying same current and same radius with number of turns 200 and 400. Radius given was 20 cm for both **Options:**

(a) $\frac{1}{2}$ (b) $\frac{2}{3}$

(c)
$$\frac{3}{2}$$

(d) $\frac{5}{2}$

Answer: (a) Solution:

$$B = N \frac{\mu_0 i}{2R}$$
$$\frac{B_1}{B_2} = \frac{N_1}{N_2} = \frac{200}{400} = \frac{1}{2}$$

Question: In linear SHM, variation of velocity of body against it's displacement is best represented by,

$$v = \pm \omega \sqrt{A^2 - x^2}$$

$$v^2 = \omega^2 \left(A^2 - x^2 \right)$$

$$v^2 = \omega^2 A^2 - \omega^2 x^2$$

$$v^2 + \omega^2 x^2 = \omega^2 A^2$$

$$\frac{v^2}{\omega^2 A^2} + \frac{\omega^2 x^2}{\omega^2 A^2} = 1$$

$$\frac{v^2}{\left(\omega A\right)^2} + \frac{x^2}{A^2} = 1$$
 (ellipse)

Question: In LR circuit $X_L = R$ and in LCR circuit $X_L = X_C$. Ratio of power factor in wo situations is.

Options:

(a) $\frac{1}{2}$ (b) $\frac{1}{\sqrt{2}}$ (c) $\sqrt{2}$ (d) $\frac{2}{3}$ Answer: (b) Solution: Given that For LR circuit $X_L = R$ $\cos\phi = \frac{R}{Z}$ $\cos\phi = \frac{R}{\sqrt{R^2 + R^2}}$ $(\cos\phi) = \frac{1}{\sqrt{2}} \dots (1)$ $X_L = X_C$ $\cos\phi = \frac{R}{Z}$ $\left(\cos\phi\right)_{Z} = \frac{R}{R} = 1 \dots (2)$ From equation (1) and (2) $\frac{\left(\cos\phi\right)}{\left(\cos\phi\right)_{Z}} = \frac{1}{\sqrt{2}}$

Question: Two projectiles at angles 30° and 45° reach their maximum heights in same time. Find the ratio of their initial velocities.

Options:

(a) 1 : 1

- (b) 1 : 2 (c) 2 : 1
- (d) $\sqrt{2}$:1
- Answer: (d)

Solution:

Question: If in EM wave $B_0 = 2 \times 10^{-8} T$ find the amplitude of electric field

Options:

(a) $2NC^{-1}$ (b) $3NC^{-1}$ (c) $6NC^{-1}$ (d) $8NC^{-1}$ **Answer:** (c) **Solution:** Given that $B_0 = 2 \times 10^{-8} T$ $E_0 = ?$ $E_0 = B_0 C$ $E_0 = 2 \times 10^{-8} \times 3 \times 10^8$ $E_0 = 6N / C$

Question: For an equiconvex lens made of refractive index 1.5, following graph is given. Find radius of curvature of lens.

Options: (a) 10 cm (b) 20 cm

(c) 15 cm (d) 20 cm Answer: (a) Solution: $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ $\frac{1}{f} = y - x$

From graph

$$\frac{1}{f} = 0 - \left(-\frac{1}{10}\right)$$

 $f = 10cm$

$$\frac{1}{f} = (\mu_R - 1) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

$$\frac{1}{10} = (1.5 - 1) \left(\frac{1}{R} + \frac{1}{R}\right)$$

$$\frac{1}{10} = \frac{1}{2} \left(\frac{2}{R}\right)$$

$$R = 10cm$$

Question: Radio can tune into 6MHz. Find the corresponding wavelength band **Options:**

- (a) 20m
- (b) 30m
- (c) 50m
- (d) 70m

Answer: (a)

Solution:

We know $\lambda = \frac{c}{f}$

So,
$$\lambda = \frac{C}{f_1}$$

 $\lambda_1 = \frac{3 \times 10^8}{6 \times 10^6} = 50m$
And $\lambda_2 = \frac{c}{f_2}$
 $= \frac{3 \times 10^8}{10 \times 10^6} = 30m$
So wavelength bond $= \lambda_1 - \lambda_2$
 $= 50 - 30 = 20m$

Question: Find the work done in splitting water droplet of radius R = 1 cm into 729 droplets. Surface tension $T = 75 dyne / cm^2$.

Options:

(a) $7.536 \times 10^{-3} J$ (b) $7.536 \times 10^{2} J$ (c) $7.536 \times 10^{3} J$ (d) $75.36 \times 10^{-3} J$ Answer: (a) Solution:

According to question $\frac{4}{3}\pi r^3 = n \times \frac{4}{3}\pi r^3$

$$(1)^3 = 729(r)^3$$

 $(r)^3 = \frac{1}{729}$

$$r = \frac{1}{9}m$$

 W_D = Surface tension × crave in area

$$W_D = 75 \times 10^{-5+4} \times 4\pi$$
$$\left(729 \times \left(\frac{1}{9}\right)^2 - (1)^2\right)$$
$$W_D = 7.536 \times 10^{-3} J$$

Question: Four capacitors having capacity 1,2,3,4 μF connected in parallel. If 20V battery is connected across the system then find the charge flown through the battery

Options:

(a) 50*µC*

- (b) 100*µC*
- (c) $150 \mu C$
- (d) 200*µC*

Answer: (d)

Solution:

If 1,2,3,4 μF capacitors are connected in parallel then

$$C_{eq} = 1 + 2 + 3 + 4 = 10 \mu F$$

Given: V = 20volt

So charge flown from the battery

$$q = C_{eq}V$$

 $q = 10 \times 20 \mu C$

 $q = 200 \mu C$

Question: A mass of M is attached at Top of find disc of same mass M and radius R. If point mass is given gentle push. Find ω of disc when mass reaches bottom.

Options:

(a)
$$\sqrt{\frac{9g}{3R}}$$

(b) $\sqrt{\frac{8g}{3R}}$
(c) $\sqrt{\frac{R}{3g}}$
(d) $\sqrt{\frac{g}{R}}$

Answer: (b) Solution:

 ω = angular velocity at the instant. When ball is at bottom. As here is no friction as well as external force, So, from conservation of mechanical energy We have, $\Delta k = -\Delta v$

Let as assume K_i (Initial kinetic energy = 0)

$$\therefore K_{f} - K_{i} = -(mg \times 2R)$$

$$\Rightarrow \frac{1}{2}I\omega^{2} = mg \times 2R$$

$$\Rightarrow \frac{1}{2} \times \left(\frac{mR^{2}}{2} + mR^{2}\right)\omega^{2} = mg \times 2R$$

$$\Rightarrow \frac{3}{4}mR^{2}\omega^{2} = mg \times 2R$$

$$\Rightarrow \omega^{2} = \frac{8g}{3R}$$

$$\Rightarrow \omega = \sqrt{\frac{8g}{3R}}$$

JEE-Main-26-07-2022-Shift-1 (Memory Based)

Chemistry

Question: The product formed in the given reaction BeCl₂ + LiAlH₄ → Options: (a) H₂ (b) BeH₂ (c) Both (a) and (b) (d) None of the above Answer: (b) Solution: 2BeCl₂ + LiAlH₄ → 2BeH₂ + LiCl + AlCl₃

Question: Which of the following can help in preventing decomposition of H₂O₂? **Options:**

(a) Formaldehyde

(b) Formic acid

(c) Ethanol

(d) Urea

Answer: (d)

Solution: In the presence of metal surfaces or traces of akali (present in glass containers), the reaction is catalysed. It is, therefore, stored in wax-lined glass or plastic vessels in dark. Urea can be added as a stabiliser.

Question: Difference in spin magnetic moment of [Co(H2O)5Cl]Cl2 and [Cr(H2O6)]Cl3

Options:

(a) 1 BM

(b) 0 BM

(c) 2 BM

(d) 3 BM

Answer: (a)

Solution:

[Co(H₂O)₅Cl]Cl₂ and [Cr(H₂O₆)]Cl₃

Co is in +3 oxidation state

It means valence shell configuration is 3d⁶ and high spin complex

n = 4

 $\mu = \sqrt{4(4+2)} = \sqrt{24} B M = 4.89 BM$

[Cr(H₂O₆)]Cl₃

 Cr^{3+} has valence shell configuration $3d^3$

Cr ³⁺	1	1	1	

n = 3

$$\mu = \sqrt{n(n+2)} = \sqrt{3(3+2)} = \sqrt{15}$$
 B M = 3.87 BM

n–1

Difference between spin magnetic moment = $4.89 - 3.87 \simeq 1$ BM

Question: Find the order of the reaction if concentration changes from 0.5 to 1 and half life changes from 100 s to 50 s

Options:

- (a) Zero order
- (b) First order
- (c) Second Order
- (d) None of these
- Answer: (c)

Solution:

$$t_{1/2} \propto \frac{1}{[A_o]^{n-1}}$$

$$\frac{(t_{1/2})_1}{(t_{1/2})_2} = \frac{[A_o]_2^{n-1}}{[A_o]_1^{n-1}} = \left[\frac{[A_o]_2}{[A_o]_1}\right]$$

$$\frac{100}{50} = \left(\frac{1}{0.5}\right)^{n-1} \Rightarrow 2 = (2)^{n-1}$$

$$\Rightarrow n = 2 \text{ (Second order)}$$

Question: Identify 'X'

Ph-CH- Ph | OH Answer: (a) Solution:

Question: Identify the product B

Question: Assertion: Dark purple colour of KMnO₄ in titration with Oxalic acid in acidic medium disappears

Reason: Change in oxidation number of Mn from 7 to 2

Options:

(a) Both assertion and reason are true, reason is correct explanation of assertion

(b) Both assertion and reason are true, but reason is not a correct explanation of the assertion.

(c) Assertion is true, but reason is false.

(d) Assertion is false, but reason is true

Answer: (a)

Solution: $2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O_2$

Question: A mixture of hydrogen and oxygen contains 40% by mass hydrogen at total pressure 2.2 bar then partial pressure will be

Options:

(a) 2.01 bar (b) 3.81 bar (c) 5.2 bar (d) 1.2 bar **Answer:** (a) **Solution:** % by mass = 40% hydrogen % by mass = 60% oxygen Let total weight = 100 g So, amount of H₂ = 40 g Moles of H₂ = $\frac{40}{2}$ = 20 mol Amount of O₂ = $\frac{60}{32}$ = 1.8 mol $X_{H_2} = \frac{20}{20+1.8} = 0.9$ $P_{H_2} = P_T \times X_{H_2}$ $P_{H_2} = 2.2 \times 0.9 = 2.01$ bar

Question: Match the column Reaction CatalystReactionCatalyst

(A) Hydrogenation of oils	(i) Pt			
(B) $N_2 + 3H_2 \rightarrow 2 NH_3$	(ii) Fe			
(C) $SO_2 + O_2 \rightarrow SO_3$	(iii) Ni			
(D) Contact process	(iv) V ₂ O ₅			
Options:				
(a) $A \rightarrow (ii); B \rightarrow (i); C \rightarrow (ii)$	ii); $D \rightarrow (iv)$			
(b) $A \rightarrow (iii); B \rightarrow (ii); C \rightarrow (i); D \rightarrow (iv)$				
(c) $A \rightarrow (i); B \rightarrow (iii); C \rightarrow (iv); D \rightarrow (ii)$				
(d) $A \rightarrow (iv); B \rightarrow (ii); C \rightarrow (ii); $	(i); $D \rightarrow (iii)$			
Answer: (b)				
Solution:				
$2SO_2(g) \xrightarrow{Pt(s)} 2SO_3(g)$				
$N_2(g) + 3H_2(g) \xrightarrow{Fe(s)} 2NH_2(g)$	$H_3(g)$			
Vegetable oils (l) + H ₂ (g)	$\overset{\text{Ni}(s)}{\longrightarrow}$ Vegetabl	le ghee(s)		

Contact process for the manufacture of sulphuric acid require V₂O₅ catalyst

Question: Match the following.

Compounds	Shape			
(A) PCl ₅	(i) Square Pyramidal			
(B) O ₃	(ii) Trigonal Bipyramidal			
(C) BrF5	(iii) Bent shape			
Options:				
(a) $A \rightarrow (i); B \rightarrow$	(ii); $C \rightarrow (iii)$			
(b) $A \rightarrow (ii); B \rightarrow (ii)$	(iii); $C \rightarrow (i)$			
(c) $A \rightarrow (i); B \rightarrow$	(iii); $C \rightarrow (ii)$			
(d) $A \rightarrow (iii); B -$	\rightarrow (ii); C \rightarrow (i)			
Answer: (b)				
Solution:				
(A) $PCl_5 \Rightarrow Trigonal Bipyramidal$				
(B) $O_3 \Rightarrow$ Bent sh	ape			
(C) $BrF_5 \Rightarrow$ Square Pyramidal				

Question: Liquation refining is based on Options:

- (a) Low melting point
- (b) High melting point
- (c) Less soluble impurities
- (d) More soluble impurities

Answer: (a)

Solution: Liquation is used for the refining of metals having low melting point and are associated with high melting impurities. For example, Pb, Sn, Sb, Bi and Hg.

Question: If stearic acid and polyethylene glycol reacts then which of the following soap/detergent will be formed?

Options:

(a) Cationic Detergent
(b) Soap
(c) Anionic detergent
(d) Non Ionic Detergent
Answer: (d)
Solution: If sodium stearate and polyethylene glycol reacts, then non-ionic detergents are formed

Question: $Cl^{\bullet} + CH_4$ in atmosphere gives **Options:**

(a) CH₃
(b) Cl₂
(c) HOCl
(d) None of these
Answer: (a)

Solution: $\dot{Cl}(g) + \dot{CH}_4(g) \rightarrow \dot{CH}_3(g) + HCl(g)$

Question: Phenol + Br₂ (in CCl₄) \rightarrow Product

Phenol + Br₂ (in water) \rightarrow Product

The difference in two products due to

Options:

- (a) Polarity of solvent
- (b) Electronegativity
- (c) High activating effect of OH group
- (d) Both (a) and (c)

Answer: (d)

Solution: In case of phenol, polarization of bromine takes place even in the absence of Lewis acid due to high activating effect of –OH group attached to benzene

Question: Which of the following is not an aromatic compound?

Question: The correct order of stability

Options:

(a) II > III > I > IV
(b) II > IV > III > I
(c) III > II > I > I > IV
(d) I > II > IV > III
Answer: (b)

Solution: More is the electron withdrawing group deactivating, the order of stability of diazonium salt decreases on benzene ring.

Question: Borazine is an inorganic benzene like compound formed by 3 equivalent of element X and 6 equivalent of element Y, Identify X and Y **Options:** (a) B₂H₆, NH₃

(b) B₂H₆, HN₃ (c) NH₃, B₂O₃ (d) NH₃, B₂H₆ **Answer:** (a) **Solution:** $3B_2H_6 + 6NH_3 \rightarrow 3[BH_2(NH_3)_2]^+ [BH_4]^- \xrightarrow{\text{Heat}} 2B_3N_3H_6 + 12H_2$

Question: If wavelength of first line of Lyman series of H spectrum is λ and wavelength difference between second transition of Balmer and third transition of Paschen series of line spectrum of H atom is $x\lambda$. Find the value of x.

Answer: 5.00 Solution:

 $\frac{1}{\lambda} = R\left[\frac{1}{1} - \frac{1}{4}\right] = \frac{3R}{4} \Longrightarrow \lambda = \frac{4}{3R}$ $\frac{1}{\lambda_1} = R\left[\frac{1}{4} - \frac{1}{16}\right] = \frac{12R}{64} \Longrightarrow \lambda_1 = \frac{16}{3R}$ $\frac{1}{\lambda_2} = R\left[\frac{1}{9} - \frac{1}{36}\right] = \frac{27R}{9 \times 36} \Longrightarrow \lambda_2 = \frac{36}{3R}$ $\lambda_2 - \lambda_1 = x\lambda = \frac{36}{3R} - \frac{16}{3R} = \frac{20}{3R}$ $\frac{20}{3R} = 5 \times \frac{4}{3R} = x\lambda = x = 5$

Question:

$$+ Cl_2 \xrightarrow{\text{Sunlight}} \text{Product}$$
(Excess)

Number of hydrogen atoms in the product are Answer: 6.00 Solution:

Question: The velocity of electron is x times the velocity of a neutron. If the wavelength of electron is equal to the wavelength of neutron, find the value of x.

Given: Mass of electron = 9.1×10^{-31} kg. Mass of neutron = 1.6×10^{-27} kg. (Round off to the nearest integer) Answer: 1758.00 Solution:

$$V_e = xV_n$$

$$\lambda_e = \lambda_n$$

$$\frac{h}{m_e v_e} = \frac{h}{m_n v_n}$$

$$m_e x v_n = m_n v_n$$

$$x = \frac{m_n}{m_e} = \frac{1.6 \times 10^{-27}}{9.1 \times 10^{-31}} = 0.17582 \times 10^4$$

$$= 1758.2$$

$$x \approx 1758$$

JEE-Main-26-07-2022-Shift-1 (Memory Based)

MATHEMATICS

Question: How many 5 digit number can be formed such that product of digits is 30. **Answer: 80.00**

Solution: $x_1 \cdot x_2 \cdot x_3 \cdot x_4 \cdot x_5 = 30 = 5 \times 2 \times 3$ $1 \ 1 \ 2 \ 3 \ 5 \rightarrow \frac{5!}{2!} = 60$ $1 \ 1 \ 1 \ 6 \ 5 \rightarrow \frac{5!}{3!} = 20$ 60 + 20 = 80

Question: f(3x) - f(x) = x, f(8) = 7, find f(14). Answer: 10.00 Solution: f(3x) - f(x) = x $f(x) - f(\frac{x}{2}) = \frac{x}{2}$

$$f\left(\frac{x}{3}\right) - f\left(\frac{x}{3^2}\right) = \frac{x}{3^2}$$

On adding, we get

$$f(x) - \lim_{n \to \infty} f\left(\frac{x}{3^n}\right) = x\left(\frac{1}{3} + \frac{1}{3^2} + \dots + \infty\right)$$
$$\Rightarrow f(x) - f(0) = \frac{x}{2}$$
$$\because f(8) = 7, \text{ so } f(0) = 3$$
$$\therefore f(x) = \frac{x}{2} + 3$$
$$\therefore f(14) = 10$$

Question: Coefficient of $x \& x^2$ in $(1+x)^p \times (1-x)^q$ are -3 & -5 respectively. Find coefficient of x^3 . Answer: 23.00 Solution:

Given
$$(1+x)^{p} \times (1-x)^{q}$$

 $\binom{pC_{0} + pC_{1}x + pC_{2}x^{2} + pC_{3}x^{3}...)(qC_{0} - qC_{1}x + qC_{2}x^{2} - qC_{3}x^{3}...)}{p-q=-3}$
 $-pq + \frac{q(q-1)}{2} + \frac{p(p-1)}{2} = -5$
 $-2pq + q^{2} - q + p^{2} - p = -10$
 $(p-q)^{2} - p - q = -10$
 $9 - p - q = -10$
 $p+q=19$
 $\Rightarrow p = 8, q = 11$
Coefficient of $x^{3} = -qC_{3} + pC_{3} + p^{q}C_{2} - q^{p}C_{2}$
 $= -^{11}C_{3} + ^{8}C_{3} + 8^{11}C_{2} - 11^{8}C_{2}$
 $= \frac{-11\cdot10\cdot9}{6} + \frac{8\cdot7\cdot6}{6} + \frac{8\cdot11\cdot10}{2} - \frac{11\cdot8\cdot7}{2}$
 $= 23$
Question: $\frac{dy}{dx} + (2\tan x)y = \sin x, y(\frac{\pi}{3}) = 0, \text{ find } f(x)|_{\max}$
Answer: $\frac{1}{8}$
Solution:
 $\frac{dy}{dx} + (2\tan x)y = \sin x$
IF $= e^{\int 2\tan xdx} = e^{-2\ln \cos x} = \frac{1}{\cos^{2} x}$
 $\frac{y}{\cos^{2} x} = \int \frac{\sin x}{\cos^{2} x} dx$
 $\frac{y}{\cos^{2} x} = \frac{1}{\cos x} + C$
 $0 = \frac{1}{\cos \frac{x}{3}} + C$
 $0 = \frac{1}{\cos \frac{x}{3}} + C$
 $C = -2$
 $y = \cos x - 2\cos^{2} x$
 $= -2\left[\cos^{2} x - \frac{1}{2}\cos x\right]$
 $= -2\left[\cos^{2} x - \frac{1}{2}\cos x + \frac{1}{16} - \frac{1}{16}\right]$

$$= -2\left[\cos x - \frac{1}{4}\right]^2 + \frac{1}{8}$$
$$y_{\text{max}} = \frac{1}{8}$$

Question: Find sum of elements in 11th term: (3);(6,9,12);(15,18,21,24,27);..... Answer: 6993.00 Solution: (3);(6,9,12);(15,18,21,24,27);.....

$$1+3+5+....10 \text{ terms} = \frac{10}{2} [2 \times 1 + (10-1)2]$$

= 100
$$a_{146} = 3 + (99)3 = 300$$

11th term = (303 +21 terms)
$$= \frac{21}{2} [2 \times 303 + (20)3]$$

= 6993

Question:
$$\tan \left[2 \tan^{-1} \left(\frac{1}{5} \right) + \sec^{-1} \left(\frac{\sqrt{5}}{2} \right) + 2 \tan^{-1} \left(\frac{1}{8} \right) \right] = ?$$

Answer: 2.<mark>00</mark> Solution:

$$2\left(\tan^{-1}\left(\frac{1}{8}\right) + \tan^{-1}\left(\frac{1}{5}\right)\right) = 2\tan^{-1}\left(\frac{\frac{1}{8} + \frac{1}{5}}{1 - \frac{1}{40}}\right)$$
$$= 2\tan^{-1}\left(\frac{1}{3}\right)$$

$$= \tan^{-1} \left(\frac{\overline{3}}{1 - \frac{1}{9}} \right)$$
$$= \tan^{-1} \left(\frac{3}{4} \right)$$

 \therefore The given terms reduces to

$$\tan\left(\tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{1}{2}\right)\right)$$

 $= \tan\left(\tan^{-1}\frac{\frac{3}{4}+\frac{1}{2}}{1-\frac{3}{8}}\right)$ = 2

Question: x + y - z = 0 = x - 2y + 3z - 5. There is a line parallel to this & passing through (1, -2, 3). Find distance of this line from (1, 4, 5).

Answer: ()

Solution:

$$x + y - z = 0, \ x - 2y + 3z - 5 = 0$$

$$n = \begin{vmatrix} i & j & k \\ 1 & 1 & -1 \\ 1 & -2 & 3 \end{vmatrix} = i(3-2) - j(3+1) + k(-2-1)$$

$$= i - 4j - 3k$$
Line $\Rightarrow \frac{x-1}{1} = \frac{y+2}{-4} = \frac{z-3}{-3} = \lambda$

$$P = x = \lambda + 1, \ y = -4\lambda + 2, \ z = -3\lambda + 3$$

$$PQ = (\lambda, -4\lambda - 2, -3\lambda - 2)$$
Now, $\lambda - 4(-4\lambda - 2) - 3(-3\lambda - 2) = 0$
 $\lambda + 16\lambda + 8 + 9\lambda + 6 = 0$
 $26\lambda + 14 = 0$
 $\lambda = \frac{-14}{26} = \frac{-7}{13}$

$$PQ = \sqrt{\lambda^2 + (-4\lambda - 2)^2 + (-3\lambda - 2)^2}$$

$$= \sqrt{\lambda^2 + 16\lambda^2 + 16\lambda + 4 + 9\lambda^2 + 12\lambda + 4}$$

$$= \sqrt{26\lambda^2 + 18\lambda + 4}$$

$$= \sqrt{26\left(\frac{-7}{13}\right)^2 + 18\left(\frac{-7}{13}\right) + 4}$$

$$= \sqrt{\frac{2\times 49}{13} - \frac{7 \times 18}{13} + 4}$$

$$= \sqrt{\frac{24}{13}}$$

Question: Area under y = f(x) from 3 to x (where x > 3) is $\left(\frac{y}{x}\right)^3 \cdot f(3) = 3$ then for $y = 6\sqrt{10}$, what will be x? Answer: 6.00

Solution:

$$\int_{3}^{x} f(t) dt = \left(\frac{y}{x}\right)^{3}$$

$$f(x) = 3\left(\frac{y}{x}\right)^{2} \left(\frac{y'x - y}{x^{2}}\right)$$

$$y = \frac{3y^{2}}{x^{2}} \left(\frac{y'x - y}{x^{2}}\right)$$

$$\Rightarrow x^{4} = 3y(y'x - y)$$

$$\Rightarrow x^{2} dx = 3y \left(\frac{x dy - y dx}{x^{2}}\right)$$

$$\Rightarrow x^{2} dx = 3y d\left(\frac{y}{x}\right)$$

$$\Rightarrow x dx = 3\frac{y}{x} d\left(\frac{y}{x}\right)$$

$$\Rightarrow \frac{x^{2}}{2} = \frac{3}{2} \left(\frac{y}{x}\right)^{2} + C$$

$$\Rightarrow x^{2} = \frac{3y^{2}}{x^{2}} + C$$

$$\Rightarrow x^{2} = \frac{3y^{2}}{x^{2}} + C$$

$$\Rightarrow x^{2} = \frac{3y^{2}}{x^{2}} + 6$$

$$y = 6\sqrt{10}$$

$$\Rightarrow x^{2} = \frac{3 \cdot 36 \times 10}{x^{2}} + 6$$

$$\Rightarrow x = 6$$

Question: From a group of 10 boys $B_1, B_2, ..., B_{10}$ and 5 girls $G_1, G_2, ..., G_5$, the number of ways of selection of group of 3 boys and 3 girls, such that $B_1 \& B_2$ are not together in group is _____. Answer: 1120.00

Solution:

Number of ways to select 3 boys = Total ways – No. of ways when both $B_1 \& B_2$ are selected = ${}^{10}C_3 - {}^{8}C_1 = 112$ Number of ways to select 3 girls = ${}^{5}C_3 = 10$

Required number of ways $= 112 \times 10 = 1120$

Question:
$$f(x) = \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}$$
, find relation between $f\left(\frac{a}{2}\right) \& f'\left(\frac{a}{2}\right)$

Options:

(a)
$$\sqrt{2f\left(\frac{a}{2}\right)} = f'\left(\frac{a}{2}\right)$$

(b)
(c)
(d)
Answer: ()
Solution:

$$f(x) = \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}$$
$$f(x) = \sqrt{\frac{\sin^2 x}{\cos^2 x}} = \tan x$$
$$f'(x) = \sec^2 x = 1 + \tan^2 x$$
$$f'(x) = 1 + f^2(x)$$
$$f'\left(\frac{a}{2}\right) = 1 + f^2\left(\frac{a}{2}\right)$$

Question:
$$f(x) = \begin{cases} \frac{\ln(1-x+x^2) + \ln(1+x+x^2)}{\sec x - \cos x} ; & x < 0 \\ k & ; & x \ge 0 \end{cases}$$
; $x < 0$ is continuous, find k .

Answer: 1.<mark>00</mark>

Solution:

$$\begin{split} \lim_{x \to 0} \frac{\ln(1-x+x^2) + \ln(1+x+x^2)}{\sec x - \cos x} \\ \lim_{x \to 0} \frac{\frac{1}{1-x+x^2}(-1+2x) + \frac{1}{1+x+x^2}(1+2x)}{\sec x \tan x + \sin x} \\ \lim_{x \to 0} \frac{(2x-1)(1+x+x^2) + (2x+1)(1-x+x^2)}{(1+x^2+x^4)(\sec x \tan x + \sin x)} \\ = \lim_{x \to 0} \frac{2x+2x^2+2x^3-1-x-x^2+2x-2x^2+2x^3+1-x+x^2}{(1+x^2+x^4)(\sec x \tan x + \sin x)} \\ = \lim_{x \to 0} \frac{4x^3+2x}{(1+x^2+x^4)(\sec^2 x \sin x + \sin x)} \\ = \lim_{x \to 0} \frac{4x^2+2}{(1+x^2+x^4)(\sec^2 x + 1)} \\ = \frac{1}{1\times 2} = 1 \end{split}$$

Question: Normal to $y^2 = 24x$ at (α, β) is perpendicular to 2x + 2t = 5. Find equation of normal to $\frac{x^2}{\alpha^2} - \frac{y^2}{\beta^2} = 1$ at $(\alpha + 4, \beta + 10)$. Answer: () Solution: $\frac{x^2}{\alpha^2} - \frac{y^2}{\beta^2} = 1$ (\alpha + 4, \beta + 10) $\beta^2 = 24\alpha$ 2yy' = 24 $y' = \frac{12}{v} = \frac{12}{\beta}$ $\Rightarrow \frac{12}{\beta} = 1 \Rightarrow \beta = 12$ $12^2 = 24 \cdot \alpha$ $\Rightarrow \alpha = 6$ $\frac{x^2}{36} - \frac{y^2}{144} = 1$ $\frac{2x}{36} - \frac{2yy'}{144} = 0$ $\frac{x}{36} = \frac{yy'}{144}$ $\Rightarrow y' = \frac{144}{136} \cdot \frac{x}{y} = \frac{4x}{y} = \frac{4 \times 10}{22}$ $=\frac{20}{11}$ $y-22 = \frac{20}{11}(x-10)$ 11y - 242 = 20x - 200 $\Rightarrow 20x - 11y + 42 = 0$