JEE-Main-26-07-2022-Shift-2 (Memory Based)

Physics

Question: Two projectiles are thrown with same initial velocity at angle $30^{\circ} \& 45^{\circ}$ with horizontal. Find ratio of their ranges.

Options:

(a) $\frac{\sqrt{5}}{2}$
(b) $\frac{\sqrt{7}}{2}$
(c) $\frac{\sqrt{3}}{2}$
(d) $\frac{\sqrt{6}}{2}$

Answer: (c)
Solution:
$R=\frac{u^{2} \sin 2 \theta}{g}$
$\Rightarrow \frac{R_{1}}{R_{2}}=\frac{\sin 60^{\circ}}{\sin 90^{\circ}}=\frac{\sqrt{3}}{2}$

Question: Find radius of gyration of solid cylinder about an axis perpendicular to cylinder axis \& passing through centre is

Options:

(a) $\sqrt{\frac{L^{2}}{2^{2}}+\frac{R^{2}}{4}}$
(b) $\sqrt{\frac{L^{2}}{3^{2}}+\frac{R^{2}}{4}}$
(c) $\sqrt{\frac{L^{2}}{1^{2}}+\frac{R^{2}}{4}}$
(d) $\sqrt{\frac{L^{2}}{1^{2}}-\frac{R^{2}}{2}}$

Answer: (c)

Solution:

Moment of inertia of a solid cylinder about transverse axis.
$=\frac{1}{4} M R^{2}+\frac{1}{12} M L^{2}$
$\therefore K=\sqrt{\frac{I}{M}}=\sqrt{\frac{R^{2}}{4}+\frac{L^{2}}{12}}$
Question: Two bodies m_{1} and m_{2} are attracting each other with gravitational force.
Acceleration of m_{1} is a_{1} when $m_{1}=2 m_{2}$ and a_{2} when $m_{1}=3 m_{2}$. Find ratio of a_{1} and a_{2}.

Options:

(a) $\frac{6}{2}$
(b) $\frac{4}{2}$
(c) $\frac{5}{2}$
(d) $\frac{3}{2}$

Answer: (d)
Solution:
$a=\frac{F}{m_{1}}=\frac{G m_{2}}{r^{2}}$
So $a_{1}=\frac{G\left(m_{1} / 2\right)}{r^{2}}$ and $a_{2}=\frac{G\left(m_{1} / 3\right)}{r^{2}}$
$\frac{a_{1}}{a_{2}}=\frac{3}{2}$

Question: A mass 0.5 kg moving with $12 \mathrm{~m} / \mathrm{s}$ collides with a wall elastically. Find time of collision if $\mathrm{F}=100 \mathrm{~N}$ acts during collision.
Options:
(a) $\mathrm{t}=0.16 \mathrm{~s}$
(b) $t=0.12 \mathrm{~s}$
(c) $\mathrm{t}=0.10 \mathrm{~s}$
(d) $\mathrm{t}=0.15 \mathrm{~s}$

Answer: (b)

Solution:

Change in momentum $=2 \mathrm{mu}=2 \times 0.5 \times 12=12 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& F=\frac{d p}{d t} 100=\frac{12}{t} \\
& t=0.12 s
\end{aligned}
$$

Question: Find i

Options:

(a) 0.723 A
(b) 0.523 A
(c) 0.923 A
(d) 0.623 A

Answer: (c)

Solution:

wheat more bride

$i=\frac{6}{4.5+2}=0.923 \mathrm{~A}$

Question: Two springs connected with spring constant 3 k and k in series have time period T_{1}, and in parallel have time period T_{2}. Ratio of $\mathrm{T}_{1} / \mathrm{T}_{2}$ is?

Options:

(a) 7.31
(b) 2.31
(c) 5.30
(d) 4.31

Answer: (b)

Solution:

$\frac{1}{k_{s}}=\frac{1}{3 k}+\frac{1}{k}=\frac{4}{3 k} \Rightarrow k_{s}=\frac{3 k}{4}$
$k_{p}=3 k+k=4 k \Rightarrow k_{p}=4 k$
$\because T=2 \pi \sqrt{\frac{m}{k}}$ so $T \alpha \frac{1}{\sqrt{k}}$

So, $\frac{T_{1}}{T_{2}}=\sqrt{\frac{k_{p}}{k_{s}}}=\sqrt{\frac{4 k}{3 k / 4}}=\frac{4}{\sqrt{3}}$
$=2.31$

Question: A coil having resistance 8Ω has flux varying with time as $\phi=\frac{2}{3}\left(9-t^{2}\right)$. Find heat produced in coil until flux becomes zero.

Options:

(a) $\mathrm{H}=2 \mathrm{~J}$
(b) $\mathrm{H}=5 \mathrm{~J}$
(c) $\mathrm{H}=1 \mathrm{~J}$
(d) $\mathrm{H}=3 \mathrm{~J}$

Answer: (a)

Solution:

ϕ is zero at $\mathrm{t}=3 \mathrm{~s}$
$\varepsilon=-\frac{d \phi}{d t}=\frac{2}{3} \times 2 t=\frac{4}{3} t$
current $i=\frac{\varepsilon}{R}=\frac{4 t}{3 \times 8}=\frac{t}{6} \mathrm{~A}$
$\left.H=\int_{0}^{3} i^{2} R d t=\int_{0}^{3} \frac{t^{2}}{36} \times 8 d t=\frac{8}{36} \times \frac{t^{3}}{3}\right]_{0}^{3}$
$=\frac{8}{36} \times \frac{3^{3}}{3}=\frac{8}{36} \times 9$
$H=2 J$

Question: A ray is incident inside glass prism, grazes after refraction as shown. Find refractive index of liquid.

Options:

(a) $\frac{4 \sqrt{4}}{3}$
(b) $\frac{4 \sqrt{3}}{4}$
(c) $\frac{3 \sqrt{3}}{4}$
(d) $\frac{3 \sqrt{5}}{4}$

Answer: (c)
Solution:
Snell's law
$\mathrm{v}_{1} \mathrm{x} \sin 60^{\circ}=\mathrm{v}_{2} \sin 90^{\circ}$
$1.5 \times \frac{\sqrt{3}}{2}=v_{2} \times 1$
$v_{2}=\frac{3 \sqrt{3}}{4}$

Question: Two Nuclei have masses in ratio $4: 3$. Find ratio of there Nuclear Density?
Options:
(a) $4: 1$
(b) $1: 1$
(c) $6: 1$
(d) $2: 2$

Answer: (b)

Solution:

Nuclear density is independent of nuclear mass.

Question: In the given figure, find the magnitude of force on $5 \mu \mathrm{C}$ charge is:
q_{1} is $0.16 \mu \mathrm{C}$
q_{2} is $0.3 \mu \mathrm{C}$

Options:

(a) 14 N
(b) 12 N
(c) 17 N
(d) 10 N

Answer: (c)

Solution:

$\frac{9 \times 10^{9} \times 5 \times 0.3 \times 10^{-12}}{9 \times 10^{-4}}$

$\frac{9 \times 10^{9} \times 5 \times 0.16 \times 10^{-12}}{9 \times 10^{-4}}$
$F=\sqrt{8^{2}+15^{2}}=17 \mathrm{~N}$

Question: A body is projected from surface of earth with velocity $\frac{1}{3} r d$ of escape velocity.
Find maximum height achieved.

Options:

(a) $\frac{R}{2}$
(b) $\frac{R}{6}$
(c) $\frac{R}{8}$
(d) $\frac{R}{10}$

Answer: (c)
Solution:
Escape velocity $=\sqrt{\frac{2 G M}{R}}$
Velocity of projection $=\frac{1}{3} v_{e}=\frac{1}{3} \sqrt{\frac{2 G M}{R}}$
$E_{i}=K+U$
$=\frac{1}{2} m \frac{1}{9}\left(\frac{2 G M}{R}\right)-\frac{G m M}{R}$
$=\frac{G m M}{9 R}-\frac{G m M}{R}=\frac{-8}{9} \frac{G m M}{R}$
At maximum height (h)
$E_{f}=0-\frac{G m M}{(R+h)}$
$E_{i}=E_{f} \Rightarrow-\frac{8}{9} \frac{G m M}{R}=-\frac{G m M}{(R+h)}$
$\Rightarrow(R+h)=\frac{9 R}{8}$
$\Rightarrow 8 R+8 h=9 R$
$h=\frac{R}{8}$

Question: Maximum amplitude of AM modulated wave is 6 and minimum amplitude of AM modulated wave is 2 , modulation index in percentage is $\mathrm{x} \%$ find x .

Options:

(a) 10%
(b) 25%
(c) 35%
(d) 50%

Answer: (d)
Solution:
$m=\frac{A_{\text {max }}-A_{\text {min }}}{A_{\text {max }}+A_{\text {min }}}=\frac{6-2}{6+2}=\frac{1}{2}=50 \%$

Question: Two bodies with mass m and 8 m have same kinetic energy. The ratio of their momentum is?

Options:

(a) 0.5
(b) 0.8
(c) 0.25
(d) 0.35

Answer: (d)

Solution:

$P=\sqrt{2 m K E}$
$\frac{P_{1}}{P_{2}}=\sqrt{\frac{m_{1}}{m_{2}}}=\sqrt{\frac{m}{9 m}}=\frac{1}{2 \sqrt{2}}$
$\frac{P_{1}}{P_{2}}=0.35$ (Approx.)

Question: 0.5A nucleus of mass M splits into daughter nuclei $\frac{m^{\prime}}{3}$ and $\frac{2 m^{\prime}}{3}\left(m^{\prime}<M\right)$. Find the ratio of de-Broglie wavelength of two daughter nuclei.

Options:

(a) λ are same
(b) λ of smaller part is more
(c) λ of bigger part is more
(d) Data insufficient

Answer: (a)

Solution:

As initially m^{\prime} at rest,
$\frac{m^{\prime}}{3}, \frac{2 m^{\prime}}{3}$ will have some momentum.
$\lambda=\frac{h}{p}$
Hence, λ are same.

Question: Find γ in terms of degree of freedom f .

Options:

(a) $1+\frac{2}{f}$
(b) $\frac{2}{f}$
(c) $1-\frac{2}{f}$
(d) $1-f$

Answer: (a)

Solution:

$\gamma=1+\frac{2}{f}$

Question: $y=2 \sin (\omega t-k x)$ find λ such that wave velocity $=$ maximum velocity of particle

Options:

(a) 2π
(b) 4π
(c) 7π
(d) 10π

Answer: (b)

Solution:

Wave velocity $=\frac{\omega}{k}$
Particle velocity (maximum) $=\omega A$
$\frac{\omega}{k}=\omega A$
$\frac{1}{k}=A=2$
$k=\frac{1}{2}$
$\therefore \frac{2 \pi}{\lambda}=\frac{1}{2}$
$\lambda=4 \pi$

Question: Breaking stress of a wire is increased by 2.5 times and tensile force is increased from 10 to 25 metric tonnes. If initial minimum cross section is $2.5 \times 10^{-4} \mathrm{~m}^{2}$ the minimum area to sustain the new load is

Options:

(a) $2.5 \times 10^{-4} \mathrm{~m}^{2}$
(b) $1.5 \times 10^{-4} \mathrm{~m}^{2}$
(c) $2.5 \times 10^{4} \mathrm{~m}^{2}$
(d) $2.5 \times 10^{2} \mathrm{~m}^{2}$

Answer: (a)
Solution:
$\sigma=\frac{F}{A} \Rightarrow A=\left(\frac{F}{\sigma}\right)$
$\frac{A_{1}}{A_{2}}=\frac{2.5 \times 10^{-4}}{A_{2}}=\frac{\frac{10 \times 10^{3} g}{\sigma}}{\frac{25 \times 10^{3} g}{2.5 \sigma}}=\frac{10}{25} \times 2.5$
$\frac{A_{1}}{A_{2}}=1$ so $A_{2}=A_{1}=2.5 \times 10^{-4} \mathrm{~m}^{2}$

Question: A light ray has speed $1.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$ in medium 1 and $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$ in medium 2. Find critical angle for system

Options:

(a) $\sin ^{-1}\left(\frac{1}{2}\right)$
(b) $\sin ^{-1}\left(\frac{2}{3}\right)$
(c) $\sin ^{-1}\left(\frac{3}{4}\right)$
(d) $\cos ^{-1}\left(\frac{1}{2}\right)$

Answer: (c)

Solution:

$\mu=\frac{C}{V} ; \frac{\mu_{1}}{\mu_{2}}=\frac{v_{2}}{v_{1}}=\frac{2 \times 10^{8}}{1.5 \times 10^{8}}=\frac{4}{3}$
Also, $\sin i_{c}=\frac{\mu_{2}}{\mu_{1}}$
$\therefore i_{c}=\sin ^{-1}\left(\frac{3}{4}\right)$

Question: The magnitude of magnetic field associated with an EM wave is 5×10^{-6}. The electric field magnitude is going to be;

Options:

(a) $1 \frac{K N}{C}$
(b) $1.5 \frac{K N}{C}$
(c) $2.5 \frac{K N}{C}$
(d) $3.5 \frac{\mathrm{KN}}{\mathrm{C}}$

Answer: (b)

Solution:

$E=B C$
$E=5 \times 10^{-6} \times 3 \times 10^{8}$
$=15 \times 10^{2}$
$=1.5 \frac{\mathrm{KN}}{\mathrm{C}}$

Question: Projection of vector \vec{A} on vector \vec{B} is:
Options:
(a) $(\vec{A} \cdot \hat{B}) \hat{A}$
(b) $(\vec{A} \cdot \hat{B}) \hat{B}$
(c) \hat{A}
(d) $|A| \hat{A}$

Answer: (b)

Solution:

$\vec{A} \cdot \vec{B}=A B \cos \theta$
$A \cos \theta=\frac{\vec{A} \cdot \vec{B}}{B}$
$A \cos \theta=\vec{A} \cdot \hat{B}$

In vector from $(\vec{A} \cdot \hat{B}) \hat{B}$

JEE-Main-26-07-2022-Shift-2 (Memory Based)

Chemistry

Question: Which of the following undergoes Vulcanization?

Options:

(a) Neoprene and sulphur
(b) Isoprene and sulphur
(c) Neoprene and styrene
(d) Isoprene and styrene

Answer: (b)
Solution: Vulcanization process consists of heating a mixture of natural rubber (Isoprene)
with sulphur and an appropriate additive at a temperature range between 373 K to 415 K

Question: Correct order of covalent character of the following compound.
$\mathrm{CaF}_{2}, \mathrm{CaBr}_{2}, \mathrm{CaCl}_{2}, \mathrm{CaI}_{2}$
Options:
(a) $\mathrm{CaF}_{2}>\mathrm{CaBr}_{2}>\mathrm{CaCl}_{2}>\mathrm{CaI}_{2}$
(b) $\mathrm{CaI}_{2}>\mathrm{CaBr}_{2}>\mathrm{CaCl}_{2}>\mathrm{CaF}_{2}$
(c) $\mathrm{CaCl}_{2}>\mathrm{CaBr}_{2}>\mathrm{CaF}_{2}>\mathrm{CaI}_{2}$
(d) $\mathrm{CaBr}_{2}>\mathrm{CaF}_{2}>\mathrm{CaCl}_{2}>\mathrm{CaI}_{2}$

Answer: (b)
Solution: Cation is same in all the given compounds, while anions are different.
According to Fajan's rule, the larger the size of the anion, greater is the covalent character of the bond.
Therefore, correct order of covalent character is
$\mathrm{CaI}_{2}>\mathrm{CaBr}_{2}>\mathrm{CaCl}_{2}>\mathrm{CaF}_{2}$
Question: Which of the following is not extracted from its sulphide ore?
Options:
(a) Aluminium
(b) Zinc
(c) Copper
(d) None of these

Answer: (a)
Solution: Aluminium is extracted from its oxide ore (Bauxite) by electrolysis
Question: Which of the following is other name of animal starch?
Options:
(a) Amylose
(b) Amylopectin
(c) Glycogen
(d) Maltose

Answer: (c)

Solution: Glycogen is the other name of animal starch.

Question: 0.34 percent iron by mass in hemoglobin find number of particles of iron in 3.3 g of hemoglobin.

Options:

(a) 2×10^{-4}
(b) 4×10^{-3}
(c) 2×10^{-2}
(d) 2

Answer: (a)
Solution: 0.34% iron by mass in hemoglobin
Weight of hemoglobin $=3.3 \mathrm{~g}$
Mass of Fe in 3.3 g hemoglobin $=\frac{0.34}{100} \times 33=0.01122 \mathrm{~g}$
Number of particles of Fe atom $=\frac{0.01122}{56}=0.000200=2 \times 10^{-4}$

Question: $\mathrm{MnF}_{4}, \mathrm{MnF}_{3}, \mathrm{MnF}_{2}$ find magnetic moment of strongest oxidising agent.
Options:
(a) $2 \sqrt{6}$
(b) $\sqrt{15}$
(c) $2 \sqrt{2}$
(d) $\sqrt{35}$

Answer: (a)
Solution: Among $\mathrm{MnF}_{4}, \mathrm{MnF}_{3}, \mathrm{MnF}_{2}$
MnF_{3} is the strongest oxidizing agent
Mn^{3+} - Electronic configuration $3 \mathrm{~d}^{4}$
Mn^{3+}

$\mathrm{n}=4$
$\mu=\sqrt{\mathrm{n}(\mathrm{n}+2)}=\sqrt{4(4+2)}=\sqrt{24}=2 \sqrt{6}$

Question: Which of the following has least melting point nearest to a metalloid?

Options:

(a) Al
(b) Ga
(c) Se
(d) B

Answer: (b)
Solution: Ga has the least melting point and B has the highest Melting point among the given elements.

Question: Assertion: LiF insoluble in water
Reason: LiF has low hydration enthalpy

Options:

(a) Both assertion and reason are true, reason is correct explanation of assertion
(b) Both assertion and reason are true, but reason is not a correct explanation of the assertion.
(c) Assertion is true, but reason is false.
(d) Assertion is false, but reason is true

Answer: (c)
Solution: The low solubility of LiF in water is due to its high lattice enthalpy
The hydration enthalpies of alkali metal ions decrease with increase in ionic sizes.
$\mathrm{Le}^{+}>\mathrm{Na}^{+}>\mathrm{K}^{+}>\mathrm{Rb}^{+}>\mathrm{Cs}^{+}$

Question: Match the following.

Column-I	Column-II
(A) Micro organisms	(i) Strip mining
(B) Plants nutrients	(ii) Domestic sewage
(C) Toxic Heavy metals	(iii) Chemical fertilizers
(D) Sediment	(iv) Chemical industry

Options:

(a) $\mathrm{A} \rightarrow$ (i); $\mathrm{B} \rightarrow$ (iv); $\mathrm{C} \rightarrow$ (iii); $\mathrm{D} \rightarrow$ (ii)
(b) $\mathrm{A} \rightarrow$ (ii); $\mathrm{B} \rightarrow$ (iii); $\mathrm{C} \rightarrow$ (iv); $\mathrm{D} \rightarrow$ (i)
(c) $\mathrm{A} \rightarrow$ (iii); $\mathrm{B} \rightarrow$ (ii); $\mathrm{C} \rightarrow$ (i); $\mathrm{D} \rightarrow$ (iv)
(d) $\mathrm{A} \rightarrow$ (iv); $\mathrm{B} \rightarrow$ (i); $\mathrm{C} \rightarrow$ (iii); $\mathrm{D} \rightarrow$ (ii)

Answer: (b)

Solution:

(A) Micro organisms \Rightarrow Domestic sewage
(B) Plants nutrients \Rightarrow Chemical fertilizers
(C) Toxic Heavy metals \Rightarrow Chemical industry
(D) Sediment \Rightarrow Strip mining

Question: Which of the following are broad spectrum antibiotic?
Options:
(a) Penicillin
(b) Salvarsan
(c) Furacine
(d) Chloramphenicol

Answer: (d)
Solution: Chloramphenicol is broad spectrum antibiotic

Question: 100 ml of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}$ react with methanol to produce a gas of 2.24 ml . The mass of the gas produced is
Options:
(a) 0.003 g
(b) 30 g
(c) 0.03 g
(d) 3 g

Answer: (a)
Solution:

Gas formed is ethane
Number of moles of ethane formed $=\frac{2.24}{22400}=0.0001$ mole
Mass of ethane produced $=0.0001 \times 30=\frac{30}{10000}=0.003 \mathrm{~g}$

Question: Assertion: Boric acid is a weak acid.
Reason: It is not able to release H^{+}on its own. It receives OH^{-}ion from water molecule to complete its octet and in turn releases H^{+}ions

Options:

(a) Both assertion and reason are true, reason is correct explanation of assertion
(b) Both assertion and reason are true, but reason is not a correct explanation of the assertion.
(c) Assertion is true, but reason is false.
(d) Assertion is false, but reason is true

Answer: (a)
Solution: Boric acid is a weak acid because it does not completely ionize in water or other aqueous solution. It is not able to release H^{+}ions on its own because firstly it receives hydroxide ions $\left(\mathrm{OH}^{-}\right)$from water molecule in order to complete its octet and then it releases H^{+}ions.
Therefore, both the assertion and reason are true.

Question: Hydrolysis of X gives carbolic acid. Identify X Options:
(a) Nitrobenzene
(b) Benzene diazonium chloride
(c) Benzene
(d) Benzyl chloride

Answer: (b)
Solution:

Question: Assertion: Phenolphthalein is a pH based indicator it is colourless in acidic solution and shows colour in basic solution.
Reason: Phenolphthalein is a weak base which do not dissociate.
Options:
(a) Both assertion and reason are true, reason is correct explanation of assertion
(b) Both assertion and reason are true, but reason is not a correct explanation of the assertion
(c) Assertion is true, but reason is false
(d) Assertion is false, but reason is true

Answer: (c)
Solution: Phenolphthalein is colorless in acidic solution and shows pink color in basic solution. Phenolphthalein is a weak acid which dissociates in water.

Question: Which of the following is not a benzenoid structure?

I

II

III

Options:

(a) I
(b) II
(c) III
(d) II and III

Answer: (a)
Solution: The compound which contains atleast 1 benzene ring in it is called benzenoid structure.

Question:

Options:

(a)

(b)

(c)

(d)

Answer: (b)

Solution:

Question:

Options:

(a) $\mathrm{NaNO}_{2}+\mathrm{HCl}, \mathrm{KI}, \mathrm{Zn} / \mathrm{HCl}, \mathrm{NaNO}_{2}+\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$ (warm)
(b) $\mathrm{NaNO}_{2}+\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$ (warm), $\mathrm{Zn} / \mathrm{HCl}, \mathrm{NaNO}_{2}+\mathrm{HCl}, \mathrm{KI}$
(c) $\mathrm{NaNO}_{2}+\mathrm{HCl}, \mathrm{Zn} / \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$ (warm), $\mathrm{NaNO}_{2}+\mathrm{HCl}, \mathrm{KI}$
(d) $\mathrm{Zn} / \mathrm{HCl}, \mathrm{NaNO}_{2}+\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$ (warm), $\mathrm{NaNO}_{2}+\mathrm{HCl}, \mathrm{KI}$

Answer: (a)

Solution:

Question: $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{PCl}_{3} \rightarrow \mathrm{~A}$
$\mathrm{A}+\mathrm{PCl}_{3} \rightarrow \mathrm{~B}$
No of ionisable H^{+}in B is
Answer: 2.00
Solution:
$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{PCl}_{3} \rightarrow 3 \mathrm{CH}_{3} \mathrm{COCl}+\underset{(\mathrm{A})}{\mathrm{H}_{3} \mathrm{PO}_{3}}$
$\underset{(\mathrm{A})}{\mathrm{H}_{3} \mathrm{PO}_{3}}++\mathrm{PCl}_{3}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \underset{(\mathrm{B})}{\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}}+3 \mathrm{HCl}$
Number of ionisable hydrogens in $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$ is 2
Question: $\Delta \mathrm{T}_{\mathrm{b}}$ of 1 molal solution is $3 \mathrm{~K}, \Delta \mathrm{~T}_{\mathrm{f}}$ of 2 molal solution is 6 K . Find $\mathrm{K}_{\mathrm{b}} / \mathrm{k}_{\mathrm{f}}=$?
Answer: 1.00

Solution:

$\Delta \mathrm{T}_{\mathrm{b}}=3 \mathrm{~K}, \mathrm{~m}_{\mathrm{b}}=1 \mathrm{molal}$
$\Delta \mathrm{T}_{\mathrm{f}}=6 \mathrm{~K}, \mathrm{~m}_{\mathrm{f}}=2$ molal
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \mathrm{m}_{\mathrm{b}}$
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} \mathrm{m}_{\mathrm{f}}$
Dividing eq. (1) and (2)
$\frac{\mathrm{K}_{\mathrm{b}}}{\mathrm{K}_{\mathrm{f}}}=\frac{\Delta \mathrm{T}_{\mathrm{b}}}{\Delta \mathrm{T}_{\mathrm{f}}} \times \frac{\mathrm{m}_{\mathrm{f}}}{\mathrm{m}_{\mathrm{b}}}$
$=\frac{3}{6} \times \frac{2}{1}=1$

Question: $\mathrm{t}_{1 / 2}$ of reaction is 200 sec , find the time taken for 80 percent completion of reaction (Round off to nearest integer)

Answer: 464.00
Solution: $\mathrm{t}_{1 / 2}=200 \mathrm{sec}$
$\mathrm{t}_{1 / 2}=\frac{0.693}{\mathrm{k}}$
$\mathrm{k}=\frac{0.693}{200} \mathrm{~s}^{-1}$
$\mathrm{k}=\frac{2.303}{\mathrm{t}} \log \frac{[\mathrm{R}]_{\mathrm{o}}}{[\mathrm{R}]}$
$\frac{0.693}{200}=\frac{2.303}{\mathrm{t}} \log \frac{100}{100-80}$
$\frac{0.693}{200}=\frac{2.303}{t} \log \frac{100}{20}$
$\mathrm{t}=463.9 \approx 464.00 \mathrm{sec}$

Question: Number of compounds including stereoisomers formed on monochlorination of cyclohexane
Answer: 1.00
Solution: Only one compound including stereoisomers is formed by monochlorination of cyclohexane as all the carbon atoms are exactly same.

Question: How many of the following are diamagnetic species?
I. $\mathrm{K}_{3}\left[\mathrm{Fe}\left(\mathrm{F}_{6}\right)\right]$
II. $\mathrm{K}_{4}\left[\mathrm{Fe}\left(\mathrm{CN}_{6}\right)\right]$
III. $\mathrm{K}_{3}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$
IV. $\mathrm{K}_{2}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$

Answer: 2.00

Solution:

$\mathrm{K}_{4}\left[\mathrm{Fe}\left(\mathrm{CN}_{6}\right)\right]$ is diamagnetic
$\mathrm{K}_{3}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$ is diamagnetic
$\mathrm{K}_{2}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$ is paramagnetic as it has one unpaired electron
$\mathrm{K}_{3}\left[\mathrm{Fe}\left(\mathrm{F}_{6}\right)\right]$ is paramagnetic as it has 5 unpaired electrons.
Therefore, only 2 compounds $\mathrm{K}_{4}\left[\mathrm{Fe}\left(\mathrm{CN}_{6}\right)\right]$ and $\mathrm{K}_{3}\left[\mathrm{Cu}(\mathrm{CN})_{4}\right]$ are diamagnetic

JEE-Main-26-07-2022-Shift-2 (Memory Based)

MATHEMATICS

Question: The interval in which abscissa of point P on $y=x^{2}$ lies such that its distance from $(x-1)^{2}+(y+1)^{2}=1$ is minimum is:

Options:

(a) $0<x<\frac{1}{4}$
(b) $\frac{1}{4}<x<\frac{1}{2}$
(c) $\frac{1}{2}<x<\frac{3}{4}$
(d) $\frac{3}{4}<x<1$

Answer: (b)

Solution:

Let $P\left(x, x^{2}\right)$
Distance of P from given circle:
$l=\sqrt{(x-1)^{2}+\left(x^{2}+1\right)^{2}}-1$
For least value of l, we need to minimize:
$f(x)=(x-1)^{2}+\left(x^{2}+1\right)^{2}$
$f^{\prime}(x)=2(x-1)+4 x\left(x^{2}+1\right)$
$=2\left[2 x^{3}+3 x-1\right]=0$
$\because f^{\prime}\left(\frac{1}{4}\right)$ is -ve and $f^{\prime}\left(\frac{1}{2}\right)$ is + ve
So, $f^{\prime}(x)=0$ for some $x \in\left(\frac{1}{4}, \frac{1}{2}\right)$

Question: If $z=x+i y,|z|-2=0$ and $|z-i|-|z+5 i|=0$, then which of the following is TRUE:

Options:

(a) $x^{2}+2 y+4=0$
(b) $x^{2}-2 y+4=0$
(c) $x+y=0$
(d) $x^{2}-y+4=0$

Answer: (a)

Solution:

As $z=x+i y$
$x^{2}+y^{2}=4$
And $y=-2$
So, $x=0$
Hence, only $x^{2}+2 y+4=0$ is true.

Question: $x \sim B(n, p)$, mean $=4$, variance $=\frac{4}{3}$, find $P(x \leq 2)$.
Answer: $\frac{73}{729}$

Solution:

Given, $n p=4$
$n p q=\frac{4}{3}$
$\therefore q=\frac{1}{3}$
$q=\frac{2}{3}$
Thus, $n=6$
Now, $P(x \leq 2)=P(x=0)+p(x=1)+P(x=2)$
$={ }^{6} C_{0} p^{0} q^{6}+{ }^{6} C_{1} p^{1} q^{5}+{ }^{6} C_{2} p^{2} q^{4}$
$=\left(\frac{1}{3}\right)^{6}+6\left(\frac{2}{3}\right)\left(\frac{1}{3}\right)^{5}+15\left(\frac{2}{3}\right)^{2}\left(\frac{1}{3}\right)^{4}$

Question: Find area between $y=\left|x^{2}-1\right| \& y=1$.
Answer: $\frac{4}{3}(\sqrt{2}-1)$

Solution:

$\int_{0}^{1}-\sqrt{1-y}+\sqrt{1+y}$
$\frac{2}{3}(1-y)^{\frac{3}{2}}+\left.\frac{2}{3}(1+y)^{\frac{3}{2}}\right|_{0} ^{1}$
$\frac{2}{3} \times 2^{\frac{3}{2}}-\left(\frac{4}{3}\right)$
$\frac{4 \sqrt{2}}{3}-\frac{4}{3}=\frac{4}{3}(\sqrt{2}-1)$

Question: How 4 digit numbers lying between $1000 \& 3000$ can be made which are divisible by 4 , using digits $1,2,3,4,5$, 6 with no repetition.

Answer: $\mathbf{3 0 . 0 0}$

Solution:

We will solve the Question in two cases.
Case I: When first digit is 1 .
Then last two digits can be $24,32,36,52,56$ and 64 .
Number of such numbers $=6 \times 3=18$
Case II: When first digit is 2
Then last two digits can be $16,36,56$ or 64
Number of such numbers $=4 \times 3=12$
Total numbers of numbers $=18+12=30$

Question: $\int_{0}^{20 \pi}(|\sin x|+|\cos x|)^{2} d x$
Answer: $20 \pi+40$

Solution:

$$
\begin{aligned}
& \int_{0}^{20 \pi}(|\sin x|+|\cos x|)^{2} d x \\
& \Rightarrow \int_{0}^{20 \pi}\left(\left(\sin ^{2} x+\cos ^{2} x\right)+|\sin 2 x|\right) d x \\
& \Rightarrow \int_{0}^{20 \pi} 1 d x+\int_{0}^{20 \pi}|\sin 2 x| d x \\
& \Rightarrow 20 \pi+40 \int_{0}^{\frac{\pi}{2}} \sin 2 x d x \\
& \Rightarrow 20 \pi+40\left[\frac{-\cos 2 x}{2}\right]_{0}^{\frac{\pi}{2}} \\
& \Rightarrow 20 \pi+20(1+1) \\
& \Rightarrow 20 \pi+40
\end{aligned}
$$

Question: Find equation of common tangent to $y=x^{2} \& y=-(x-2)^{2}$.
Answer: ()

Solution:

Given, $y=x^{2} \& y=-(x-2)^{2}$
Tangent for $y=x^{2}$
$y=m x-\frac{1}{4} m^{2}$
Tangent for $y=-(x-2)^{2}$
$y=m(x-2)+\frac{1}{4} m^{2}$
$y=m x-2 m+\frac{1}{4} m^{2}$
$-\frac{1}{4} m^{2}=-2 m+\frac{1}{4} m^{2}$ (For common tangents)
$2 m=\frac{1}{2} m^{2}$
$m^{2}-4 m=0$
$m=0, m=4$
Thus, equation of tangents are $y=0$ or $y=4 x-4$

Question: If $\sin ^{-1}\left(\frac{x}{\alpha}\right)=\cos ^{-1}\left(\frac{x}{\beta}\right)$ then find value of $\sin \left(\frac{2 \pi}{\alpha+\beta}\right)$.
Answer: ()

Solution:

Given, $\sin ^{-1}\left(\frac{x}{\alpha}\right)=\cos ^{-1}\left(\frac{x}{\beta}\right)=k$
$\Rightarrow \alpha=\frac{\sin ^{-1} x}{k}, \beta=\frac{\cos ^{-1} x}{k}$
$\therefore \sin \left(\frac{2 \pi \alpha}{\alpha+\beta}\right)=\sin \left(\frac{2 \pi \frac{\sin ^{-1} x}{k}}{\frac{\sin ^{-1} x+\cos ^{-1} x}{k}}\right)$
$\Rightarrow \sin \left(\frac{2 \pi\left(\sin ^{-1} x\right)}{\frac{\pi}{2}}\right)$
$\Rightarrow \sin \left(4 \sin ^{-1} x\right)$
$\Rightarrow \sin \left(2\left(\sin ^{-1}\left(2 x \sqrt{1-x^{2}}\right)\right)\right)$
$\Rightarrow 2\left(2 x \sqrt{1-x^{2}}\right) \sqrt{1-\left(2 x \sqrt{1-x^{2}}\right)^{2}}$
$\Rightarrow 4 x \sqrt{1-x^{2}} \sqrt{1-4 x^{2}\left(1-x^{2}\right)}$
$\Rightarrow 4 x \sqrt{1-x^{2}}\left(2 x^{2}-1\right)$

Question: $\ln 2 \times\left.\frac{d}{d x}\left(\frac{\log \operatorname{cosec} x}{\log \cos x}\right)\right|_{\frac{\pi}{4}}$

Answer: 4.00

Solution:

$\ln 2 \times \frac{d}{d x}\left(\frac{\log \operatorname{cosec} x}{\log \cos x}\right)$
$\ln 2 \times \frac{d}{d x}\left(-\frac{\log \sin x}{\log \cos x}\right)$
$\ln 2\left(\frac{(\log \cos x)\left(-\frac{\cos x}{\sin x}\right)+\log \sin x\left(-\frac{\sin x}{\cos x}\right)}{(\log \cos x)^{2}}\right)$ at $x=\frac{\pi}{4}$
$\ln 2\left(\frac{-2 \log \frac{1}{\sqrt{2}}}{\left(\log \frac{1}{\sqrt{2}}\right)^{2}}\right)$
$\frac{-2 \ln 2}{\log 2^{-\frac{1}{2}}}=\frac{-2}{-\frac{1}{2}}=4$
Question: If $\beta=\lim _{x \rightarrow 0} \frac{\alpha x-\left(e^{3 x}-1\right)}{\alpha x\left(e^{3 x}-1\right)}$ then $\alpha+\beta=$?
Answer: $\frac{5}{2}$

Solution:

Given, $\beta=\lim _{x \rightarrow 0} \frac{\alpha x-\left(e^{3 x}-1\right)}{\alpha x\left(e^{3 x}-1\right)}$
$\beta=\lim _{x \rightarrow 0} \frac{\alpha x-\left(1+3 x+\frac{9 x^{2}}{2}-1\right)}{\alpha x\left(1+3 x+\frac{9 x^{2}}{2}-1\right)}$
$\beta=\lim _{x \rightarrow 0} \frac{x(\alpha-3)-\frac{9}{2} x^{2}}{\alpha x(3 x)}$
$\beta=\frac{1}{3 \alpha} \lim _{x \rightarrow 0} \frac{x(\alpha-3)-\frac{9}{2} x^{2}}{x^{2}}$
$\therefore \alpha=3, \beta=\frac{1}{3 \times 3} \times\left(-\frac{9}{2}\right)=\frac{-1}{2}$
$\therefore \alpha+\beta=3-\frac{1}{2}=\frac{5}{2}$

Question: Find minimum value of sum of squares of roots of $x^{2}+(3-a) x=2 a-1$
Answer: 6.00

Solution:

Let α, β be the roots of the equation
$x^{2}+(3-a) x+1-2 a=0$
Then, $\alpha+\beta=a-3, \alpha \beta=1-2 a$
$\therefore \alpha^{2}+\beta^{2}=(a-3)^{2}-2(1-2 a)$
$=a^{2}-2 a+7$
$=(a-1)^{2}+6$
\therefore Minimum value of $\alpha^{2}+\beta^{2}=6$

Question: If $\sum_{k=1}^{10} \frac{k}{\left(k^{4}+k^{2}+1\right)}=\frac{m}{n}$, such that m and n are coprime, then $m+n$ is equal to \qquad
Answer: $\frac{55}{111}$

Solution:

$\sum_{k=1}^{10} \frac{k}{\left(k^{4}+k^{2}+1\right)}=\sum_{k=1}^{10} \frac{k}{\left(k^{2}+k+1\right)\left(k^{2}-k+1\right)}$
$=\sum_{k=1}^{10} \frac{1}{2}\left(\frac{1}{k^{2}-k+1}-\frac{1}{k^{2}+k+1}\right)$
$=\frac{1}{2}\left[\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{7}\right)+\ldots+\left(\frac{1}{91}-\frac{1}{111}\right)\right]$
$=\frac{1}{2}\left(1-\frac{1}{111}\right)$
$\sum_{k=1}^{10} \frac{k}{k^{4}+k^{2}+1}=\frac{55}{111}$
$\therefore m=55, n=111$
$\therefore m+n=166$

Question: If $A=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], B=\left[\begin{array}{ccc}9^{2} & 10^{2} & 11^{2} \\ 12^{2} & -13^{2} & 14^{2} \\ 15^{2} & 16^{2} & -17^{2}\end{array}\right]$, then $A^{\prime} B A$ is equal to:

Answer: 665.00

Solution:

$A=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], B=\left[\begin{array}{ccc}9^{2} & 10^{2} & 11^{2} \\ 12^{2} & -13^{2} & 14^{2} \\ 15^{2} & 16^{2} & -17^{2}\end{array}\right]$
$A^{\prime}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$
$A^{\prime} B=\left[\begin{array}{lll}9^{2}+12^{2}+15^{2} & 10^{2}-13^{2}+16^{2} & 11^{2}+14^{2}-17^{2}\end{array}\right]$
$A^{\prime} B A=\left[\begin{array}{lll}9^{2}+12^{2}+15^{2} & 10^{2}-13^{2}+16^{2} & 11^{2}+14^{2}-17^{2}\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
$A^{\prime} B A=\left[9^{2}+12^{2}+15^{2}+10^{2}-13^{2}+16^{2}+11^{2}+14^{2}-17^{2}\right]$
$=[665]$

Question: If $a x^{2}+b y^{2}+2 g x+2 f y+c=0$ is a circle whose diametric end points are given by $x^{2}-4 x-9=0 \& y^{2}+2 x-4=0$ then find $a+b-c$.

Answer: 15.00

Solution:

Diametric points be $\left(x_{1}, y_{1}\right) \&\left(x_{2}, y_{2}\right)$ and equation of circle will be
$\left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y-y_{1}\right)\left(y-y_{2}\right)=0$
$\Rightarrow x^{2}-x\left(x_{1}+x_{2}\right)+x_{1} x_{2}+y^{2}-y\left(y_{1}+y_{2}\right)+y_{1} y_{2}=0$
$\Rightarrow x^{2}-x(4)+(-9)+y^{2}-y(-2)-4=0$
$\Rightarrow x^{2}+y^{2}-4 x+2 y-13=0$
Composing with $a x^{2}+b y^{2}+2 g x+2 f y+c=0$
$a=1, b=1, c=-13$
$a+b-c=1+1+13=15$

Question: Let $A=\{1,2,3,4,5,6\}, B=\{3,4,6,7,9\}$ and $C=A \cup B$, then number of elements in cartesian product of $C \times B$ is \qquad .
Answer: $\mathbf{4 0 . 0 0}$

Solution:

$A=\{1,2,3,4,5,6\}, B=\{3,4,6,7,9\}$
$\therefore C=A \cup B=\{1,2,3,4,5,6,7,9\}$
$\therefore n(C \times B)=8 \times 5=40$

Question: $2 \sin ^{2} \theta-\cos 2 \theta=0,2 \cos ^{2} \theta+3 \sin \theta=0$. If sum of all solutions of θ in $[0,2 \pi]$ is $k \pi$, then find k.
Answer: $\mathbf{3 . 0 0}$

Solution:

Given, $2 \sin ^{2} \theta-\cos 2 \theta=0$
$2 \sin ^{2} \theta-1+2 \sin ^{2} \theta=0$
$4 \sin ^{2} \theta=1$
$\sin ^{2} \theta=\frac{1}{4}$
$\sin \theta= \pm \frac{1}{2}$
$\theta=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$
$2 \cos ^{2} \theta+3 \sin \theta=0$
$2-2 \sin ^{2} \theta+3 \sin \theta=0$
$2 \sin ^{2} \theta-3 \sin \theta-2=0$
$2 \sin ^{2} \theta-4 \sin \theta+\sin \theta-2=0$
$(\sin \theta-2)(2 \sin \theta+1)=0$
$\sin \theta=-\frac{1}{2}$
$\theta=\frac{7 \pi}{6}, \frac{11 \pi}{6}$
\therefore Sum of all value of common θ
$\frac{7 \pi}{6}+\frac{11 \pi}{6}=\frac{18 \pi}{6}=3 \pi$
$\therefore k=3$

