

JEE-Main-27-07-2022-Shift-1 (Memory Based)

Physics

Question: Find R such that potential diff across 1st cell (on the left of the diagram) is zero.

 \sim R **Options:** (a) $R = R_1 + R_2$ (b) $R = R_1 - R_2$ (c) $R = R_2 - R_1$ (d) $R = R_2 + R_1$ Answer: (b) Solution: Current in the circuit $i = \frac{2\varepsilon}{R + R_1 + R_2}$ P.D. across cell 1, $\varepsilon - iR_1 = 0$ $\varepsilon - \frac{2\varepsilon R_1}{R + R_1 + R_2} = 0$ $\varepsilon R + \varepsilon R_1 + \varepsilon R_2 = 2\varepsilon R_1$ $R = R_1 - R_2$

Question: Two satellites of mass ratio 4:3 and radii ratio 3:4. Find the ratio of total mechanical energy.

Options:

(a) 1 (b) 3 (c) 5 (d) 2 Answer: (a) Solution: U + K = E $E = -\frac{GM_em}{2r}$ $E\alpha \frac{m}{r} \Rightarrow \frac{E_1}{E_2} = \frac{m_1}{r_1} \frac{r_2}{m_2}$

$$=\frac{4}{3}\times\frac{3}{4}=1$$

Question: Two charges Q each are placed at a distance of 2a. At midpoint, q is placed and is displaced slightly. Find time period. **Options:**

(a)
$$T = 4x \sqrt{\frac{a^3 m}{4KQq}}$$

(b) $T = 3x \sqrt{\frac{a^3 m}{3KQq}}$
(c) $T = 2x \sqrt{\frac{a^3 m}{4KQq}}$
(d) $T = 2x \sqrt{\frac{a^3 m}{2KQq}}$

Answer: (c) Solution:

Question: A DC current of 4 A and AC current of peak value 4A passes through 3Ω and 2Ω resistors respectively. Find the ratio of heat generated.

Options: (a) 3 : 1 (b) 3 : 2 (c) 3 : 4 (d) 1 : 1 **Answer:** (a) **Solution:** For DC current $H_{DC} = i^2 R_1 t$ & for AC

$$H_{AC} = i_{rms}^{2} R_{2} t$$

$$\frac{H_{DC}}{H_{AC}} = \frac{i^{2}}{i_{rms}^{2}} \frac{R_{1}}{R_{2}}$$

$$= \frac{(4)^{2}}{\left(\frac{4}{\sqrt{2}}\right)^{2}} \frac{3}{2} = 3:1$$

Question: Sand is falling on conveyer belt at rate of 0.5 kg is if conveyer is moving with 4 m/s. How much power is required maintain constant speed?

Options: (a) 5 w (b) 7 w (c) 4 w (d) 8 w **Answer:** (d) **Solution:**

Force =
$$\frac{d}{dt}(p)$$

= $\frac{d}{dt}(mv)$
= $v\frac{d}{dt}(m)$
= $v(0.5)$
F = $4 \times 0.5 = 2$
Power = Force x vel.
= $2 \ge 4$
= $8W$

Question: If activity of radioactive sample becomes 1/16th of its initial value in 30 hrs. Find the half-life period.

Options:

(a) 5.5 hrs (b) 3.5 hrs (c) 7.5 hrs (d) 4.5 hrs **Answer:** (c) **Solution:** Activity $N = N.e^{-\lambda t}$ $\frac{N}{N_0} = \frac{1}{16}$ after 30 hrs $\frac{1}{16} = e^{-30\lambda}$

$$e^{30\lambda} = 16 \Longrightarrow \lambda = \frac{\ln 16}{30}$$

Also, $t \frac{1}{2} = \frac{\ln 2}{\lambda}$
 $= \left(\frac{\ln 2}{\ln 16}\right) \times 30 = 7.5 hrs.$

Question: Two cylinders are joined as shown.

Water flows from B to A until water level becomes same. Find work done by gravity. **Options:**

(a) $w = 625A\rho g \times 10^{-4} J$ (b) $w = 225A\rho g \times 10^{-4} J$ (c) $w = 425A\rho g \times 10^{-4} J$ (d) $w = 125A\rho g \times 10^{-4} J$ Answer: (a) Solution: $W = 625 \times 10^{-4} A\rho g$ Work done by gravity = U_I - U_f $U_I = (A(50)\rho)(25) + A(100)\rho g(50) = A\rho g[6250]$ Common Height of cylinders $\Rightarrow h = 75 cm$

$$U_{f} = (A(75)\rho g) (\frac{75}{2}) \times 2 = A\rho g [5625]$$

w = 625 A \rhog \times 10^{-4} L

Question: A ball thrown vertically upwards. At same time another ball thrown at angle θ . If both remain in air for same time. Then ratio of maximum height.

Options: (a) 2 : 3 (b) 1 : 2 (c) 1 : 1 (d) 2 : 1 Answer: (c) Solution:

$$T = \frac{2v}{g} \qquad T = \frac{2u\sin\theta}{g} \quad \frac{\left(H_{ux}\right)_1 = \frac{v^2}{2g}}{\left(H_{mx}\right)_2 = \frac{u^2\sin2\theta}{2g}}$$
$$\frac{2v}{g} = \frac{2u\sin\theta}{g} \quad \frac{H_1}{H_2} = \frac{v^2}{u^2\sin2\theta}$$
$$v = u\sin\theta = \frac{1}{1}$$

Question: A bullet is fired with velocity 100 m/s in vertically downward direction & on striking the ground it comes to rest. Draw v - t graph?

Question: The apparent angle of dip in a plane at an angle of 45° with magnetic meridian is 60° find true angle of dip

60° find true angle of dip Options: (a) $\tan^{-1}\sqrt{\frac{2}{1}}$ (b) $\tan^{-1}\sqrt{\frac{5}{2}}$ (c) $\tan^{-1}\sqrt{\frac{4}{2}}$ (d) $\tan^{-1}\sqrt{\frac{3}{2}}$ Answer: (d) Solution: Inclination of plane $(\alpha) = 45^{\circ}$ Apparent dip $(\delta) = 60^{\circ}$ Let true dip $= \phi$ then we know $\tan \delta = \frac{\tan \phi}{\cos \phi} \Rightarrow \tan \phi = \tan 60^{\circ} \times \cos 45^{\circ}$ $= \sqrt{\frac{3}{2}}$

Question: Intensity given I and 4I phase difference at A and B are 90 and 60. Then find the difference of resultant intensity at A and B

Options: (a) 2I (b) 5I (c) 7I (d) 9I **Answer:** (a) **Solution:** Intensity at A $I_A = I_1 + I_2 + 2\sqrt{I_1I_2} \cos \phi$ $\phi = 90^\circ$ $I_A = I_1 + I_2$

 $I_{A} = I + 4I = 5I \dots(1)$ Intensity at B $I_{B} = I_{1} + I_{2} + 2\sqrt{I_{1}I_{2}} \cos \phi$ $\phi = 60^{\circ}$ $I_{B} = I + 4I + 2\sqrt{I \times 4I} \times \frac{1}{2}$ $I_{B} = 7I$ Difference in Intensity $\Delta I = I_{B} - I_{A}$ = 7I - 5I = 2I

Question: A tower of height 100m is used to transmit the signal. What is the increase in height of tower required to triple the range of transmitting signals.

Options:

(a) 200 m (b) 300 m (c) 500 m (d) 800 m Answer: (d) Solution: Range = $\sqrt{2Rh_T}$ For large to be 3 times $3 \times \text{times} = \sqrt{2Rh_{T'}}$

$$3 \times \sqrt{2 \times R \times 100} = \sqrt{2Rh_T}$$

$$\sqrt{h_{T'}} = 30$$

 $h_{T'} = 900m$

So increase in length of the tower = 900 - 100 = 800m

Question: Two bar magnets oscillate in earth magnetic field with time period 3 : 4 and its moment of inertia is 3 : 2 then magnetic moment ratio.

Options:

(a) $\frac{8}{3}$ (b) $\frac{3}{8}$ (c) $\frac{5}{3}$ (d) $\frac{3}{5}$

Answer: (a) Solution: We know, Time period is given at

$$T = 2H\sqrt{\frac{I}{\mu B}}$$

Hence,
$$\frac{T_1}{T_2} = \sqrt{\left(\frac{I_1}{I_2}\right) \left(\frac{\mu_2}{\mu_1}\right)}$$
$$\frac{3}{4} = \sqrt{\frac{3}{2} \times \left(\frac{\mu_2}{\mu_1}\right)}$$
$$\frac{9}{16} = \frac{3}{2} \left(\frac{\mu_2}{\mu_1}\right)$$
$$\frac{\mu_2}{\mu_1} = \frac{3}{8}$$
$$\frac{\mu_1}{\mu_2} = \frac{8}{3}$$

Question: If a compound microscope is taken from air to liquid with RI = 2, % change in resolving power is

Options: (a) 50% (b) 100% (c) 150% (d) 250% Answer: (b) Solution: $R.P = \frac{1.22d}{\lambda}$ $(R.P)_1 = \frac{1.22d}{\lambda}$ $(R.P)_2 = \frac{2 \times 1.22d}{\lambda}$ % crave $= \frac{(R.P)_2 - (R.P)_1}{(R.P)_T} \times 100 = \frac{2-1}{1} \times 100 = 100\%$

Question: A block is placed on conveyor belt gently, which is moving with constant velocity 2 m/s. Coefficient of friction between belt and block is 0.4. Calculate the distance travelled by block till it comes at rest w.r.t. belt.

Options: (a) 0.1 m (b) 0.3 m (c) 0.5 m (d) 0.7 m **Answer:** (c) **Solution:** Deceleration due to friction = μg = 0.4(10) = 4m / s² Final speed w.r.t. belt = 0 Initial speed w.r.t. belt = -2 m/s $v^2 - u^2 = 2as \Longrightarrow 0 - 4 = 2(-4)s$

$$s = 0.5m$$

$$m \longrightarrow \mu = 2 \text{ m/s}$$

$$\mu = 0.4$$

For block to be in rest w.r.t belt, both should give together so $a = \mu g$ (maximum possible acceleration for them to move together) Hence, $v^2 = u^2 + 2as$ $0 = u^2 - 2as$ $s = \frac{u^2}{2a}$ $s = \frac{4}{2 \times 0.4 \times 10}$ $s = \frac{1}{2} = 0.5m$

Question: In a meter bridge, balancing is achieved when jockey is at mark of 30 cm, where a known resistance of $5.6k\Omega$ is used in the right gap. Value of unknown resistance in $k\Omega$ is, **Options:**

(a) 1.2 (b) 3.2 (c) 2.4 (d) 5.4 Answer: (c) Solution: $\frac{R_1}{l_1} = \frac{R_2}{(100 - l_1)}$ $\frac{R_1}{30} = \frac{5.6}{(100 - 30)}$ $R_1 = \frac{5.6 \times 30}{79 \times 10}$

 $R_1 = 2.4\Omega$

Question: If mass, length and time each has 5% error then what is the error in reading of torque?

Options:

(a) 10% (b) 5% (c) 20% (d) 25% Answer: (d) Solution: Torque $= ML^2T^{-2}$ \therefore Percentage error in torque = % error in mass 2 (% error in length)

2(% error in time) = 5 + 2(5) + 2(5) = 25%

Question: Two containers contains identical at same temperature and volume. Number of moles of gas in each container are 1 and 3 respectively. Ratios of v_{rms} and pressure of gas in two containers respectively are

Options:

(a) 1 : 1, 3 : 1 (b) 3 : 1, 1 : 1 (c) 1 : 3, 1 : 1 (d) 1 : 1, 1 : 3 Answer: (d) Solution:

$$v_{rms} = \sqrt{\frac{3k_BT}{m}}$$

As T and m are same $\frac{v_{rms}, 1}{v_{rms}, 2} = 1$

$$P = \frac{1}{3}\rho v_{rms}^{2} = \frac{1}{3}\frac{nM}{v}v_{rms}^{2}$$
$$\therefore \frac{P_{1}}{P_{2}} = \frac{n_{1}}{n_{2}} = \frac{1}{3}$$

Question: A charge is moving with the velocity $3 \times 10^7 m/s$ along y axis in an Em wave moving along x axis. Find the ratio of electric force and magnetic force exerted by the EM wave

Options:

(a) 10:1
(b) 1:10
(c) 1:5
(d) 1:6

Answer: (a)

Solution:

Magnetic force on a charge particle $F_B = qvB$ Electric force on a charge particle $F_E = qE = qcB$

So,
$$\frac{F_E}{F_B} = \frac{c}{v} \Longrightarrow \boxed{\frac{F_E}{F_B} = \frac{10}{1}}$$

Question: A cylinder having volume charge density ρ is uniformity charged. Find electric

field at inside point $r = \frac{2 \in_0}{\rho}$

Options:

(a) $0NC^{1}$ (b) $1NC^{-1}$ (c) $3NC^{-1}$ (d) $2NC^{-1}$ Answer: (b) Solution: Electric field at any point inside the cylinder

$$E = \frac{\rho r}{2\epsilon_0}$$

Given: $r = \frac{2\epsilon_0}{\rho}$

So, $E = \frac{\rho}{2\epsilon_0} \times \frac{2\epsilon_0}{\rho} = \frac{1N/C}{\rho}$

JEE-Main-27-07-2022-Shift-1 (Memory Based)

Chemistry

Question: Match the following.

(Column I) Ions	(Column II) Disease
(A) Fluoride	(i) Damage kidney
(B) Lead	(ii) Brown mottling of teeth
(C) Sulphate	(iii) Blue Baby syndrome
(D) Nitrate	(iv) Laxative effect

Options:

(a) $A \rightarrow (i)$; $B \rightarrow (iii)$; $C \rightarrow (ii)$; $D \rightarrow (iv)$ (b) $A \rightarrow (iv)$; $B \rightarrow (iii)$; $C \rightarrow (i)$; $D \rightarrow (ii)$ (c) $A \rightarrow (iii)$; $B \rightarrow (ii)$; $C \rightarrow (iv)$; $D \rightarrow (i)$

(d) $A \rightarrow (ii); B \rightarrow (i); C \rightarrow (iv); D \rightarrow (iii)$

Answer: (d)

Solution:

Fluoride \Rightarrow Brown mottling of teeth Lead \Rightarrow Damage kidney Sulphate \Rightarrow Laxative effect Nitrate \Rightarrow Blue Baby syndrome

Question: Match the following.

Options:

(a) $A \rightarrow (i); B \rightarrow (iii); C \rightarrow (ii); D \rightarrow (iv)$ (b) $A \rightarrow (iv); B \rightarrow (iii); C \rightarrow (i); D \rightarrow (ii)$ (c) $A \rightarrow (iii); B \rightarrow (ii); C \rightarrow (iv); D \rightarrow (i)$ (d) $A \rightarrow (ii); B \rightarrow (i); C \rightarrow (iv); D \rightarrow (iii)$

Answer: (c) Solution:

(B) Analgesic \Rightarrow

(C) 500 times greater than sugar \Rightarrow

(D) Narcotics \Rightarrow

Question: Statement -1: H₂O₂ can act as oxidizing agent in both acidic and basic medium **Statement-2:** Density of H₂O at 298 K is less than D₂O

Options:

(a) Both statement 1 and 2 are correct

(b) Statement 1 is correct but statement 2 is incorrect

(c) Statement 1 is incorrect but statement 2 is correct

(d) Both statement 1 and 2 are incorrect.

Answer: (a)

Solution: H₂O₂ can act as oxidizing agent in both acidic and basic medium.

Density of H₂O at 298 K is less than that of D₂O

Therefore, both the statements are true.

Question: Sugar X is reacted with furfural and further reacted with Resorcinol to give a colored compound. Sugar X is

Options:

(a) Aldopentose

(b) Aldotetrose

(c) Carboxylic acid

(d) Ketotetrose

Answer: (d)

Solution: Seliwanoff's reagent is a mixture of resorcinol and concentrated hydrochloric acid. Ketose sugars react with the Seliwanoff's reagent to give immediately a deep cherry red color.

Question: In D-glucose find molality of Glucose if mass % is 10.8% and weight of solution is 250g.

Options: (a) 0.6 m (b) 0.06 m (c) 6 m (d) 2.5 m Answer: (a) Solution: Weight of solution = 250 g Mass % = 10.8% $\frac{Mass \text{ of glucose}}{Mass \text{ of solution}} \times 100 = 10.8$

Mass of glucose = $\frac{10.8}{100} \times 250 = 27 \text{ g}$ Molality = $\frac{\text{Mass of glucose}}{\text{Molar mass of glucose}} \times \frac{1000}{\text{wt.of solution}}$ = $\frac{27}{180} \times \frac{1000}{250} = 0.6 \text{ m}$

Question: Boiling point of non volatile solution A and B are same. Mass percent of sol A is 2% and mass percent of sol B is 3%. What is the ratio of their Mol. mass?

Options:

(a) $M_A = 4M_B$ (b) $M_B = 4M_A$ (c) $3M_A = 2M_B$ (d) $3M_B = 2M_A$ Answer: (c) Solution: $(\Delta T_b)_A = (\Delta T_b)_B$ $K_b m_A = K_b m_B$ $\frac{2}{M_A \times 98} = \frac{3}{M_B \times 97}$ $2M_B = 3M_A$

Question: Statement-1: Cl⁻ of Al(Al₂Cl₆) and Be(BeCl₂) form bridged structure and acts as Lewis base

Statement-2: Hydrolysis of aluminium and beryllium reacts with excess of alkalis to give beryllate and aluminate ion

Options:

(a) Both statement 1 and 2 are correct

(b) Statement 1 is correct but statement 2 is incorrect

(c) Statement 1 is incorrect but statement 2 is correct

(d) Both statement 1 and 2 are incorrect

Answer: (c)

Solution: Beryllium hydroxide dissolves in excess of alkali to give a beryllate ion,

[Be(OH)4]²⁻ just as aluminium hydroxide gives aluminate ion, [Al(OH)4]⁻.

The chlorides of both beryllium and aluminium have Cl⁻ bridged chloride structure in vapour phase. Both the chlorides are soluble in organic solvents and are strong Lewis acids. They are used as Friedel Craft catalysts.

Question: The name of oxyacid of phosphorus having max no. of oxygen **Options:**

(a) Hypophosphorous acid

- (b) Pyrophosphoric acid
- (c) Phosphorus acid
- (d) Phosphoric acid

Answer: (b)

Solution:

Hypophosphorous acid \Rightarrow H₃PO₂ Pyrophosphoric acid \Rightarrow H₄P₂O₇ Phosphorus acid \Rightarrow H₃PO₃ Phosphoric acid \Rightarrow H₃PO₄

Question: What are the monomer of Glyptal, Buna-S? **Options:**

(a) Glyptal – Phenol, Formaldehyde; Buna-S – Styrene

(b) Glyptal – Ethylene, Glycol, Phthalic acid; Buna-S – 1,3-Butadiene, Styrene

(c) Glyptal – Phenol, Phthalic acid; Buna-S – 1,3 Butadiene, Acrylonitrile

(d) Glyptal – Urea, Formaldehyde; Buna-S – 1,3 Butadiene, Propene Answer: (b)

Solution: Monomers of Glyptal are Ethylene Glycol, Phthalic acid Monomers of Buna-S are 1,3-Butadiene, Styrene

Question: Find out the solubility product of CaF₂ if solubility of CaF₂ is 2.34 g/100 mL **Options:**

(a) 0.108 (mol/L)³ (b) 0.072 (mol/L)³ (c) 0.036 (mol/L)³ (d) 0.032 (mol/L)³ **Answer:** (a) **Solution:** Solubility = $\frac{2.34}{100}$ g/ml Molar mass of CaF₂ = 40 + 19 + 19 = 78 g/ml Solubility in (mol/L) = $\frac{2.34}{78} \times \frac{1000}{100}$ mol/L = 0.3mol/L CaF₂ \Rightarrow Ca²⁺ + 2F⁻ s 2s K_{sp} = s × (2s)² = 4s³ K_{sp} = 4 × (0.3)³ = 0.108 (mol/L)³

Question: Change in oxidation state of C when oxalic acid reacts with acidic KMnO₄ **Options:**

(a) 5 (b) 2 (c) 1 (d) 3 Answer: (c) Solution: $2MnO_4^- + 16H^+ + 5C_2^{+3}O_4^{2-} \rightarrow 2Mn^{2+} + 10CO_2^+ + 8H_2O_2^{+4}$

Question: Assertion: Hydrogen's 2s orbital has more energy than lithium's 2s orbital **Reason:** For same orbital, as atomic number increases energy decreases **Options:**

(a) Both assertion and reason are true, reason is correct explanation of assertion.

(b) Both assertion and reason are true, but reason is not a correct explanation of the assertion.

(c) Assertion is true, but reason is false

(d) Assertion is false, but reason is true

Answer: (a)

Solution: An increase of atomic number is in the order, H < Li

Energies of the orbitals in the same subshell decrease with an increase in the atomic number. Hence, 2s orbital (energy level) of Li will be less than H

Question: The number of Mn = O bond in Mn_2O_7 **Options:**

Question: After 30 sec, product was 1/16 of reactant. Calculate half life? Answer: 330.00 Solution:

$$k = \frac{2.303}{t} \log \frac{[R]_{o}}{[R]}$$
$$k = \frac{2.303}{30} \log \frac{16}{15}$$
$$k = 0.0021$$
$$t_{1/2} = \frac{0.693}{0.0021} = 330 \text{ s}$$

Question: The percentage yield of the complete reaction is

Answer: 30.00

Solution: Percentage yield of complete reaction $=\frac{60}{100} \times \frac{50}{100} \times 100 = 30\%$

Question: Number of species having identical Bond order CN^- , NO^+ , O_2 , O_2^+ , O_2^{2+} Answer: 3.00 Solution: 1) $O_2(16) = \sigma 1s^2 \sigma^* 1s^2 \sigma 2s^2 \sigma^* 2s^2 2pz^2 \pi 2px^2 = \pi 2py^2$, $\pi^* 2px^1 = \pi^* 2py^1$ Bond order $= \frac{10-6}{2} = 2$ 2) $NO^+(14) = Bond order = \frac{10-4}{2} = 3$ 3) $O_2^+(15) = Bond order = \frac{10-5}{2} = 2.5$ 4) $O_2^{2+}(14) = Bond order = \frac{10-4}{2} = 3$ 5) $CN^-(14) = Bond order = \frac{10-4}{2} = 3$

NO⁺, CN⁻, and O2²⁺ has identical bond order

Question: How many of the following are not the ways to purify metal? Distillation, Liquation, Electrolysis, Leaching, Calcination **Answer:** 2.00 **Solution:** Leaching and calcination are not the method to purify metal.

Question: 20 ml of 0.02 M K₂Cr₂O₇ is titrated against 10 mL Fe²⁺ solution. The molarity of Fe²⁺ is _____ × 10⁻². Answer: 24.00 Solution: $Cr_2O_7^{2-} + Fe^{2+} + 14H^+ \rightarrow 2Cr^{3+} + Fe^{3+} + 7H_2O$ The redox changes involved are i) $6e^- + Cr_2O_7^{2-} \rightarrow 2Cr^{3+}$ (n = 6) ii) $Fe^{2+} \rightarrow Fe^{3+} + e^{-+}$ (n = 1) Milliequivalent of $Cr_2O_7^{2-} =$ Milliequivalent of Fe²⁺ $20 \times 0.02 \times 6 = 10 \times N$ N = 0.24

$$M = \frac{N}{'n'factor} = \frac{0.24}{1}$$
$$= 0.24 M$$
$$= 24 \times 10^{-2} M$$

JEE-Main-27-07-2022-Shift-1 (Memory Based)

MATHEMATICS

Question: Let $a_1, a_2, a_3, ..., a_n$ be in A.P. The ratio of sum of first five term to the sum of first nine terms is 5:17. Also $110 < a_{15} < 120$. Find the sum of first 10 terms of the A.P. (where all a_i (i = 1, 2, 3, ..., n) are integers)

Options:

- (a) 330
- (b) 460
- (c) 290
- (d) 380

Answer: (d)

Solution:

Let first term be 'a' and common difference be 'd' for the A.P.

$$\frac{S_5}{S_9} = \frac{5}{17}$$

$$\Rightarrow \frac{\frac{5}{2}(2a+4d)}{\frac{9}{2}(2a+8d)} = \frac{5}{17}$$

$$\therefore 4a = d$$

$$a_{15} = a+14d = 57a$$
It is given that $110 < a_{15} < 120$

$$\Rightarrow 110 < 57a < 120$$
For integral terms of the A.P, $a = 2$
Sum of 10 terms of A.P:

$$S_{10} = \frac{10}{2}(4+9\times8) = 380$$

Question: Let S be sample space for 5 digit numbers. If p is probability of a number being randomly selected which is multiple of 7 but not divisible by 5, then 9p is equal to:

Options:

(a) 1.0146(b) 1.2085(c) 1.0285

(d) 1.1521

Answer: (c)

Solution:

Five digit number line from 10000 to 999999 $\therefore S = 90000$

Number divisible by $7 = \frac{90000}{7}$

Number divisible by 7 and multiple by 5 = $\frac{90000}{35}$

 $\therefore \text{ Required Probability} = \frac{\frac{90000}{7} - \frac{90000}{35}}{90000}$

$$\Rightarrow p = \frac{4}{35}$$
$$\therefore 9p = \frac{36}{35} = 1.02857$$

Question: Let $A = \begin{bmatrix} 1 & 2 \\ -2 & -5 \end{bmatrix}$, $\alpha \& \beta$ belongs to real numbers such that $\alpha A^2 + \beta A = 2I$, where *I* is an identity matrix of order 2×2. Then the value of $\alpha + \beta$ is equal to: Options:

- (a) -10
- (b) -6
- (c) 6 (d) 10
- Answer: (d)

Solution:

$$A = \begin{bmatrix} 1 & 2 \\ -2 & -5 \end{bmatrix}$$
$$A^{2} = \begin{bmatrix} 1 & 2 \\ -2 & -5 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -2 & -5 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -2 & -5 \end{bmatrix} = \begin{bmatrix} -3 & -8 \\ 8 & 21 \end{bmatrix}$$

It is given that $\alpha A^2 + \beta A = 2I$

 $\alpha \begin{bmatrix} -3 & -8 \\ 8 & 21 \end{bmatrix} + \beta \begin{bmatrix} 1 & 2 \\ -2 & -5 \end{bmatrix} = 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $-3\alpha + \beta = 2 \& -8\alpha + 2\beta = 0$ $\alpha = 2, \ \beta = 8$ $\Rightarrow \alpha + \beta = 10$

Question: $(p \wedge r) \Leftrightarrow (p \wedge \neg q)$ which is equivalent to $\neg p$. Then *r* will be: **Options:**

(a) p
(b) ~ p
(c) q
(d) ~ q
Answer: (c)

Solution:

The truth table is

p	<i>q</i>	~ <i>p</i>	$\sim q$	$p \wedge q$	$p \wedge \sim q$	$p \land q \Leftrightarrow p \land \sim q$
Т	Т	F	F	Т	F	F
Т	F	F	Т	F	Т	F
F	Т	Т	F	F	F	Т
F	F	Т	Т	F	F	Т

Clearly
$$(p \wedge r) \Leftrightarrow (p \wedge \sim q) \equiv p$$

 $\therefore r = q$

Question: The remainder of $(2021)^{2022} + (2022)^{2021}$ when divided by 7 is:

Answer: 0.00 Solution:

Let $S = (2021)^{2022} + (2022)^{2021}$ $\Rightarrow (2023 - 2)^{2022} + (2023 - 1)^{2021}$ $= 7k_1 + 2^{2022} + 7k_2 - 1$ $= 7(k_1 + k_2) + 8^{674} - 1$ $= 7(k_1 + k_2) + (7 + 1)^{674} - 1$ $= 7(k_1 + k_2) + 7k_3 + 1 - 1$ $= 7(k_1 + k_2 + k_3)$ Therefore, S is divisible by 7

Question: The mean and variance of 10 observation was 15 and 15. The mistake was 25 instead of 15. The new standard deviation is:

Answer: () Solution:

$$\frac{x_1 + \dots + x_9 + 25}{10} = 15$$

$$\frac{x_1 + \dots + x_9 + 15}{10} = \text{ correct mean } = m$$

$$\frac{25}{10} - \frac{15}{10} = 15 - m$$

$$m = 4$$
Correct mean is 4.
$$\frac{x_1^2 + \dots + x_9^2 + 25^2}{10} - 15^2 = 15$$

 $\frac{x_1^2 + \dots + x_9^2 + 15^2}{10} - 14^2 = \text{correct variance} = \text{new SD}$ $\frac{25^2 - 15^2}{10} - (15^2 - 14^2) = 15 - v$

Variance is 4, SD is 2.

Question: Let $f(x) = 2x^2 - x - 1$ and $S = \{n : |f(n)| \le 800\}$ where $n \in z$, then $\sum_{n \in Z} f(n) = 1$

Answer: 10620.00 Solution: $-800 \le f(n) \le 800$ $-800 \le 2n^2 - n - 1 \le 800$ $2n^2 - n + 799 \ge 0$ a > 0D = 1 - 4(2)(799) < 0Always true $n \in R$ $2n^2 - n - 801 \le 0$ $n = \frac{1 \pm \sqrt{1 + 4(2)(801)}}{4}$ $=\frac{1\pm\sqrt{6408}}{4}$ $n \approx \frac{1 \pm 80}{\Lambda}$ $n = \frac{-79}{4}, \frac{81}{4}$ $n \in [-19.75, 20.25]$ $n \in \{-19, -18, -17, \dots, -1, 0, 1, \dots, 20\}$ $f(n) = 2n^2 - n - 1$ $f(-19) = 2(-19)^2 - (-19) - 1$ $f(19) = 2(19)^2 - (19) - 1$ $f(20) = 2(20)^2 - (20) - 1$ $= 2\left[\left(-19\right)^{2} + \left(-18\right)^{2} + \dots \left(-1\right)^{2} + 0^{2} + \left(1\right)^{2} + \dots + 19^{2} + 20^{2}\right]\right]$ $= -\left[(-19) + (-18) + ... + (-1) + 0 + (1) + ... + (19) + (20) \right] - 40$

$$= 2 \left[400 + 2 \left(\frac{19 \times 20 \times 39}{6} \right) \right] - 20 - 40$$

= 10620

