JEE-Main-27-07-2022-Shift-1 (Memory Based)

Physics

Question: Find R such that potential diff across $1^{\text {st }}$ cell (on the left of the diagram) is zero.

Options:

(a) $R=R_{1}+R_{2}$
(b) $R=R_{1}-R_{2}$
(c) $R=R_{2}-R_{1}$
(d) $R=R_{2}+R_{1}$

Answer: (b)

Solution:

Current in the circuit
$i=\frac{2 \varepsilon}{R+R_{1}+R_{2}}$
P.D. across cell 1,
$\varepsilon-i R_{1}=0$
$\varepsilon-\frac{2 \varepsilon R_{1}}{R+R_{1}+R_{2}}=0$
$\varepsilon R+\varepsilon R_{1}+\varepsilon R_{2}=2 \varepsilon R_{1}$
$R=R_{1}-R_{2}$
Question: Two satellites of mass ratio 4:3 and radii ratio 3:4. Find the ratio of total mechanical energy.

Options:

(a) 1
(b) 3
(c) 5
(d) 2

Answer: (a)

Solution:

$U+K=E$
$E=-\frac{G M_{e} m}{2 r}$
$E \alpha \frac{m}{r} \Rightarrow \frac{E_{1}}{E_{2}}=\frac{m_{1}}{r_{1}} \frac{r_{2}}{m_{2}}$
$=\frac{4}{3} \times \frac{3}{4}=1$
Question: Two charges Q each are placed at a distance of 2 a . At midpoint, q is placed and is displaced slightly. Find time period.

Options:

(a) $T=4 x \sqrt{\frac{a^{3} m}{4 K Q q}}$
(b) $T=3 x \sqrt{\frac{a^{3} m}{3 K Q q}}$
(c) $T=2 x \sqrt{\frac{a^{3} m}{4 K Q q}}$
(d) $T=2 x \sqrt{\frac{a^{3} m}{2 K Q q}}$

Answer: (c)
Solution:

Question: A DC current of 4 A and AC current of peak value 4 A passes through 3Ω and 2Ω resistors respectively. Find the ratio of heat generated.

Options:

(a) $3: 1$
(b) $3: 2$
(c) $3: 4$
(d) $1: 1$

Answer: (a)

Solution:

For DC current
$H_{D C}=i^{2} R_{1} t$
\& for AC
$H_{A C}=i_{r m s}{ }^{2} R_{2} t$
$\frac{H_{D C}}{H_{A C}}=\frac{i^{2}}{i_{r m s}{ }^{2}} \frac{R_{1}}{R_{2}}$
$=\frac{(4)^{2}}{\left(\frac{4}{\sqrt{2}}\right)^{2}} \frac{3}{2}=3: 1$
Question: Sand is falling on conveyer belt at rate of 0.5 kg is if conveyer is moving with 4 m / s. How much power is required maintain constant speed?

Options:

(a) 5 w
(b) 7 w
(c) 4 w
(d) 8 w

Answer: (d)

Solution:

Force $=\frac{d}{d t}(p)$
$=\frac{d}{d t}(m v)$
$=v \frac{d}{d t}(m)$
$=v(0.5)$
$F=4 \times 0.5=2$
Power $=$ Force x vel.
$=2 \times 4$
$=8 \mathrm{~W}$
Question: If activity of radioactive sample becomes $1 / 16^{\text {th }}$ of its initial value in 30 hrs . Find the half-life period.
Options:
(a) 5.5 hrs
(b) 3.5 hrs
(c) 7.5 hrs
(d) 4.5 hrs

Answer: (c)
Solution:
Activity $N=N . e^{-\lambda t}$
$\frac{N}{N_{0}}=\frac{1}{16}$ after 30 hrs
$\frac{1}{16}=e^{-30 \lambda}$
$e^{30 \lambda}=16 \Rightarrow \lambda=\frac{\ln 16}{30}$
Also, $t \frac{1}{2}=\frac{\ln 2}{\lambda}$
$=\left(\frac{\ln 2}{\ln 16}\right) \times 30=7.5 \mathrm{hrs}$.
Question: Two cylinders are joined as shown.

Water flows from B to A until water level becomes same. Find work done by gravity.

Options:

(a) $w=625 \mathrm{~A} \rho g \times 10^{-4} \mathrm{~J}$
(b) $w=225 \mathrm{~A} \rho g \times 10^{-4} \mathrm{~J}$
(c) $w=425 \mathrm{~A} \rho g \times 10^{-4} \mathrm{~J}$
(d) $w=125 \mathrm{~A} \rho g \times 10^{-4} \mathrm{~J}$

Answer: (a)

Solution:

$W=625 \times 10^{-4} \mathrm{~A} \rho g$
Work done by gravity $=\mathrm{U}_{\mathrm{I}}-\mathrm{U}_{\mathrm{f}}$
$U_{I}=(A(50) \rho)(25)+A(100) \rho g(50)=A \rho g[6250]$
Common Height of cylinders $\Rightarrow h=75 \mathrm{~cm}$
$U_{f}=(A(75) \rho g)\left(\frac{75}{2}\right) \times 2=A \rho g[5625]$
$w=625 \mathrm{~A} \rho g \times 10^{-4} \mathrm{~J}$
Question: A ball thrown vertically upwards. At same time another ball thrown at angle θ. If both remain in air for same time. Then ratio of maximum height.

Options:

(a) $2: 3$
(b) $1: 2$
(c) $1: 1$
(d) $2: 1$

Answer: (c)

Solution:

$$
\begin{aligned}
& T=\frac{2 v}{g} \quad T=\frac{2 u \sin \theta}{g} \quad \frac{\left(H_{u x}\right)_{1}=\frac{v^{2}}{2 g}}{\left(H_{m x}\right)_{2}=\frac{u^{2} \sin 2 \theta}{2 g}} \\
& \frac{2 v}{g}=\frac{2 u \sin \theta}{g} \quad \frac{H_{1}}{H_{2}}=\frac{v^{2}}{u^{2} \sin 2 \theta} \\
& v=u \sin \theta=\frac{1}{1}
\end{aligned}
$$

Question: A bullet is fired with velocity $100 \mathrm{~m} / \mathrm{s}$ in vertically downward direction \& on striking the ground it comes to rest. Draw v -t graph?

Options:

(a)

(b)

(c)

(d)

Answer: (c)
Solution:

$$
\begin{aligned}
& v=u+a t \\
& v=100+g t
\end{aligned}
$$

Question: The apparent angle of dip in a plane at an angle of 45° with magnetic meridian is 60° find true angle of dip

Options:

(a) $\tan ^{-1} \sqrt{\frac{2}{1}}$
(b) $\tan ^{-1} \sqrt{\frac{5}{2}}$
(c) $\tan ^{-1} \sqrt{\frac{4}{2}}$
(d) $\tan ^{-1} \sqrt{\frac{3}{2}}$

Answer: (d)

Solution:

Inclination of plane $(\alpha)=45^{\circ}$
Apparent $\operatorname{dip}(\delta)=60^{\circ}$
Let true dip $=\phi$
then we know
$\tan \delta=\frac{\tan \phi}{\cos \phi} \Rightarrow \tan \phi=\tan 60^{\circ} \times \cos 45^{\circ}$
$=\sqrt{\frac{3}{2}}$
Question: Intensity given I and 4I phase difference at A and B are 90 and 60. Then find the difference of resultant intensity at A and B
Options:
(a) 2I
(b) 5 I
(c) 7 I
(d) 9 I

Answer: (a)

Solution:

Intensity at A
$I_{A}=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \cos \phi$
$\phi=90^{\circ}$
$I_{A}=I_{1}+I_{2}$
$I_{A}=I+4 I=5 I \ldots(1)$
Intensity at B
$I_{B}=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \cos \phi$
$\phi=60^{\circ}$
$I_{B}=I+4 I+2 \sqrt{I \times 4 I} \times \frac{1}{2}$
$I_{B}=7 I$
Difference in Intensity
$\Delta I=I_{B}-I_{A}$
$=7 I-5 I=2 I$
Question: A tower of height 100 m is used to transmit the signal. What is the increase in height of tower required to triple the range of transmitting signals.

Options:

(a) 200 m
(b) 300 m
(c) 500 m
(d) 800 m

Answer: (d)

Solution:

Range $=\sqrt{2 R h_{T}}$
For large to be 3 times
$3 \times$ times $=\sqrt{2 R h_{T^{\prime}}}$
$3 \times \sqrt{2 \times R \times 100}=\sqrt{2 R h_{T^{\prime}}}$
$\sqrt{h_{T^{\prime}}}=30$
$h_{T^{\prime}}=900 \mathrm{~m}$
So increase in length of the tower $=900-100=800 \mathrm{~m}$
Question: Two bar magnets oscillate in earth magnetic field with time period 3:4 and its moment of inertia is $3: 2$ then magnetic moment ratio.

Options:

(a) $\frac{8}{3}$
(b) $\frac{3}{8}$
(c) $\frac{5}{3}$
(d) $\frac{3}{5}$

Answer: (a)

Solution:

We know, Time period is given at
$T=2 H \sqrt{\frac{I}{\mu B}}$

Hence, $\frac{T_{1}}{T_{2}}=\sqrt{\left(\frac{I_{1}}{I_{2}}\right)\left(\frac{\mu_{2}}{\mu_{1}}\right)}$
$\frac{3}{4}=\sqrt{\frac{3}{2} \times\left(\frac{\mu_{2}}{\mu_{1}}\right)}$
$\frac{9}{16}=\frac{3}{2}\left(\frac{\mu_{2}}{\mu_{1}}\right)$
$\frac{\mu_{2}}{\mu_{1}}=\frac{3}{8}$
$\frac{\mu_{1}}{\mu_{2}}=\frac{8}{3}$
Question: If a compound microscope is taken from air to liquid with $\mathrm{RI}=2, \%$ change in resolving power is

Options:

(a) 50%
(b) 100%
(c) 150%
(d) 250%

Answer: (b)
Solution:
R. $P=\frac{1.22 d}{\lambda}$
$(R . P)_{1}=\frac{1.22 d}{\lambda}$
$(R . P)_{2}=\frac{2 \times 1.22 d}{\lambda}$
$\%$ crave $=\frac{(R . P)_{2}-(R . P)_{1}}{(R . P)_{T}} \times 100=\frac{2-1}{1} \times 100=100 \%$
Question: A block is placed on conveyor belt gently, which is moving with constant velocity $2 \mathrm{~m} / \mathrm{s}$. Coefficient of friction between belt and block is 0.4 . Calculate the distance travelled by block till it comes at rest w.r.t. belt.

Options:

(a) 0.1 m
(b) 0.3 m
(c) 0.5 m
(d) 0.7 m

Answer: (c)

Solution:

Deceleration due to friction $=\mu g$
$=0.4(10)=4 \mathrm{~m} / \mathrm{s}^{2}$
Final speed w.r.t. belt $=0$
Initial speed w.r.t. belt $=-2 \mathrm{~m} / \mathrm{s}$
$v^{2}-u^{2}=2 a s \Rightarrow 0-4=2(-4) s$

For block to be in rest w.r.t belt, both should give together so
$a=\mu g$ (maximum possible acceleration for them to move together)
Hence, $v^{2}=u^{2}+2 a s$
$0=u^{2}-2 a s$
$s=\frac{u^{2}}{2 a}$
$s=\frac{4}{2 \times 0.4 \times 10}$
$s=\frac{1}{2}=0.5 \mathrm{~m}$
Question: In a meter bridge, balancing is achieved when jockey is at mark of 30 cm , where a known resistance of $5.6 \mathrm{k} \Omega$ is used in the right gap. Value of unknown resistance in $k \Omega$ is,
Options:
(a) 1.2
(b) 3.2
(c) 2.4
(d) 5.4

Answer: (c)
Solution:
$\frac{R_{1}}{l_{1}}=\frac{R_{2}}{\left(100-l_{1}\right)}$
$\frac{R_{1}}{30}=\frac{5.6}{(100-30)}$
$R_{1}=\frac{5.6 \times 30}{79 \times 10}$
$R_{1}=2.4 \Omega$

Question: If mass, length and time each has 5\% error then what is the error in reading of torque?

Options:

(a) 10%
(b) 5%
(c) 20%
(d) 25%

Answer: (d)

Solution:

Torque $=M L^{2} T^{-2}$
\therefore Percentage error in torque
$=\%$ error in mass
2 (\% error in length)

2(\% error in time)
$=5+2(5)+2(5)=25 \%$
Question: Two containers contains identical at same temperature and volume.
Number of moles of gas in each container are 1 and 3 respectively.
Ratios of $v_{r m s}$ and pressure of gas in two containers respectively are

Options:

(a) $1: 1,3: 1$
(b) $3: 1,1: 1$
(c) $1: 3,1: 1$
(d) $1: 1,1: 3$

Answer: (d)

Solution:

$v_{r m s}=\sqrt{\frac{3 k_{B} T}{m}}$
As T and m are same $\frac{v_{r m s}, 1}{v_{r m s}, 2}=1$
$P=\frac{1}{3} \rho v_{r m s}^{2}=\frac{1}{3} \frac{n M}{v} v_{r m s}^{2}$
$\therefore \frac{P_{1}}{P_{2}}=\frac{n_{1}}{n_{2}}=\frac{1}{3}$
Question: A charge is moving with the velocity $3 \times 10^{7} \mathrm{~m} / \mathrm{s}$ along y axis in an Em wave moving along x axis. Find the ratio of electric force and magnetic force exerted by the EM wave
Options:
(a) $10: 1$
(b) $1: 10$
(c) $1: 5$
(d) $1: 6$

Answer: (a)

Solution:

Magnetic force on a charge particle $F_{B}=q v B$
Electric force on a charge particle $F_{E}=q E=q c B$
So, $\frac{F_{E}}{F_{B}}=\frac{c}{v} \Rightarrow \frac{F_{E}}{F_{B}}=\frac{10}{1}$

Question: A cylinder having volume charge density ρ is uniformity charged. Find electric field at inside point $r=\frac{2 \epsilon_{0}}{\rho}$

Options:

(a) $0 \mathrm{NC}^{1}$
(b) $1 N C^{-1}$
(c) $3 \mathrm{NC}^{-1}$
(d) $2 N C^{-1}$

Answer: (b)

Solution:

Electric field at any point inside the cylinder

$$
E=\frac{\rho r}{2 \epsilon_{0}}
$$

Given: $r=\frac{2 \epsilon_{0}}{\rho}$
So, $E=\frac{\rho}{2 \epsilon_{0}} \times \frac{2 \epsilon_{0}}{\rho}=1 \mathrm{~N} / \mathrm{C}$

JEE-Main-27-07-2022-Shift-1 (Memory Based)

Chemistry

Question: Match the following.

(Column I) Ions	(Column II) Disease
(A) Fluoride	(i) Damage kidney
(B) Lead	(ii) Brown mottling of teeth
(C) Sulphate	(iii) Blue Baby syndrome
(D) Nitrate	(iv) Laxative effect

Options:

(a) $\mathrm{A} \rightarrow$ (i); $\mathrm{B} \rightarrow$ (iii); $\mathrm{C} \rightarrow$ (ii); $\mathrm{D} \rightarrow$ (iv)
(b) $\mathrm{A} \rightarrow$ (iv); $\mathrm{B} \rightarrow$ (iii); $\mathrm{C} \rightarrow$ (i); $\mathrm{D} \rightarrow$ (ii)
(c) $\mathrm{A} \rightarrow$ (iii); $\mathrm{B} \rightarrow$ (ii); $\mathrm{C} \rightarrow$ (iv); $\mathrm{D} \rightarrow$ (i)
(d) $\mathrm{A} \rightarrow$ (ii); $\mathrm{B} \rightarrow$ (i); $\mathrm{C} \rightarrow$ (iv); $\mathrm{D} \rightarrow$ (iii)

Answer: (d)

Solution:

Fluoride \Rightarrow Brown mottling of teeth
Lead \Rightarrow Damage kidney
Sulphate \Rightarrow Laxative effect
Nitrate \Rightarrow Blue Baby syndrome
Question: Match the following.

(Column I)	(Column II) Structures
(A) Antacids	(i)
(B) Analgesic	(iii)
(C) 500 times greater than sugar	

(D) Narcotics

Options:
(a) A \rightarrow (i); $\mathrm{B} \rightarrow$ (iii); $\mathrm{C} \rightarrow$ (ii); $\mathrm{D} \rightarrow$ (iv)
(b) $\mathrm{A} \rightarrow$ (iv); $\mathrm{B} \rightarrow$ (iii); $\mathrm{C} \rightarrow$ (i); $\mathrm{D} \rightarrow$ (ii)
(c) $\mathrm{A} \rightarrow$ (iii); $\mathrm{B} \rightarrow$ (ii); $\mathrm{C} \rightarrow$ (iv); $\mathrm{D} \rightarrow$ (i)
(d) $\mathrm{A} \rightarrow$ (ii); $\mathrm{B} \rightarrow$ (i); $\mathrm{C} \rightarrow$ (iv); $\mathrm{D} \rightarrow$ (iii)

Answer: (c)

Solution:

(A) Antacids \Rightarrow

(B) Analgesic \Rightarrow

(C) 500 times greater than sugar \Rightarrow
(D) Narcotics \Rightarrow

Question: Statement -1: $\mathrm{H}_{2} \mathrm{O}_{2}$ can act as oxidizing agent in both acidic and basic medium Statement-2: Density of $\mathrm{H}_{2} \mathrm{O}$ at 298 K is less than $\mathrm{D}_{2} \mathrm{O}$
Options:
(a) Both statement 1 and 2 are correct
(b) Statement 1 is correct but statement 2 is incorrect
(c) Statement 1 is incorrect but statement 2 is correct
(d) Both statement 1 and 2 are incorrect.

Answer: (a)
Solution: $\mathrm{H}_{2} \mathrm{O}_{2}$ can act as oxidizing agent in both acidic and basic medium.
Density of $\mathrm{H}_{2} \mathrm{O}$ at 298 K is less than that of $\mathrm{D}_{2} \mathrm{O}$
Therefore, both the statements are true.
Question: Sugar X is reacted with furfural and further reacted with Resorcinol to give a colored compound. Sugar X is

Options:

(a) Aldopentose
(b) Aldotetrose
(c) Carboxylic acid
(d) Ketotetrose

Answer: (d)
Solution: Seliwanoff's reagent is a mixture of resorcinol and concentrated hydrochloric acid. Ketose sugars react with the Seliwanoff's reagent to give immediately a deep cherry red color.

Question: In D-glucose find molality of Glucose if mass \% is 10.8% and weight of solution is 250 g .
Options:
(a) 0.6 m
(b) 0.06 m
(c) 6 m
(d) 2.5 m

Answer: (a)
Solution: Weight of solution $=250 \mathrm{~g}$
Mass \% = 10.8\%
$\xrightarrow[\text { Mass of glucose }]{ } \times 100=10.8$
Mass of solution $\times 100=10.8$

Mass of glucose $=\frac{10.8}{100} \times 250=27 \mathrm{~g}$
Molality $=\frac{\text { Mass of glucose }}{\text { Molar mass of glucose }} \times \frac{1000}{\text { wt.of solution }}$
$=\frac{27}{180} \times \frac{1000}{250}=0.6 \mathrm{~m}$

Question: Boiling point of non volatile solution A and B are same. Mass percent of sol A is 2% and mass percent of sol B is 3%. What is the ratio of their Mol. mass?

Options:

(a) $\mathrm{M}_{\mathrm{A}}=4 \mathrm{M}_{\mathrm{B}}$
(b) $M_{B}=4 M_{A}$
(c) $3 \mathrm{M}_{\mathrm{A}}=2 \mathrm{M}_{\mathrm{B}}$
(d) $3 \mathrm{M}_{\mathrm{B}}=2 \mathrm{M}_{\mathrm{A}}$

Answer: (c)

Solution:

$\left(\Delta \mathrm{T}_{\mathrm{b}}\right)_{\mathrm{A}}=\left(\Delta \mathrm{T}_{\mathrm{b}}\right)_{\mathrm{B}}$
$\mathrm{K}_{\mathrm{b}} \mathrm{m}_{\mathrm{A}}=\mathrm{K}_{\mathrm{b}} \mathrm{m}_{\mathrm{B}}$
$\frac{2}{M_{A} \times 98}=\frac{3}{M_{B} \times 97}$
$2 \mathrm{M}_{\mathrm{B}}=3 \mathrm{M}_{\mathrm{A}}$
 Lewis base
Statement-2: Hydrolysis of aluminium and beryllium reacts with excess of alkalis to give beryllate and aluminate ion

Options:

(a) Both statement 1 and 2 are correct
(b) Statement 1 is correct but statement 2 is incorrect
(c) Statement 1 is incorrect but statement 2 is correct
(d) Both statement 1 and 2 are incorrect

Answer: (c)
Solution: Beryllium hydroxide dissolves in excess of alkali to give a beryllate ion, $\left[\mathrm{Be}(\mathrm{OH})_{4}\right]^{2-}$ just as aluminium hydroxide gives aluminate ion, $\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-}$.
The chlorides of both beryllium and aluminium have Cl^{-}bridged chloride structure in vapour phase. Both the chlorides are soluble in organic solvents and are strong Lewis acids. They are used as Friedel Craft catalysts.

Question: The name of oxyacid of phosphorus having max no. of oxygen Options:
(a) Hypophosphorous acid
(b) Pyrophosphoric acid
(c) Phosphorus acid
(d) Phosphoric acid

Answer: (b)

Solution:

Hypophosphorous acid $\Rightarrow \mathrm{H}_{3} \mathrm{PO}_{2}$
Pyrophosphoric acid $\Rightarrow \mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$
Phosphorus acid $\Rightarrow \mathrm{H}_{3} \mathrm{PO}_{3}$
Phosphoric acid $\Rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}$

Question: What are the monomer of Glyptal, Buna-S?

Options:

(a) Glyptal - Phenol, Formaldehyde; Buna-S - Styrene
(b) Glyptal - Ethylene, Glycol, Phthalic acid; Buna-S - 1,3-Butadiene, Styrene
(c) Glyptal - Phenol, Phthalic acid; Buna-S - 1,3 Butadiene, Acrylonitrile
(d) Glyptal - Urea, Formaldehyde; Buna-S - 1,3 Butadiene, Propene

Answer: (b)
Solution: Monomers of Glyptal are Ethylene Glycol, Phthalic acid
Monomers of Buna-S are 1,3-Butadiene, Styrene

Question: Find out the solubility product of CaF_{2} if solubility of CaF_{2} is $2.34 \mathrm{~g} / 100 \mathrm{~mL}$ Options:
(a) $0.108(\mathrm{~mol} / \mathrm{L})^{3}$
(b) $0.072(\mathrm{~mol} / \mathrm{L})^{3}$
(c) $0.036(\mathrm{~mol} / \mathrm{L})^{3}$
(d) $0.032(\mathrm{~mol} / \mathrm{L})^{3}$

Answer: (a)
Solution: Solubility $=\frac{2.34}{100} \mathrm{~g} / \mathrm{ml}$
Molar mass of $\mathrm{CaF}_{2}=40+19+19=78 \mathrm{~g} / \mathrm{ml}$
Solubility in $(\mathrm{mol} / \mathrm{L})=\frac{2.34}{78} \times \frac{1000}{100} \mathrm{~mol} / \mathrm{L}=0.3 \mathrm{~mol} / \mathrm{L}$
$\mathrm{CaF}_{2} \rightleftharpoons \mathrm{Ca}^{2+}+2 \mathrm{~F}^{-}$
$\mathrm{s} \quad 2 \mathrm{~s}$
$\mathrm{K}_{\mathrm{sp}}=\mathrm{s} \times(2 \mathrm{~s})^{2}=4 \mathrm{~s}^{3}$
$\mathrm{K}_{\text {sp }}=4 \times(0.3)^{3}=0.108(\mathrm{~mol} / \mathrm{L})^{3}$

Question: Change in oxidation state of C when oxalic acid reacts with acidic KMnO_{4} Options:
(a) 5
(b) 2
(c) 1
(d) 3

Answer: (c)
Solution: $2 \mathrm{MnO}_{4}^{-}+16 \mathrm{H}^{+}+5 \stackrel{+3}{\mathrm{C}_{2}} \mathrm{O}_{4}^{2-} \rightarrow 2 \mathrm{Mn}^{2+}+10 \stackrel{+4}{\mathrm{CO}_{2}}+8 \mathrm{H}_{2} \mathrm{O}$

Question: Assertion: Hydrogen's 2s orbital has more energy than lithium's 2s orbital
Reason: For same orbital, as atomic number increases energy decreases
Options:
(a) Both assertion and reason are true, reason is correct explanation of assertion.
(b) Both assertion and reason are true, but reason is not a correct explanation of the assertion.
(c) Assertion is true, but reason is false
(d) Assertion is false, but reason is true

Answer: (a)
Solution: An increase of atomic number is in the order, $\mathrm{H}<\mathrm{Li}$
Energies of the orbitals in the same subshell decrease with an increase in the atomic number. Hence, 2s orbital (energy level) of Li will be less than H

Question: The number of $\mathrm{Mn}=\mathrm{O}$ bond in $\mathrm{Mn}_{2} \mathrm{O}_{7}$

Options:

(a) 7
(b) 4
(c) 5
(d) 6

Answer: (d)

Solution:

Question: After 30 sec , product was $1 / 16$ of reactant. Calculate half life?
Answer: 330.00
Solution:
$\mathrm{k}=\frac{2.303}{\mathrm{t}} \log \frac{[\mathrm{R}]_{\mathrm{o}}}{[\mathrm{R}]}$
$\mathrm{k}=\frac{2.303}{30} \log \frac{16}{15}$
$\mathrm{k}=0.0021$
$t_{1 / 2}=\frac{0.693}{0.0021}=330 \mathrm{~s}$
Question: The percentage yield of the complete reaction is

Answer: 30.00
Solution: Percentage yield of complete reaction $=\frac{60}{100} \times \frac{50}{100} \times 100=30 \%$

Question: Number of species having identical Bond order
$\mathrm{CN}^{-}, \mathrm{NO}^{+}, \mathrm{O}_{2}, \mathrm{O}_{2}{ }^{+}, \mathrm{O}_{2}{ }^{2+}$
Answer: 3.00
Solution:

1) $\mathrm{O}_{2}(16)=\sigma 1 \mathrm{~s}^{2} \sigma^{*} 1 \mathrm{~s}^{2} \sigma 2 \mathrm{~s}^{2} \sigma^{*} 2 \mathrm{~s}^{2} 2 \mathrm{pz}^{2} \pi 2 \mathrm{px}^{2}=\pi 2 \mathrm{py}^{2}, \pi^{*} 2 \mathrm{px}^{1}=\pi^{*} 2 \mathrm{py}^{1}$

Bond order $=\frac{10-6}{2}=2$
2) $\mathrm{NO}^{+}(14)=$ Bond order $=\frac{10-4}{2}=3$
3) $\mathrm{O}_{2}^{+}(15)=$ Bond order $=\frac{10-5}{2}=2.5$
4) $\mathrm{O}_{2}{ }^{2+}(14)=$ Bond order $=\frac{10-4}{2}=3$
5) $\mathrm{CN}^{-}(14)=\mathrm{Bond}$ order $=\frac{10-4}{2}=3$
$\mathrm{NO}^{+}, \mathrm{CN}^{-}$, and $\mathrm{O}_{2}{ }^{2+}$ has identical bond order

Question: How many of the following are not the ways to purify metal?
Distillation, Liquation, Electrolysis, Leaching, Calcination
Answer: 2.00
Solution: Leaching and calcination are not the method to purify metal.
Question: 20 ml of $0.02 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is titrated against $10 \mathrm{~mL} \mathrm{Fe}^{2+}$ solution. The molarity of Fe^{2+} is \qquad $\times 10^{-2}$.
Answer: 24.00
Solution: $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}+\mathrm{Fe}^{2+}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+\mathrm{Fe}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
The redox changes involved are
i) $6 \mathrm{e}^{-}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \rightarrow 2 \mathrm{Cr}^{3+}(\mathrm{n}=6)$
ii) $\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-+}(\mathrm{n}=1)$

Milliequivalent of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}=$ Milliequivalent of Fe^{2+}
$20 \times 0.02 \times 6=10 \times \mathrm{N}$
$\mathrm{N}=0.24$
$\mathrm{M}=\frac{\mathrm{N}}{\mathrm{I} \text { ' factor }}=\frac{0.24}{1}$
$=0.24 \mathrm{M}$
$=24 \times 10^{-2} \mathrm{M}$

JEE-Main-27-07-2022-Shift-1 (Memory Based)

MATHEMATICS

Question: Let $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ be in A.P. The ratio of sum of first five term to the sum of first nine terms is 5:17. Also $110<a_{15}<120$. Find the sum of first 10 terms of the A.P. (where all $a_{i}(i=1,2,3, \ldots, n)$ are integers)

Options:

(a) 330
(b) 460
(c) 290
(d) 380

Answer: (d)

Solution:
Let first term be ' a ' and common difference be ' d ' for the A.P.
$\frac{S_{5}}{S_{9}}=\frac{5}{17}$
$\Rightarrow \frac{\frac{5}{2}(2 a+4 d)}{\frac{9}{2}(2 a+8 d)}=\frac{5}{17}$
$\therefore 4 a=d$
$a_{15}=a+14 d=57 a$
It is given that $110<a_{15}<120$
$\Rightarrow 110<57 a<120$
For integral terms of the A.P, $a=2$
Sum of 10 terms of A.P:
$S_{10}=\frac{10}{2}(4+9 \times 8)=380$

Question: Let S be sample space for 5 digit numbers. If p is probability of a number being randomly selected which is multiple of 7 but not divisible by 5 , then $9 p$ is equal to:

Options:

(a) 1.0146
(b) 1.2085
(c) 1.0285
(d) 1.1521

Answer: (c)

Solution:

Five digit number line from 10000 to 99999
$\therefore S=90000$

Number divisible by $7=\frac{90000}{7}$
Number divisible by 7 and multiple by $5=\frac{90000}{35}$
\therefore Required Probability $=\frac{\frac{90000}{7}-\frac{90000}{35}}{90000}$
$\Rightarrow p=\frac{4}{35}$
$\therefore 9 p=\frac{36}{35}=1.02857$

Question: Let $A=\left[\begin{array}{cc}1 & 2 \\ -2 & -5\end{array}\right], \alpha \& \beta$ belongs to real numbers such that $\alpha A^{2}+\beta A=2 I$, where I is an identity matrix of order 2×2. Then the value of $\alpha+\beta$ is equal to:

Options:

(a) -10
(b) -6
(c) 6
(d) 10

Answer: (d)

Solution:

$A=\left[\begin{array}{cc}1 & 2 \\ -2 & -5\end{array}\right]$
$A^{2}=\left[\begin{array}{cc}1 & 2 \\ -2 & -5\end{array}\right]\left[\begin{array}{cc}1 & 2 \\ -2 & -5\end{array}\right]=\left[\begin{array}{cc}-3 & -8 \\ 8 & 21\end{array}\right]$
It is given that $\alpha A^{2}+\beta A=2 I$
$\alpha\left[\begin{array}{cc}-3 & -8 \\ 8 & 21\end{array}\right]+\beta\left[\begin{array}{cc}1 & 2 \\ -2 & -5\end{array}\right]=2\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$-3 \alpha+\beta=2 \&-8 \alpha+2 \beta=0$
$\alpha=2, \beta=8$
$\Rightarrow \alpha+\beta=10$

Question: $(p \wedge r) \Leftrightarrow(p \wedge \sim q)$ which is equivalent to $\sim p$. Then r will be:

Options:

(a) p
(b) $\sim p$
(c) q
(d) $\sim q$

Answer: (c)

Solution:

The truth table is

p	q	$\sim p$	$\sim q$	$p \wedge q$	$p \wedge \sim q$	$p \wedge q \Leftrightarrow p \wedge \sim q$
T	T	F	F	T	F	F
T	F	F	T	F	T	F
F	T	T	F	F	F	T
F	F	T	T	F	F	T

Clearly $(p \wedge r) \Leftrightarrow(p \wedge \sim q) \equiv \sim p$
$\therefore r=q$

Question: The remainder of $(2021)^{2022}+(2022)^{2021}$ when divided by 7 is:
Answer: 0.00

Solution:

Let $S=(2021)^{2022}+(2022)^{2021}$
$\Rightarrow(2023-2)^{2022}+(2023-1)^{2021}$
$=7 k_{1}+2^{2022}+7 k_{2}-1$
$=7\left(k_{1}+k_{2}\right)+8^{674}-1$
$=7\left(k_{1}+k_{2}\right)+(7+1)^{674}-1$
$=7\left(k_{1}+k_{2}\right)+7 k_{3}+1-1$
$=7\left(k_{1}+k_{2}+k_{3}\right)$
Therefore, S is divisible by 7

Question: The mean and variance of 10 observation was 15 and 15 . The mistake was 25 instead of 15 . The new standard deviation is:
Answer: ()
Solution:
$\frac{x_{1}+\ldots .+x_{9}+25}{10}=15$
$\frac{x_{1}+\ldots .+x_{9}+15}{10}=$ correct mean $=m$
$\frac{25}{10}-\frac{15}{10}=15-m$
$m=4$
Correct mean is 4 .
$\frac{x_{1}{ }^{2}+\ldots .+x_{9}{ }^{2}+25^{2}}{10}-15^{2}=15$
$\frac{x_{1}{ }^{2}+\ldots .+x_{9}{ }^{2}+15^{2}}{10}-14^{2}=$ correct variance $=$ new SD
$\frac{25^{2}-15^{2}}{10}-\left(15^{2}-14^{2}\right)=15-v$
Variance is $4, S D$ is 2 .

Question: Let $f(x)=2 x^{2}-x-1$ and $S=\{n:|f(n)| \leq 800\}$ where $n \in z$, then $\sum_{n \in s} f(n)=$

Answer: 10620.00

Solution:

$$
\begin{aligned}
& -800 \leq f(n) \leq 800 \\
& -800 \leq 2 n^{2}-n-1 \leq 800 \\
& 2 n^{2}-n+799 \geq 0 \\
& a>0 \\
& D=1-4(2)(799)<0
\end{aligned}
$$

Always true

$$
n \in R
$$

$$
2 n^{2}-n-801 \leq 0
$$

$$
n=\frac{1 \pm \sqrt{1+4(2)(801)}}{4}
$$

$$
=\frac{1 \pm \sqrt{6408}}{4}
$$

$$
n \approx \frac{1 \pm 80}{4}
$$

$$
n=\frac{-79}{4}, \frac{81}{4}
$$

$$
n \in[-19.75,20.25]
$$

$$
n \in\{-19,-18,-17, \ldots .,-1,0,1, \ldots ., 20\}
$$

$$
f(n)=2 n^{2}-n-1
$$

$$
f(-19)=2(-19)^{2}-(-19)-1
$$

:

$$
f(19)=2(19)^{2}-(19)-1
$$

$$
f(20)=2(20)^{2}-(20)-1
$$

$$
=2\left[(-19)^{2}+(-18)^{2}+\ldots(-1)^{2}+0^{2}+(1)^{2}+\ldots+19^{2}+20^{2}\right]
$$

$$
=-[(-19)+(-18)+\ldots+(-1)+0+(1)+\ldots+(19)+(20)]-40
$$

$=2\left[400+2\left(\frac{19 \times 20 \times 39}{6}\right)\right]-20-40$
$=10620$

