JEE-Main-28-07-2022-Shift-1 (Memory Based)

Chemistry

Question: Which of the following has least tendency to liberate H_{2} from mineral acids.
Options:
(a) Cu
(b) Mn
(c) Ni
(d) Zn

Answer: (a)
Solution: Cu cannot displace H_{2} from mineral acids because it is below hydrogen in electrochemical series.

Question: Match the gases evolved in following reaction

(Column I)	(Column II)
(A) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\Delta}$	(i) H_{2}
(B) $\mathrm{KMnO}_{4}+\mathrm{HCl} \rightarrow$	(ii) N_{2}
(C) $\mathrm{Al}+\mathrm{NaOH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow$	(iii) O_{2}
(D) $\mathrm{NaNO}_{3}+\mathrm{Heat} \rightarrow$	(iv) Cl_{2}

Options:

(a) $\mathrm{A} \rightarrow$ (i); $\mathrm{B} \rightarrow$ (iii); $\mathrm{C} \rightarrow$ (ii); $\mathrm{D} \rightarrow$ (iv)
(b) $\mathrm{A} \rightarrow$ (iv); $\mathrm{B} \rightarrow$ (iii); $\mathrm{C} \rightarrow$ (i); $\mathrm{D} \rightarrow$ (ii)
(c) $\mathrm{A} \rightarrow$ (iii); $\mathrm{B} \rightarrow$ (ii); $\mathrm{C} \rightarrow$ (iv); $\mathrm{D} \rightarrow$ (i)
(d) $\mathrm{A} \rightarrow$ (ii); $\mathrm{B} \rightarrow$ (iv); $\mathrm{C} \rightarrow$ (i); $\mathrm{D} \rightarrow$ (iii)

Answer: (d)

Solution:

$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\Delta} \mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{N}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{NaNO}_{3} \xrightarrow{\Delta} 2 \mathrm{NaNO}_{2}+\mathrm{O}_{2}$
$2 \mathrm{KMnO}_{4}+16 \mathrm{HCl} \rightarrow 2 \mathrm{KCl}+2 \mathrm{MnCl}_{2}+5 \mathrm{Cl}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{Al}+2 \mathrm{NaOH}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-}+3 \mathrm{H}_{2}$
Question: What are the monomers of terylene?

Options:

(a) Phenol and formaldehyde
(b) Ethylene glycol and phthalic acid
(c) Adipic acid and hexamethylenediamine
(d) Ethylene glycol and terephthalic acid

Answer: (d)
Solution: Ethylene glycol and terephthalic acid are monomers which on polymerization gives terylene.

Question: Correct statements for enzyme inhibitor drugs-
I. They are competitive and non-competitive drugs
II. They bind at active and allosteric sites
III. Competitive drugs inhibits active site
IV. Non-competitive drugs inhibits allosteric sites

Options:

(a) I and II
(b) II and III
(c) III and IV
(d) All are correct

Answer: (d)
Solution: Drugs compete with the natural substrate for their attachment on the active sites of enzymes. Such drugs are called competitive inhibitors
Some drugs do not bind to the enzyme's active site. These bind to a different site of enzyme which is called allosteric site.

Question: Which pair has same or identical electron gain enthalpy?
Options:
(a) Rb, Cs
(b) I, At
(c) Ar, Kr
(d) Na, k

Answer: (c)
Solution: Ar \& Kr have same electron gain enthalpy of $96 \mathrm{~kJ} / \mathrm{mol}$
Question: match the following.

(Column I) Reaction	(Column II) Catalyst
(A) Haber Process	(i) $\mathrm{V}_{2} \mathrm{O}_{5}$
(B) Contact process	(ii) Fe
(C) Ostwald process	(iii) Platinised asbestos

Options:

(a) $\mathrm{A} \rightarrow$ (ii); $\mathrm{B} \rightarrow$ (i); $\mathrm{C} \rightarrow$ (iii)
(b) $\mathrm{A} \rightarrow$ (ii); $\mathrm{B} \rightarrow$ (iii); $\mathrm{C} \rightarrow$ (i)
(c) $\mathrm{A} \rightarrow$ (iii); $\mathrm{B} \rightarrow$ (ii); $\mathrm{C} \rightarrow$ (i)
(d) $\mathrm{A} \rightarrow$ (i); $\mathrm{B} \rightarrow$ (iii); $\mathrm{C} \rightarrow$ (ii)

Answer: (a)
Solution: In Haber's process, catalyst used is Fe ; In contact process catalyst used is $\mathrm{V}_{2} \mathrm{O}$. In Ostwald's process catalyst used is platinised asbestos

Question: $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{CH}=\mathrm{CH}_{2}$ was reacted with $\mathrm{Hg}(\mathrm{OAC})_{2}$ and on one side $\mathrm{BH}_{3} / \mathrm{H}_{2} \mathrm{O}_{2}$ which of the following product will form?

Options:

(a) $\mathrm{Hg}(\mathrm{OAC})_{2}$ - Markovnikov product; $\mathrm{BH}_{3} / \mathrm{H}_{2} \mathrm{O}_{2}$ - anti Markovnikov product
(b) $\mathrm{Hg}(\mathrm{OAC})_{2}$ - anti Markovnikov product; $\mathrm{BH}_{3} / \mathrm{H}_{2} \mathrm{O}_{2}$ - Markovnikov product
(c) Both will give Markovnikov product
(d) Both will give anti Markovnikov product

Answer: (a)
Solution:

> (Markovnikov product)
> (Anti Markovnikov product)

Question: Statement 1: BOD level in polluted water is more than clean water
Statement 2: Eutrophication leads to decrease in oxygen
Options:
(a) Both statement 1 and 2 are correct
(b) Statement 1 is correct but statement 2 is incorrect
(c) Statement 1 is incorrect but statement 2 is correct
(d) Both statement 1 and 2 are incorrect.

Answer: (a)
Solution: Both statements are correct.
Statement-1: BOD is directly proportional to the amount of pollution. So, High BOD indicates highly polluted water.
Statement 2: Oxygen depletion, or hypoxia, is a common consequence of eutrophication, both in fresh water and seawater.

Question: Structure of pyranose is

Options:

(a)

(b)

(c)

COOH

 $(\mathrm{CHOH})_{4}$
 $\mathrm{CH}_{2} \mathrm{OH}$

(d)

Answer: (a)
Solution: The six membered cyclic structure of glucose is called pyranose structure ($\alpha-$ or $\beta-$), in analogy with pyran.

Question: Which reaction is involved in leaching?

Options:

(a) $\mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right]$
(b) $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{xH}_{2} \mathrm{O}$
(c) $\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{Mg} \rightarrow \mathrm{MgO}+\mathrm{Al}$
(d) Both (a) and (b)

Answer: (d)

Solution:

$\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{NaOH}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right](\mathrm{aq})$
$2 \mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right](\mathrm{aq})+2 \mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}(\mathrm{s})+2 \mathrm{NaHCO}_{3}(\mathrm{aq})$
$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}(\mathrm{s}) \xrightarrow{1470 \mathrm{~K}} \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{xH}_{2} \mathrm{O}(\mathrm{g})$
Question: Phenol $+\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \rightarrow$ Product

Options:

(a) Benzoquinone
(b) Picric acid
(c) Benzaldehyde
(d) None of these

Answer: (a)

Solution:

Question:

Options:

(a)

(A)
(B)
(b)

(B)

(A)
(c)

(A)

(B)
(d)

(B)

(A)

Answer: (b)

Solution:

(Hofmann eliminations product)

Question: Match the following.

(Column I)	(Column II)
(A)	(i) Aromatic compound

(iii) Bicyclic compound

Options:
(a) $\mathrm{A} \rightarrow$ (i); $\mathrm{B} \rightarrow$ (iii); $\mathrm{C} \rightarrow$ (ii); $\mathrm{D} \rightarrow$ (iv)
(b) $\mathrm{A} \rightarrow$ (iv); $\mathrm{B} \rightarrow$ (iii); $\mathrm{C} \rightarrow$ (i); $\mathrm{D} \rightarrow$ (ii)
(c) $\mathrm{A} \rightarrow$ (iii); $\mathrm{B} \rightarrow$ (ii); $\mathrm{C} \rightarrow$ (iv); $\mathrm{D} \rightarrow$ (i)
(d) $\mathrm{A} \rightarrow$ (ii); $\mathrm{B} \rightarrow$ (i); $\mathrm{C} \rightarrow$ (iv); $\mathrm{D} \rightarrow$ (iii)

Answer: (d)

Solution:

\Rightarrow Aromatic compound
 \Rightarrow Non-planar heterocyclic compound

\Rightarrow Bicyclic compound
Question: Batteries reaction matching

(Column I)	(Column II)
(A) Primary battery	(i) $\mathrm{Pb}(\mathrm{s})+\mathrm{PbO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{SO}_{4}$ \downarrow $2 \mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}$
(B) Secondary battery	(ii) $\mathrm{Zn}(\mathrm{s})+2 \mathrm{NH}_{4}+2 \mathrm{MnO}_{2}$ \downarrow $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}+\mathrm{Mn}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O}$
(C) Mercury cell	(iii) $\mathrm{Zn}(\mathrm{Hg})+\mathrm{HgO}(\mathrm{s})$ \downarrow $\mathrm{ZnO}(\mathrm{s})+\mathrm{Hg}(1)$

Options:

(a) $\mathrm{A} \rightarrow$ (iii); $\mathrm{B} \rightarrow$ (ii); $\mathrm{C} \rightarrow$ (i)
(b) $\mathrm{A} \rightarrow$ (ii); $\mathrm{B} \rightarrow$ (i); $\mathrm{C} \rightarrow$ (iii)
(c) $\mathrm{A} \rightarrow$ (i); $\mathrm{B} \rightarrow$ (ii); $\mathrm{C} \rightarrow$ (iii)
(d) $\mathrm{A} \rightarrow$ (ii); $\mathrm{B} \rightarrow$ (iii); $\mathrm{C} \rightarrow$ (i)

Answer: (b)

Solution:

(A) Primary battery \Rightarrow (ii) $\mathrm{Zn}(\mathrm{s})+2 \mathrm{NH}_{4}{ }^{+}+2 \mathrm{MnO}_{2}$

$$
\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}+\mathrm{Mn}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

(B) Secondary battery \Rightarrow (i) $\mathrm{Pb}(\mathrm{s})+\mathrm{PbO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{SO}_{4}$

$$
2 \mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}
$$

(C) Mercury cell \Rightarrow (iii) $\mathrm{Zn}(\mathrm{Hg})+\mathrm{HgO}(\mathrm{s})$

$$
\mathrm{ZnO}(\mathrm{~s})+\mathrm{Hg}(\mathrm{l})
$$

Question: Consider the following reaction:
$\underset{1 \text { mol }}{\mathrm{X}}+\underset{\text { Imol }}{\mathrm{Y}}+\underset{0.05 \mathrm{~mol}}{3 \mathrm{Z}} \rightarrow \mathrm{XYZ}_{3}$
Calculate the mass of XYZ_{3} formed at the end of the reaction (ing).
[Given: molar masses of X, Y and Z are $10,20,30 \mathrm{~g} / \mathrm{mol}$ respectively.]
Answer: 2.00

Solution:

$\underset{\substack{\text { Imol } \\ 1-\left(\frac{0.05}{3}\right)}}{\mathrm{X}}+\underset{\substack{1 \text { mol } \\\left(\frac{1-0.05}{3}\right)}}{\mathrm{Y}}+\underset{0}{0.05 \mathrm{mmol}} \underset{0}{3 \mathrm{Z}} \rightarrow \underset{\mathrm{XYZ}}{3} \mathrm{(} \mathrm{\left.\frac{0.05}{3}\right)}$
(Z is limiting reagent)
Molar mass of $\mathrm{XYZ}_{3}=10+20+(3 \times 30)=120 \mathrm{~g} / \mathrm{mol}$
Mass of $\mathrm{XYZ}_{3}=\frac{0.05}{3} \times 120=2 \mathrm{~g}$
Question: Half life of a reaction is 2 hr 30 min . Calculate the time (in min) required to reduce reactant concentration to $\frac{1}{64}$ (Round off to nearest integer)
Answer: 899.00

Solution:

$\mathrm{t}_{1 / 2}=2 \mathrm{hr} 30 \mathrm{~min}$
$\left[\mathrm{A}_{\text {final }}\right]=\frac{1}{64}\left[\mathrm{~A}_{\text {initial }}\right]$
$\mathrm{t}=\frac{2.303}{\mathrm{k}} \log \frac{\left[\mathrm{A}_{\text {initial }}\right]}{\left[\mathrm{A}_{\text {final }}\right]}$
$\mathrm{t}=\frac{2.303}{0.693} \times\left(\mathrm{t}_{1 / 2}\right) \log \left[\frac{64}{1}\right]\left[\because \mathrm{t}_{1 / 2}=\frac{0.693}{\mathrm{k}}\right]$
$t=3.32 \times(150) \log (64)$
$=498 \times 1.8060$
$t=899.38 \mathrm{~min}$

Question: How many of the following are paramagnetic?
$\mathrm{O}_{2}{ }^{2-}, \mathrm{He}_{2}{ }^{+}, \mathrm{C}_{2}^{-}, \mathrm{B}_{2}, \mathrm{Li}_{2}, \mathrm{O}_{2}{ }^{+}, \mathrm{O}_{2}^{-}$
Answer: 5.00
Solution: $\mathrm{He}_{2}{ }^{+}, \mathrm{C}_{2}{ }^{-}, \mathrm{B}_{2}, \mathrm{O}_{2}{ }^{+}$and $\mathrm{O}_{2}{ }^{-}$
These are paramagnetic species due to presence to unpaired electron
Question: Number of structure having square pyramidal shape is/are $\mathrm{ICl}_{2}, \mathrm{ICl}_{5}, \mathrm{BrF}_{5}, \mathrm{ClF}_{5}$
Answer: 3.00

Solution:

Question: MnO_{4}^{2-} disproportionates in acidic medium to form two compounds of manganese A and B. Oxidation state of Mn is less in B than in A. Spin only magnetic moment of B (in B.M.) is: (Round off to nearest integer)

Answer: 4.00

Solution:

$$
3{\stackrel{(+6)}{\mathrm{Mn}} \mathrm{O}_{4}^{2-}}_{4 \mathrm{H}^{+}}^{\rightarrow} \underset{(\mathrm{A})}{(+7)} \mathrm{MnO}_{4}^{-}+\underset{(\mathrm{B})}{\mathrm{MnO}_{2}}+2 \mathrm{H}_{2} \mathrm{O}
$$

$\mathrm{MnO}_{2}-\mathrm{Mn}$ is present in +4 oxidation state
$\mathrm{Mn}^{+4}-[\mathrm{Ar}] 3 \mathrm{~d}^{3}$

$\mathrm{n}=3$
$\mu=\sqrt{\mathrm{n}(\mathrm{n}+2)}=\sqrt{3(3+2)}=\sqrt{15} \mathrm{BM}$
$=3.89 \mathrm{BM} \approx 4 \mathrm{BM}$

Question: K_{a} for $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}$ is 2×10^{-5}. Find pH of 0.2 M solution
Answer: 9.00

Solution:

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \underset{\mathrm{H}}{ } \mathrm{H}_{3} \mathrm{C}_{7} \mathrm{COOH}+\underset{x}{\mathrm{OH}^{-}} \\
& \mathrm{K}_{\mathrm{h}}=\frac{x^{2}}{0.2-x}=\frac{x^{2}}{0.2} \\
& \mathrm{~K}_{\mathrm{h}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a}}} \\
& \frac{10^{-14}}{2 \times 10^{-5}}=\frac{x^{2}}{0.2} \\
& x=10^{-5} \mathrm{~mol} / \mathrm{L} \\
& {\left[\mathrm{OH}^{-}\right]=10^{-5}} \\
& \mathrm{H}^{+}=10^{-14} / 10^{-5}=10^{-9} \therefore \mathrm{pH}=9
\end{aligned}
$$

Question: Number of possible isomers of $\left[\mathrm{Cu}(\mathrm{en})_{2}(\mathrm{SCN})_{2}\right]$
Answer: 6.00
Solution: $\left[\mathrm{Cu}(\mathrm{en})_{2}(\mathrm{SCN})_{2}\right]$

(IV)
(V)
(VI)

