JEE-Main-29-07-2022-Shift-1 (Memory Based)

Chemistry

Question: Product for the given reaction is:
$\mathrm{Zn}+\mathrm{NaOH} \rightarrow$

Options:

(a) ZnO
(b) ZnO_{2}
(c) $\left[\mathrm{ZnO}_{3}\right]^{4-}$
(d) $[\mathrm{Zn}(\mathrm{OH}) 4]^{2-}$

Answer: (d)
Solution: $\mathrm{Zn}(\mathrm{s})+2 \mathrm{NaOH}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Na}_{2}\left[\mathrm{Zn}(\mathrm{OH})_{4}\right]+\mathrm{H}_{2}(\mathrm{~g})$

Question: Which of the following is the strongest Bronsted base?
Options:
(a)

(b)

(c)

(d)

Answer: (a)
Solution: 3° aliphatic amines are strongest base among $3^{\circ}, 2^{\circ}$ and 1° amines. A is strongest base as it is 3° and lone pair is more available due to bridged alkyl group.

Question: Which of the following are examples of herbicides?

Options:

(a) Sodium arsinite, Sodium chlorate
(b) PAN, Sodium arsinite
(c) Sodium bicarbonate, DDT
(d) DDT, Sodium chlorate

Answer: (a)
Solution: Sodium chlorate $\left(\mathrm{NaClO}_{3}\right)$, sodium arsinite $\left(\mathrm{Na}_{3} \mathrm{AsO}_{3}\right)$ are examples of herbicides.

Question: In Haber's process, 5 g of H_{2} reacts with 20 g of N_{2}. Find the moles of ammonia formed.

Options:

(a) 1.42
(b) 2.8
(c) 2
(d) 1

Answer: (a)
Solution:

$$
\begin{aligned}
& \mathrm{N}_{2}+\quad 3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3} \\
& 2 \mathrm{~g} \quad 5 \mathrm{~g} \\
& =\left(\frac{20}{27}\right) \text { moles }\left(\frac{5}{2}\right)=2.5 \text { moles } \\
& =0.714 \text { moles }
\end{aligned}
$$

N_{2} is limiting reagent
1 moles N_{2} forms 2 moles NH_{3}
0.714 mole N_{2} will form 2×0.714 mole $=1.428$ moles NH_{3}

Question: Which pair among the following is colourless?

Options:

(a) $\mathrm{Sc}^{3+}, \mathrm{Zn}^{2+}$
(b) $\mathrm{Ti}^{2+}, \mathrm{Cu}^{2+}$
(c) $\mathrm{Fe}^{3+}, \mathrm{Mn}^{2+}$
(d) $\mathrm{Fe}^{3+}, \mathrm{Cu}^{2+}$

Answer: (a)

Solution:

$\mathrm{Sc}^{3+}-[\mathrm{Ar}]$
$\mathrm{Zn}^{2+}-3 \mathrm{~d}^{10}$
Both of them have completely filled orbitals.
Therefore, both are colourless

Question: Which of the following pairs will give different products on ozonolysis?

Options:

(a)

(b)

(c)

(d)

Answer: (c)

Solution:

Question: Find 'C'

Options:

(a)

(b)

(c)

(d)

Answer: (b)
Solution:

Question: Find A and B respectively?

Options:

(a)

(b)

(c)

$$
\mathrm{B}=
$$

(d)

$B=-C \equiv N$
Answer: (a)
Solution:

Question: Which of the following is a hypnotic drug?

Options:

(a) Seldane
(b) Terpineol
(c) Amytal
(d) Histamine

Answer: (c)
Solution: Derivatives of barbituric acid viz, veronal, amytal, nembutal, luminal and seconal constitute an important class of tranquilizers. These are hypnotic.

Question: $\mathrm{K}_{\text {sp }}$ of PbS is given as 9×10^{-30} at a given temperature. Its solubility is $x \times 10^{-15}$. Find the value of x

Answer: 3.00
Solution: $\mathrm{PbS} \rightleftharpoons \mathrm{Pb}_{s}^{2+}+\mathrm{S}_{s}^{2-}$
$K_{\text {sp }}=S^{2}$
$9 \times 10^{-30}=S^{2}$
$\mathrm{S}=\sqrt{9 \times 10^{-30}}=3 \times 10^{-15}$

Question: Ionic radius for A^{+}and B^{-}are 281 pm and 180 pm respectively forming a ccp structure. If B^{-}forms a ccp lattice and A^{+}fills the octahedral voids, then what is the value of edge length in pm ?

Answer: 778.00

Solution:

$\mathrm{r}^{+}+\mathrm{r}^{-}=\frac{\mathrm{a}}{2}$
$281+180=\frac{\mathrm{a}}{2}$
$\mathrm{a}=778 \mathrm{pm}$

Question: Consider a complex $\left[\mathrm{Fe}(\mathrm{OH})_{6}\right]^{3-}$ which act as an inner orbital complex. If the CFSE value after ignoring pairing energy is represented as $-\mathrm{x} \Delta_{0}$, then x is:
(Δ_{o} is splitting energy in octahedral complex)
Answer: 2.00
Solution: Charge on Fe in $\left[\mathrm{Fe}(\mathrm{OH})_{6}\right]^{3-}$ is +3
$\mathrm{Fe}^{+3}-3 \mathrm{~d}^{5}$

CFSE $=(-0.4 \times 5) \Delta_{o}=-2 \Delta_{0}$

Question: The magnitude of change in oxidation state of manganese in KMnO_{4} in faintly alkaline or neutral medium is:

Answer: 3.00

Solution:

Change in oxidation state of $\mathrm{Mn}=7-4=3$

