

JEE-Main-29-07-2022-Shift-1 (Memory Based)

Chemistry

Question: Product for the given reaction is:

 $Zn + NaOH \rightarrow$

Options:

(a) ZnO

(b) ZnO₂

(c) $[ZnO_3]^{4-}$

(d) [Zn(OH)4]²⁻

Answer: (d)

Solution: $Zn(s) + 2NaOH(aq) + 2H_2O(1) \rightarrow Na_2[Zn(OH)_4] + H_2(g)$

Question: Which of the following is the strongest Bronsted base?

Options:

(a)

(b)

(d)

Answer: (a)

Solution: 3° aliphatic amines are strongest base among 3°, 2° and 1° amines. A is strongest base as it is 3° and lone pair is more available due to bridged alkyl group.

Question: Which of the following are examples of herbicides?

Options:

(a) Sodium arsinite, Sodium chlorate

(b) PAN, Sodium arsinite

(c) Sodium bicarbonate, DDT

(d) DDT, Sodium chlorate

Answer: (a)

Solution: Solution: Solution chlorate (NaClO₃), sodium arsinite (Na₃AsO₃) are examples of herbicides.

Question: In Haber's process, 5 g of H₂ reacts with 20 g of N₂. Find the moles of ammonia formed.

Options:

- (a) 1.42
- (b) 2.8
- (c) 2
- (d) 1
- Answer: (a)

Solution:

N₂ + 3H₂ \rightarrow 2NH₃ 2g 5g = $\left(\frac{20}{27}\right)$ moles $\left(\frac{5}{2}\right)$ = 2.5 moles = 0.714 moles

N₂ is limiting reagent 1 moles N₂ forms 2 moles NH₃ 0.714 mole N₂ will form 2 × 0.714 mole = 1.428 moles NH₃

Question: Which pair among the following is colourless?

Options:

(a) Sc^{3+} , Zn^{2+}

(b) Ti^{2+} , Cu^{2+}

(c) Fe^{3+} , Mn^{2+}

(d) Fe^{3+} , Cu^{2+}

Answer: (a)

Solution:

 $Sc^{3+}-[Ar]$

 $Zn^{2+} - 3d^{10}$

Both of them have completely filled orbitals.

Therefore, both are colourless

Question: Which of the following pairs will give different products on ozonolysis? Options:

(a)

(b)

(d)

Answer: (c)

Solution:

Question: Find 'C'

Options:

(a)

A = NC

 $B = -C \equiv N$

Answer: (a)

Solution:

Question: Which of the following is a hypnotic drug?

Options:

- (a) Seldane
- (b) Terpineol
- (c) Amytal
- (d) Histamine

Answer: (c)

Solution: Derivatives of barbituric acid viz, veronal, amytal, nembutal, luminal and seconal constitute an important class of tranquilizers. These are hypnotic.

Question: K_{sp} of PbS is given as 9×10^{-30} at a given temperature. Its solubility is $x \times 10^{-15}$. Find the value of x

Answer: 3.00 Solution: $PbS \rightleftharpoons Pb_s^{2+} + S_s^{2-}$

$$\begin{split} K_{sp} &= S^2 \\ 9 \times 10^{-30} &= S^2 \\ S &= \sqrt{9 \times 10^{-30}} \ \text{=} \ \text{3} \times 10^{-15} \end{split}$$

Question: Ionic radius for A^+ and B^- are 281 pm and 180 pm respectively forming a ccp structure. If B^- forms a ccp lattice and A^+ fills the octahedral voids, then what is the value of edge length in pm?

Answer: 778.00

Solution:

 $r^{+} + r^{-} = \frac{a}{2}$ 281 + 180 = $\frac{a}{2}$ a = 778 pm

Question: Consider a complex $[Fe(OH)_6]^{3-}$ which act as an inner orbital complex. If the CFSE value after ignoring pairing energy is represented as $-x \Delta_0$, then x is:

(Δ_0 is splitting energy in octahedral complex)

Answer: 2.00

Solution: Charge on Fe in [Fe(OH)₆]³⁻ is +3

 $Fe^{+3}-3d^5$

 $CFSE = (-0.4 \times 5)\Delta_0 = -2\Delta_0$

Question: The magnitude of change in oxidation state of manganese in KMnO₄ in faintly alkaline or neutral medium is:

Answer: 3.00

Solution:

 $\operatorname{K}\overset{(+7)}{\operatorname{Mn}}\operatorname{O}_{4} \xrightarrow{\operatorname{Neutral}} \operatorname{Mn}^{(+4)}\operatorname{O}_{2}$

Change in oxidation state of Mn = 7 - 4 = 3