

JEE-Main-29-07-2022-Shift-1 (Memory Based)

MATHEMATICS

Question: $\int_{0}^{\frac{\pi}{2}} \frac{dx}{3 + 2\sin x + \cos x}$ is equal to: Options:

- (a) $\tan^{-1}(2)$
- (b) $\tan^{-1}(2) \frac{\pi}{4}$ (c) $\frac{1}{2} \tan^{-1}(2) - \frac{\pi}{8}$ (d) $\frac{\pi}{3} - \tan^{-1}(2)$

Answer: (b)

Solution:

$$\int_{0}^{\frac{\pi}{2}} \frac{dx}{3+2\sin x + \cos x} = \int_{0}^{\frac{\pi}{2}} \frac{\left(1+\tan^{2}\frac{x}{2}\right)dx}{3+3\tan^{2}\frac{x}{2}+4\tan\frac{x}{2}+1-\tan^{2}\frac{x}{2}}$$
Let $\tan\frac{x}{2} = t \Rightarrow \sec^{2}\frac{x}{2}dx = 2dt$

$$= \int_{0}^{\frac{\pi}{2}} \frac{2dt}{2t^{2}+4t+4} = \int_{0}^{\frac{\pi}{2}} \frac{dt}{(t+1)^{2}+1}$$

$$\Rightarrow \left[\tan^{-1}(t+1)\right]_{0}^{1} = \tan^{-1}(2) - \tan^{-1}(1)$$

$$= \tan^{-1}(2) - \frac{\pi}{4}$$

Question: Let z = 2 + 3i, then value of $(z)^5 + (\overline{z})^5$ is: **Options:**

(a) 246 (b) 244 (c) 248 (d) 234 Answer: (b) Solution: $(z)^{5} + (\overline{z})^{5} = (2+3i)^{5} + (2-3i)^{5}$

$$= 2 \left[{}^{5}C_{0} \cdot 2^{5} + {}^{5}C_{2} \cdot 2^{3} (3i)^{2} + {}^{5}C_{4} \cdot 2^{1} \cdot (3i)^{4} \right]$$

= 2 [32 - 720 + 810]
= 244

Question: Let $\vec{a} = 3\hat{i} + \hat{j}, \vec{b} = \hat{i} + 2\hat{j} + \hat{k}$ and $\vec{a} \times (\vec{b} \times \vec{c}), \vec{b}$ is non parallel to \vec{c} , then value of λ is:

Options:

(a) 5 (b) -5 (c) 1 (d) -1 **Answer: (b) Solution:** Given, $\vec{a} = 3\hat{i} + \hat{j}$ and $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$ Also, $\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b} + \lambda \vec{c}$ $\Rightarrow (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} = \vec{b} + \lambda \vec{c}$ $\therefore \lambda = -(\vec{a} \cdot \vec{b}) = -(2+3) = -5$

Question: If $\lim_{x\to 0} \frac{\alpha e^x + \beta e^{-x} + \gamma \sin x}{x \sin^2 x} = \frac{2}{3}$, then which of the following option is incorrect?

Options:

(a) $\alpha^2 + \beta^2 + \gamma^2 = 1$ (b) $\alpha\beta + \beta\gamma + \gamma\alpha + 1 = 0$ (c) $\alpha\beta^2 + \beta\gamma^2 + \gamma\alpha^2 + 3 = 0$ (d) $\alpha^2 - \beta^2 + \gamma^2 + 4 = 0$

Answer: (b)

Solution:

$$\lim_{x\to 0}\frac{\alpha e^x + \beta e^{-x} + \gamma \sin x}{x \sin^2 x} = \frac{2}{3}$$

For indeterminacy, $\alpha + \beta = 0$ (i)

$$\Rightarrow \lim_{x \to 0} \frac{\alpha e^x + \beta e^{-x} + \gamma \sin x}{x^3} \times \frac{x^2}{\sin^2 x} = \frac{2}{3}$$

Apply L-Hospital rule,

$$\Rightarrow \lim_{x \to 0} \frac{\alpha e^x - \beta e^{-x} + \gamma \cos x}{3x^2} = \frac{2}{3}$$

$$\therefore \alpha - \beta + \gamma = 0 \qquad \dots (ii)$$

$$\Rightarrow \lim_{x \to 0} \frac{\alpha e^x + \beta e^{-x} - \gamma \sin x}{6x} = \frac{2}{3}$$
$$\Rightarrow \lim_{x \to 0} \frac{\alpha e^x - \beta e^{-x} - \gamma \cos x}{6} = \frac{2}{3}$$
$$\Rightarrow \alpha - \beta - \gamma = 4 \qquad \dots \text{(iii)}$$
$$\Rightarrow \beta = -1, \alpha = 1, \gamma = -2$$

Question: If $A = \{1, 2, ..., 60\}$ and B is relation on A defined as $B = \{(x, y) : y = pq \text{ where } p \text{ and } q \text{ are primes } \ge 3\}$ then number of elements in B is:

Options:

(a) 720

(b) 660 (c) 540

(d) 600

Answer: (b)

Solution:

Given $y = pq \{ p, q \text{ are prime numbers } \geq 3 \}$

 \therefore y can be generated from

3×3,3×5,3×7,3×11,3×13,3×17,3×19,5×5,5×7,5×11,7×7

 \Rightarrow Total 11 possibilities

x can be $\{1, 2, \dots, 60\}$

Number of relations $= 60 \times 11 = 660$

Question: If $f(x) = 3^{(x^2-2)^3} + 4$ and P: f(x) attains maximum value at x = 0. Q: f(x) have point of inflection at $x = \sqrt{2}$. R: f(x) is increasing for $x > \sqrt{2}$, then which of the following statement are correct? Options: (a) P and R

(b) *Q* and *R*(c) *P* and *Q*(d) *P*, *Q* and *R* all
Answer: (b)
Solution:

Given $f(x) = 3^{(x^2-2)^3} + 4$ $\therefore f'(x) = 3^{(x^2-2)^3} \cdot \ln 3 \cdot 3(x^2-2)^2 2x$ Now, f'(x) = 0, we get $x = 0, x = \pm \sqrt{2}$

 \therefore f(x) will have inflation point at $x = \sqrt{2}$

So, f(x) is increasing for $x > \sqrt{2}$ And will make minimum at x = 0

Question: Let $f(x) = |(x-1)|\cos|x-2|\sin|x-1|+|x-3||x^2-5x+4|$. The number of points where the function is not differentiable is:

Options:

- (a) 3
- (b) 4
- (c) 5 (d) 6

(u) 0

Answer: (a)

Solution:

$$f(x) = |(x-1)|\cos|x-2|\sin|x-1| + |x-3||x^2-5x+4|$$

$$f(x) = |(x-1)|\cos|x-2|\sin|x-1| + |x-3||(x-1)(x-4)|$$

$$f(x) = |(x-1)|\sin|x-1| \cdot \cos|x-2| + |x-3||(x-1)||(x-4)|$$

We have a lower line of the second se

We know, |(x-a)|g(|x-a|) is differentiable when x-a=0

 $\therefore f(x)$ is non-differentiable at x = 1, 3, 4

Question: Let A and B are two 3×3 non-zero real matrices and AB = 0, then which of the following options is correct?

Options:

(a) AX = B has unique solution
(b) AX = B has infinite solutions
(c) B is invertible
(d) (adj(A))B is invertible

Answer: (b) Solution:

 $\therefore AB = 0 \Longrightarrow |A| = 0 = |B|$

So, *B* is not invertible as |B| = 0

(adj(A))B is not invertible as |adj(A)B| = |adj(A)||B| = 0

AX = B has either no solution nor infinitely many solutions.

Question: If $|x-1| \le y \le \sqrt{5-x^2}$, then the area of region bounded by the curves is: Options:

(a) $\frac{5\pi}{4} - \frac{1}{2}$ (b) $\frac{5\pi}{4} - \frac{3}{2}$ (c) $\frac{3\pi}{4} - \frac{1}{2}$ (d) $\cos^{-1}\frac{1}{3} - \frac{1}{2}$

Answer: (a) Solution:

Clearly chord *AB* subtends a right angle at centre. Required area = area of $\triangle ABC$ + area of segment of circle on chord *AB* = $AC \cdot BC$ + [area of quarter circle – area of $\triangle AOB$] = $\frac{1}{2}\sqrt{2} \cdot 2\sqrt{2} + \left(\frac{5\pi}{4} - \frac{1}{2}\sqrt{5} \cdot \sqrt{5}\right)$ = $\frac{5\pi}{4} - \frac{1}{2}$

Question: A matrix of 3×3 order, should be filled either by 0 or 1 and sum of all elements should be prime number. Then the number of such matrix is equal to _____. **Answer: 282.00**

Solution:

Let $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$

Now, sum of all elements to be prime numbers.

So, for 2, number of ways $= {}^9C_2 = 36$

For 3, number of ways $= {}^9C_3 = 84$

For 5, number of ways $= {}^{9}C_{5} = 126$ For 7, number of ways $= {}^{9}C_{7} = 36$ That's all prime number we can get So total number of such matrix = 282.

Question: Let $a_1, a_2, a_3, \dots, a_n$ are in A.P. and $\sum_{r=1}^{\infty} \frac{a_r}{2^r} = 4$, then $4a_2$ is equal to _____.

Answer: 16.00 Solution:

Given,
$$\sum_{r=1}^{\infty} \frac{a^r}{2^r} = 4$$

$$\Rightarrow 4 = \frac{a_1}{2} + \frac{a^2}{2^2} + \frac{a^3}{2^3} + \dots$$

$$\frac{\frac{4}{2}}{2} = \frac{a_1}{2^2} + \frac{a_2}{2^2} + \dots$$

$$2 = \frac{a_1}{2} + \left(\frac{d}{2^2} + \frac{d}{2^3} + \dots\right)$$

$$2 = \frac{a_1}{2} + \frac{\frac{d}{4}}{1 - \frac{1}{2}}$$

$$a_1 + d = 4$$

$$\Rightarrow 4a_2 = 4\left(a_1 + d\right) = 4 \times 4 = 16$$

Question: If $\frac{1}{2 \cdot 3 \cdot 4} + \frac{1}{3 \cdot 4 \cdot 5} + \dots + \frac{1}{100 \cdot 101 \cdot 102} = \frac{k}{101}$, then 34k is equal to Answer: 286.00 Solution: $\frac{1}{2 \cdot 3 \cdot 4} + \frac{1}{3 \cdot 4 \cdot 5} + \dots + \frac{1}{100 \cdot 101 \cdot 102} = \frac{k}{101}$ $\Rightarrow \frac{1}{2} \left(\frac{4 - 2}{2 \cdot 3 \cdot 4} + \frac{5 - 3}{3 \cdot 4 \cdot 5} + \dots + \frac{102 - 100}{100 \cdot 101 \cdot 102} \right) = \frac{k}{101}$ $\Rightarrow \frac{1}{2} \left(\frac{1}{2 \cdot 3} - \frac{1}{3 \cdot 4} + \frac{1}{3 \cdot 4} - \frac{1}{4 \cdot 5} + \dots + \frac{1}{100 \cdot 101} - \frac{1}{101 \cdot 102} \right) = \frac{k}{101}$ $\Rightarrow \frac{1}{2} \left(\frac{1}{2 \cdot 3} - \frac{1}{101 \cdot 102} \right) = \frac{k}{101}$ $\Rightarrow k = \frac{1}{2} \left(\frac{101}{2 \cdot 3} - \frac{1}{102} \right) = \frac{1}{2} \left(\frac{10296}{2 \cdot 3 \cdot 102} \right) = \frac{858}{102}$ $\therefore 34k = 286$