JEE-Main-29-07-2022-Shift-1 (Memory Based)

MATHEMATICS

Question: $\int_{0}^{\frac{\pi}{2}} \frac{d x}{3+2 \sin x+\cos x}$ is equal to:
Options:
(a) $\tan ^{-1}(2)$
(b) $\tan ^{-1}(2)-\frac{\pi}{4}$
(c) $\frac{1}{2} \tan ^{-1}(2)-\frac{\pi}{8}$
(d) $\frac{\pi}{3}-\tan ^{-1}(2)$

Answer: (b)

Solution:
$\int_{0}^{\frac{\pi}{2}} \frac{d x}{3+2 \sin x+\cos x}=\int_{0}^{\frac{\pi}{2}} \frac{\left(1+\tan ^{2} \frac{x}{2}\right) d x}{3+3 \tan ^{2} \frac{x}{2}+4 \tan \frac{x}{2}+1-\tan ^{2} \frac{x}{2}}$
Let $\tan \frac{x}{2}=t \Rightarrow \sec ^{2} \frac{x}{2} d x=2 d t$
$=\int_{0}^{\frac{\pi}{2}} \frac{2 d t}{2 t^{2}+4 t+4}=\int_{0}^{\frac{\pi}{2}} \frac{d t}{(t+1)^{2}+1}$
$\Rightarrow\left[\tan ^{-1}(t+1)\right]_{0}^{1}=\tan ^{-1}(2)-\tan ^{-1}(1)$
$=\tan ^{-1}(2)-\frac{\pi}{4}$

Question: Let $z=2+3 i$, then value of $(z)^{5}+(\bar{z})^{5}$ is:
Options:
(a) 246
(b) 244
(c) 248
(d) 234

Answer: (b)

Solution:

$(z)^{5}+(\bar{z})^{5}=(2+3 i)^{5}+(2-3 i)^{5}$
$=2\left[{ }^{5} C_{0} \cdot 2^{5}+{ }^{5} C_{2} \cdot 2^{3}(3 i)^{2}+{ }^{5} C_{4} \cdot 2^{1} \cdot(3 i)^{4}\right]$
$=2[32-720+810]$
$=244$

Question: Let $\vec{a}=3 \hat{i}+\hat{j}, \vec{b}=\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{a} \times(\vec{b} \times \vec{c}), \vec{b}$ is non parallel to \vec{c}, then value of λ is:

Options:

(a) 5
(b) -5
(c) 1
(d) -1

Answer: (b)

Solution:

Given, $\vec{a}=3 \hat{i}+\hat{j}$ and $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$
Also,
$\vec{a} \times(\vec{b} \times \vec{c})=\vec{b}+\lambda \vec{c}$
$\Rightarrow(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}=\vec{b}+\lambda \vec{c}$
$\therefore \lambda=-(\vec{a} \cdot \vec{b})=-(2+3)=-5$

Question: If $\lim _{x \rightarrow 0} \frac{\alpha e^{x}+\beta e^{-x}+\gamma \sin x}{x \sin ^{2} x}=\frac{2}{3}$, then which of the following option is incorrect?

Options:

(a) $\alpha^{2}+\beta^{2}+\gamma^{2}=1$
(b) $\alpha \beta+\beta \gamma+\gamma \alpha+1=0$
(c) $\alpha \beta^{2}+\beta \gamma^{2}+\gamma \alpha^{2}+3=0$
(d) $\alpha^{2}-\beta^{2}+\gamma^{2}+4=0$

Answer: (b)

Solution:

$\lim _{x \rightarrow 0} \frac{\alpha e^{x}+\beta e^{-x}+\gamma \sin x}{x \sin ^{2} x}=\frac{2}{3}$
For indeterminacy, $\alpha+\beta=0$
$\Rightarrow \lim _{x \rightarrow 0} \frac{\alpha e^{x}+\beta e^{-x}+\gamma \sin x}{x^{3}} \times \frac{x^{2}}{\sin ^{2} x}=\frac{2}{3}$
Apply L-Hospital rule,
$\Rightarrow \lim _{x \rightarrow 0} \frac{\alpha e^{x}-\beta e^{-x}+\gamma \cos x}{3 x^{2}}=\frac{2}{3}$
$\because \alpha-\beta+\gamma=0$
$\Rightarrow \lim _{x \rightarrow 0} \frac{\alpha e^{x}+\beta e^{-x}-\gamma \sin x}{6 x}=\frac{2}{3}$
$\Rightarrow \lim _{x \rightarrow 0} \frac{\alpha e^{x}-\beta e^{-x}-\gamma \cos x}{6}=\frac{2}{3}$
$\Rightarrow \alpha-\beta-\gamma=4$
$\Rightarrow \beta=-1, \alpha=1, \gamma=-2$

Question: If $A=\{1,2, \ldots, 60\}$ and B is relation on A defined as $B=\{(x, y): y=p q$ where p and q are primes $\geq 3\}$ then number of elements in B is:

Options:

(a) 720
(b) 660
(c) 540
(d) 600

Answer: (b)

Solution:

Given $y=p q\{p, q$ are prime numbers $\geq 3\}$
$\therefore y$ can be generated from
$3 \times 3,3 \times 5,3 \times 7,3 \times 11,3 \times 13,3 \times 17,3 \times 19,5 \times 5,5 \times 7,5 \times 11,7 \times 7$
\Rightarrow Total 11 possibilties
x can be $\{1,2, \ldots ., 60\}$
Number of relations $=60 \times 11=660$

Question: If $f(x)=3^{\left(x^{2}-2\right)^{3}}+4$ and
$P: f(x)$ attains maximum value at $x=0$.
$Q: f(x)$ have point of inflection at $x=\sqrt{2}$.
$R: f(x)$ is increasing for $x>\sqrt{2}$, then which of the following statement are correct?

Options:

(a) P and R
(b) Q and R
(c) P and Q
(d) P, Q and R all

Answer: (b)

Solution:

Given $f(x)=3^{\left(x^{2}-2\right)^{3}}+4$
$\therefore f^{\prime}(x)=3^{\left(x^{2}-2\right)^{3}} \cdot \ln 3 \cdot 3\left(x^{2}-2\right)^{2} 2 x$
Now, $f^{\prime}(x)=0$, we get $x=0, x= \pm \sqrt{2}$
$\therefore f(x)$ will have inflation point at $x=\sqrt{2}$

So, $f(x)$ is increasing for $x>\sqrt{2}$
And will make minimum at $x=0$

Question: Let $f(x)=|(x-1)| \cos |x-2| \sin |x-1|+|x-3|\left|x^{2}-5 x+4\right|$. The number of points where the function is not differentiable is:

Options:

(a) 3
(b) 4
(c) 5
(d) 6

Answer: (a)

Solution:

$f(x)=|(x-1)| \cos |x-2| \sin |x-1|+|x-3|\left|x^{2}-5 x+4\right|$
$f(x)=|(x-1)| \cos |x-2| \sin |x-1|+|x-3||(x-1)(x-4)|$
$f(x)=|(x-1)| \sin |x-1| \cdot \cos |x-2|+|x-3||(x-1)||(x-4)|$
We know, $|(x-a)| g(|x-a|)$ is differentiable when $x-a=0$
$\therefore f(x)$ is non-differentiable at $x=1,3,4$

Question: Let A and B are two 3×3 non-zero real matrices and $A B=0$, then which of the following options is correct?

Options:

(a) $A X=B$ has unique solution
(b) $A X=B$ has infinite solutions
(c) B is invertible
(d) $(\operatorname{adj}(A)) B$ is invertible

Answer: (b)

Solution:

$\because A B=0 \Rightarrow|A|=0=|B|$
So, B is not invertible as $|B|=0$
$(\operatorname{adj}(A)) B$ is not invertible as $|\operatorname{adj}(A) B|=|\operatorname{adj}(A)||B|=0$
$A X=B$ has either no solution nor infinitely many solutions.

Question: If $|x-1| \leq y \leq \sqrt{5-x^{2}}$, then the area of region bounded by the curves is:

Options:

(a) $\frac{5 \pi}{4}-\frac{1}{2}$
(b) $\frac{5 \pi}{4}-\frac{3}{2}$
(c) $\frac{3 \pi}{4}-\frac{1}{2}$
(d) $\cos ^{-1} \frac{1}{3}-\frac{1}{2}$

Answer: (a)
Solution:

Clearly chord $A B$ subtends a right angle at centre.
Required area $=$ area of $\triangle A B C+$ area of segment of circle on chord $A B$
$=A C \cdot B C+$ [area of quarter circle - area of $\triangle A O B$]
$=\frac{1}{2} \sqrt{2} \cdot 2 \sqrt{2}+\left(\frac{5 \pi}{4}-\frac{1}{2} \sqrt{5} \cdot \sqrt{5}\right)$
$=\frac{5 \pi}{4}-\frac{1}{2}$

Question: A matrix of 3×3 order, should be filled either by 0 or 1 and sum of all elements should be prime number. Then the number of such matrix is equal to \qquad .

Answer: 282.00

Solution:

Let $A=\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]$
Now, sum of all elements to be prime numbers.
So, for 2, number of ways $={ }^{9} C_{2}=36$
For 3, number of ways $={ }^{9} C_{3}=84$

For 5 , number of ways $={ }^{9} C_{5}=126$
For 7, number of ways $={ }^{9} C_{7}=36$
That's all prime number we can get
So total number of such matrix $=282$.

Question: Let $a_{1}, a_{2}, a_{3}, \ldots ., a_{n}$ are in A.P. and $\sum_{r=1}^{\infty} \frac{a_{r}}{2^{r}}=4$, then $4 a_{2}$ is equal to \qquad .

Answer: 16.00

Solution:

Given, $\sum_{r=1}^{\infty} \frac{a^{r}}{2^{r}}=4$
$\Rightarrow 4=\frac{a_{1}}{2}+\frac{a^{2}}{2^{2}}+\frac{a^{3}}{2^{3}}+\ldots$.
$\underline{\frac{4}{2}=} \quad \frac{a_{1}}{2^{2}}+\frac{a_{2}}{2^{2}}+\ldots$
$2=\frac{a_{1}}{2}+\left(\frac{d}{2^{2}}+\frac{d}{2^{3}}+\ldots.\right)$
$2=\frac{a_{1}}{2}+\frac{\frac{d}{4}}{1-\frac{1}{2}}$
$a_{1}+d=4$
$\Rightarrow 4 a_{2}=4\left(a_{1}+d\right)=4 \times 4=16$

Question: If $\frac{1}{2 \cdot 3 \cdot 4}+\frac{1}{3 \cdot 4 \cdot 5}+\ldots+\frac{1}{100 \cdot 101 \cdot 102}=\frac{k}{101}$, then $34 k$ is equal to \qquad .
Answer: 286.00

Solution:

$\frac{1}{2 \cdot 3 \cdot 4}+\frac{1}{3 \cdot 4 \cdot 5}+\ldots+\frac{1}{100 \cdot 101 \cdot 102}=\frac{k}{101}$
$\Rightarrow \frac{1}{2}\left(\frac{4-2}{2 \cdot 3 \cdot 4}+\frac{5-3}{3 \cdot 4 \cdot 5}+\ldots+\frac{102-100}{100 \cdot 101 \cdot 102}\right)=\frac{k}{101}$
$\Rightarrow \frac{1}{2}\left(\frac{1}{2 \cdot 3}-\frac{1}{3 \cdot 4}+\frac{1}{3 \cdot 4}-\frac{1}{4 \cdot 5}+\ldots+\frac{1}{100 \cdot 101}-\frac{1}{101 \cdot 102}\right)=\frac{k}{101}$
$\Rightarrow \frac{1}{2}\left(\frac{1}{2 \cdot 3}-\frac{1}{101 \cdot 102}\right)=\frac{k}{101}$
$\Rightarrow k=\frac{1}{2}\left(\frac{101}{2 \cdot 3}-\frac{1}{102}\right)=\frac{1}{2}\left(\frac{10296}{2 \cdot 3 \cdot 102}\right)=\frac{858}{102}$
$\therefore 34 k=286$

