DELHI PUBLIC SCHOOL, RUBY PARK

Class– XII Subject - Chemistry

- 1. Ionic solids conduct electricity in molten state but not in solid state. Explain.
- Write the mathematical expression of Nernst equation for : $Zn(s) / Zn^{+2}(aq) / / Cu^{+2}(aq) / Cu(s)$. 2.
- How is the physically adsorbed mass of a gas on a unit mass of adsorbent related to the pressure of the gas? 3.
- 4. Give the IUPAC name of $(NH_4)_3[Co(ONO)_6]$.
- 5. Write the IUPAC name of the following compound: CH₃CH(Br)CH₂CH(Cl)CH₃.
- What is a semiconductor? Describe the two main types of semiconductors with respect to their conduction 6. mechanisms.
- Why is it that the elevation in boiling point of solution is not the same in the following solutions: 0.1M molar 7. NaCl solution and 0.1 molar glucose solution? Give reasons to justify your answer.
- (i) On the basis of the standard electrode potential values stated in acid solution, predict whether Ti⁺⁴ species may 8. be used to oxidize Fe(II) to Fe(III) or not. $E^{\circ} Ti^{+4}/Ti^{+3} = +0.01V$ and $E^{\circ} Fe^{+3}/Fe^{+2} = +0.77V$
 - (ii) How does the concentration of sulphuric acid change in a lead storage battery when current is drawn from it?
- 9. Account for the following:

(i)Ferric hydroxide sol gets coagulated on addition of small amount of sodium chloride solution.

- (ii) Activated charcoal is used in gas masks used by coal miners.
- 10. Outline the principles of refining of metals by the following methods:
 - (i) Zone refining
 - (ii) Vapour phase refining
 - (iii) Froth floatation method
 - (iv) Autoreduction of copper oxide in a Bessemer convertor.
- Silver forms fcc lattice. X- ray studies of its crystals show that the edge length of its unit cell is 410 pm. 11. Calculate the density of silver (Atomic mass = 107.9 u)
- Ethylene glycol (molar mass = 62 g/mol) is a common automobile antifreeze. Calculate the freezing point of a 12. solution containing 12.4g of this substance in 100 g of water. Would it be advisable to keep this substance in the car radiator during summer? Given : K_f for water = 1.86K kg/mol, K_b for water = 0.512K kg/mol
- (i) An aqueous solution freezes at 272.07 K while pure water freezes at 273 K. Determine the molality and the 13. boiling point of the solution. Given $K_f = 1.86 \text{ K/m}$; $K_b = 0.512 \text{ K/m}$.
 - (ii) What is the value of Van't Hoff's factor for Na_2SO_4 assuming it undergoes complete dissociation.

14. Calculate the (i) Emf and (ii) ΔG° for the following cell at 298K.

 $Mg(s)/Mg^{+2} (10^{-3}M) // Cu^{+2} (10^{-4} M)/Cu(s).$

Given $E^{\circ}Mg^{+2}/Mg = -2.36V$ and $E^{\circ}Cu^{+2}/Cu = +0.34V.1F = 96500$ Cmol⁻¹

15. (a)The following data were obtained during the first order thermal decomposition of SO₂Cl₂ at a constant volume.

 $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$

t(sec)	0	100
Total pressure(atm)	0.5	0.6
C 1 1 1 C 11 1		

Calculate the following:

- (i) Rate constant of the reaction
- (ii) Rate of the reaction when the total pressure is 0.65 atm.

(b)A solution of H₂O₂ when titrated against KMnO₄ solution at different intervals of time gave the

following results:

Time(mins)	0	10	20
Volume of KMnO ₄ (mL)	23.8	14.7	9.1

- (i) Show that the decomposition of H_2O_2 is first order reaction.
- (ii) Rate constant of the reaction
- 16. (i) Differentiate between lyophilic and lyophobic colloidal sols.

(ii) Describe Freundlich adsorption isotherm. Explain it with relevant graphs.

17. Explain the following:

(i) Aqueous solution of sodium chloride cannot be used for the isolation of sodium by electrolytic reduction method.

(ii) Graphite rods in the extraction of aluminium from molten Al₂O₃ have to be replaced from time to time.

(iii)Hydrometallurgy can be used to extract silver but not zinc.

18. Write the balanced equations for the following reactions: (i) $C_{12}H_{22}O_{11} + H_2SO_4(conc.) \rightarrow$

(ii) $XeF_6 + H_2O \rightarrow$

(iii) F_2 + H_2O \rightarrow

- 19. (a) Give the structure of the following compounds:
 - (i) $HClO_4$ (ii) XeF_2
 - (b) What prompted N.Bartlett to prepare the first compound using noble gases?

20. (i)Using Valence bond theory explain how the two complexes of nickel, [Ni(CN)₄]⁻² and [Ni(CO)₄], have

different structures but do not differ in their magnetic behaviour (Ni =28).

(ii) Draw the structure of all isomers of [Cr(en)₃]Cl₃

- 21. Draw a figure to show splitting of degenerate d-orbitals in an octahedral crystal field. Explain how does the magnitude of $CFSE(\Delta^{\circ})$ decide the actual configuration of d-orbitals in a complex entity.
- (i)In some reactions, it is found that a large number of colliding molecules have energy greater than threshold value, yet the reaction is slow. Why?
 (ii) Dariya the integrated rate equation for first order reaction
 - (ii) Derive the integrated rate equation for first order reaction.
 - (iii) In a reaction between A and B, the initial rate of reaction (r_0) was measured for different

initial concentrations of A and B as given below:

$A/ \text{ mol } L^{-1}$	0.20	0.20	0.40
$B/ mol L^{-1}$	0.30	0.100	.05
$r^{0}/mol L^{-1}s^{-1}$	$5.07 imes10^{-5}$	$5.07 imes10^{-5}$	$7.16 imes 10^{-5}$
What is the or	der of the reacti	on with respect to A	A and B?

23. (i) Differentiate between average rate and instantaneous rate of a reaction.

(ii)Derive the general form of the expression for the half life of a first order reaction.

- (ii) Illustrate graphically the effect of catalyst on activation energy.
- 24. (a) Give reasons for the following observations:
 - (i) Sulphur hexafluoride is used as a gaseous electrical insulator.
 - (ii) PCl₅ is known while NCl₅ is not known.
 - (iii) H₂SO₄ acts only as an oxidizing agent while SO₂ can act both as a reducing agent and also oxidizing agent.
 - (b) Give two uses of noble gases.
- 25. (a) How will you convert (i)Chlorobenzene to phenol (ii)aniline to chlorobenzene (iii) ethane to butane

(iv) 2 bromopropane to 1-bromopropane. (v) aniline to phenyl isocyanide.

- (b) Explain why: (i) Alkyl halides undergo hydrolysis more easily as compared to aryl halides.
- (ii) Haloalkanes undergo nucleophilic substitutions whereas haloarenes undergo electrophilic substitutions.
- (iii) Alkyl halides are insoluble in water though they contain polar C-X bond.
- (iv) Alkyl fluorides are not prepared directly.
- (v)Although chlorine is an electron withdrawing group, yet it is *ortho-para-* directing in electrophilic aromatic substitution reactions.
- (vi)the dipole moment of chlorobenzene is lower than that of cyclohexyl chloride

(c) Write the mechanism of the following reaction:

$$(i)CH_3I + AgNO_2 \rightarrow CH_3NO_2 + Ag I.$$

(ii) n-BuBr+ KCN \rightarrow n-BuCN + KBr

(d)Write short note on (i) Wurtz reaction (ii)_Friedel Craft's alkylation

(e)In the following pair of halogen compounds, which compound undergoes faster SN1 reaction and why?

 $\stackrel{\mathsf{Cl}}{\downarrow}$ and $\stackrel{\mathsf{Cl}}{\checkmark}$

(f) Give a chemical test to distinguish between (i)chlorobenzene and benzyl chloride (ii) bromoethane and chloro ethane.