PHYSICS

1.	A ga	lvanometer having a resistance	e of 8Ω is shun	ted by a wire of resistance 2Ω .
	If th	e total current is 1A, the part of	f the current pa	assing through the shunt will be
	(A)	1.2 A	(B)	0.8 A
	(C)	0.5 A	(D)	0.3 A
2.	If tw	o soap bubbles of different ra	dii are connect	ed by a tube, then
	(A)	air flows from bigger to sma	ller bubble till	the size becomes equal
	(B)	air flows from bigger to sma	ller bubble till	the sizes are interchanged
	(C)	air flows from smaller to big	ger bubble	
	(D)	there is no flow of air		
3.	If a	body starts from rest and trave	els 1.2 m in the	8 th second, its acceleration is
	(A)	0.20 ms ⁻²	(B)	0.16 ms ⁻²
	(C)	0.16 cms ⁻²	(D)	0.08 ms ⁻²
4.	With	n rise in temperature, the resis	tance offered b	y semiconductor
	(A)	decreases	(B)	increases
	(C)	first decrease and then increase	ase (D)	remains constant
5.	The	depletion layer of a p-n juncti	on has thickne	ss of the order of
	(A)	10^{-12} m	(B)	10^{-13} m
	(C)	10^{-4} m	(D)	10^{-6} m
6.	To w	which logic gate does the truth	table given bel	ow correspond?
		A B X		
		0 0 1		
		1 0 1		
		0 1 1		
		1 1 0		
	(A)	OR	(B)	AND
	(C)	NOR	(D)	NAND
Phys	sics (S	ET-A)	[1]	P.T.O.

- 7. The peak and virtual value of an a.c. are related as
 - (A) $I_v = \frac{2}{\pi} I_o$

(B) $I_v = \frac{\pi}{2}I_o$

(C) $I_v = \sqrt{2}I_o$

- (D) $I_v = \frac{1}{\sqrt{2}}I_o$
- 8. For transistor action, which of the following statement is true?
 - (A) The base region must be thin and lightly doped
 - (B) The emitter is always reversed biased and collector is forward biased
 - (C) Base, emitter and collector regions should have similar size and doping concentrations
 - (D) Both the emitter as well as collector junction are forward biased
- 9. The width of diffraction fringes varies
 - (A) directly as the distance between the slit and screen
 - (B) inversely as the wavelength of light
 - (C) directly as the width of the slit
 - (D) none of the above
- 10. Cadmium are used as control rods in nuclear reactor because
 - (A) they have high cross section for neutron absorption
 - (B) they can reduce energy of neutrons
 - (C) they can easily release neutrons
 - (D) they are transuranic elements
- 11. The total capacitance of the system of capacitors in the figure between A and B is
 - (A) $1\mu F$
 - (B) $\frac{8}{5} \mu F$
 - (C) $\frac{5}{8} \mu F$
 - (D) 5 µF

Physics (SET-A)

12.	The most penetrating radiati	on out of the following are
	(A) β -rays	(B) γ-rays
	(C) α - rays	(D) X - rays
13.	The S.I. unit of angular mom	entum is
	(A) kg^2ms^{-1}	(B) $kgm^{-2}s^{-1}$
	(C) kgm ² s ⁻¹	(D) $kgm^{-1}s^2$
14.		ed from the magnetic field in 0.1 s, induced emf is
	(A) 40 V	(B) 50 V
	(C) 100 V	(D) 500 V
15.	What is the energy possessed	I by an electron while revolving in the orbit $n = 3$?
	(A) -0.85 eV	(B) -1.51 eV
	(C) $-3.4 eV$	(D) -2.5 eV
16.	In simple harmonic motion, t	he acceleration of the particle is zero, when velocity
	(A) zero	(B) half of its maximum value
	(C) maximum	(D) None of these
17.	What will be the current draw	vn by the following circuit from the 5 V source?
	(A) 2 A	10Ω 10Ω 20Ω
	(B) 0.5 A	10 Ω 10 Ω
	(C) 50 A	10 Ω
	(D) None of the above	5 V
18.	What is de-Broglie waveleng	th of a 1000 g object moving with a speed of 1 m/s?
	(A) $6.62 \times 10^{-31} \mathrm{m}$	(B) $6.62 \times 10^{-32} \text{ m}$
	(C) $6.62 \times 10^{-34} \mathrm{m}$	(D) zero

[3]

P.T.O.

Physics (SET-A)

19.	Sticking of paint to the wall is an example of			
	(A)	Adhesion	(B)	Capillarity
	(C)	Cohesion	(D)	None of these
20.	The	pressure exerted by a liquid col	umn at a poin	t does not depend upon
	(A)	Height of the liquid column at	pove it	
	(B)	Shape of the vessel containing	the liquid	
	(C)	Density of the liquid		
	(D)	Both (B) and (C)		
21.		angle of a prism is 6° and its repasses through it, the deviation		for green light is 1.5. If a green
	(A)	30°	(B)	15°
	(C)	3°	(D)	0°
22.	Scer	nt sprayer is based on		
	(A)	Charle's Law	(B)	Avogadro's Law
	(C)	Boyle's Law	(D)	Bernoulli's Theorem
23.	Heat	t is transferred from one end to	the other end	of a solid by the process of
	(A)	Convection	(B)	Conduction
	(C)	Radiation	(D)	Thermal expansion
24.	The	loss of power in a signal as it tr	avels is called	1
	(A)	Noise	(B)	Modulation
	(C)	Demodulation	(D)	Attenuation
25.	The	core of transformers are lamina	ated so as to	
	(A)	prevent rusting		
	(B)	reduce energy loss due to edd	y currents	
	(C)	make it robust and strong		
	(D)	increase secondary voltage		
Phys	ics (S	ET-A)	4]	Contd.

26.	In a closed organ pipe, the fundamental frequency is <i>v</i> . What will be the ratio of the frequencies of the next three overtones?				
	(A)	2:3:4	(B)	3:4:5	
	(C)	3:7:11	(D)	3:5:7	
27.	The	acceleration due to gravity 'g'	increases if		
	(A)	we go up from the surface of	the earth		
	(B)	we go down from the surface	towards the ce	entre	
	(C)	we go from poles towards equ	ıator		
	(D)	None of the above			
28.	The	dot product of vector A with it	self is		
	(A)	zero	(B)	1	
	(C)	A	(D)	A^2	
29.		speed of sound in air is 330 m ses by 50%, the source is move		rent frequency of the sound in- e listener with a speed of	
	(A)	110 m/s	(B)	165 m/s	
	(C)	220 m/s	(D)	330 m/s	
30.	Wha	at is X in the given circuit, whe	n no current fl	ows through the 5Ω resistor?	
	(A)	6 Ω		$\frac{1}{X}$ $\frac{6 \text{ V}}{18 \Omega}$	
	(B)	0.67Ω		-M-1032 -W	
	(C)	0.13Ω	2Ω	$\mathcal{M}_{6\Omega}$	
	(D)	None of the above		\bigvee	
31.		on torque acting upon a systemater ?	em is zero, w	hich of the following will be	
	(A)	Linear momentum	(B)	Angular momentum	
	(C)	Force	(D)	Energy	
Phys	ics (S	ET-A) [5]	P.T.O.	

32.	Two lenses of power +12D and – 2D are combined together. Their equivalent			
	foca	l length will be		
	(A)	10 cm	(B)	12.5 cm
	(C)	16.6 cm	(D)	8.33 cm
33.	Disp	placement of a progressive wa	ve is represente	d by $y = 0.25 \sin(500t - 0.025x)$,
		re y , t and x are in metre, elength of the wave?	second and m	etre respectively. What is the
	(A)	$20\pi\mathrm{m}$	(B)	$40\pi\mathrm{m}$
		$60\pi\mathrm{m}$	(D)	$80\pi\mathrm{m}$
34.	One	Angstrom (Å) equals		
		$10^{-10} \mathrm{cm}$	(B)	$10^{-10}\mathrm{m}$
	(C)	$10^{-15} \mathrm{m}$	(D)	$10^{-9} \mathrm{m}$
35.	The	dimensional formula [M ¹ L ⁻¹	Γ^{-2}] represents	
	(A)	Pressure	(B)	Force
	(C)	Work	(D)	Torque
36.	Whe	en an object is placed betwee	en the pole and	focus of a concave mirror, the
	imag	ge formed is		
	(A)	virtual, erect and diminished	d (B)	real, inverted and diminished
	(C)	real, inverted and magnified	(D)	virtual, erect and magnified
37.	The	velocity of a car changes from	m 20 ms ⁻¹ to 30	ms ⁻¹ in 5 seconds. The accelera-
	tion	of the car is		
	(A)	2 cms^{-2}	(B)	20 ms^{-2}
	(C)	2 ms^{-2}	(D)	2 ms^{-1}
38.	The	maximum distance upto which	ch a TV transmi	ssion from a TV tower of height
	h car	n be received is proportional	to	
	(A)	h	(B)	h^2
	(C)	h ^{1/2}	(D)	h ^{3/2}
Phys	ics (S	ET-A)	[6]	Contd.

39.	A force of 20N is inclined at 30° to the X axis. The component of force along the X axis is			
	(A)	$10\sqrt{3}$ N	(B)	10 N
	(C)	$10/\sqrt{3} \text{ N}$	(D)	Zero
40.	resis	·		r is connected in series with a ance $10~\Omega$. The ammeter reads
	(A)	5 Ω	(B)	15 Ω
	(C)	60 Ω	(D)	70 Ω
41.	At th	ne top of the trajectory of a p	projectile, the ac	celeration is
	(A)	4.9 ms^{-2}	(B)	19.6 ms ⁻²
	(C)	zero	(D)	9.8 ms^{-2}
42.		en light is incident on a pland e between reflected ray and r	_	face at the polarizing angle, the
	(A)	0°	(B)	90°
	(C)	180°	(D)	60°
43.	Wha	at is the unit of R in the gas eq	uation PV = RT	?
	(A)	Nm	(B)	J
	(C)	JK^{-1}	(D)	None of these
44.		α-particle enters a magnetic perpendicular to the field. The		rith a velocity 10^6 m/s in a directarticle is
	(A)	$1.6 \times 10^{-13} \mathrm{N}$	(B)	$6.4 \times 10^{-13} \mathrm{N}$
	(C)	$4.8 \times 10^{-13} \mathrm{N}$	(D)	$3.2 \times 10^{-13} \mathrm{N}$
45.		capillary tubes 'A' of radiu er. The rise of water is	s 0.5 mm and 'I	3' of radius 1 mm are dipped in
	(A)	higher in tube A	(B)	higher in tube B
	(C)	same in both	(D)	zero in both
Phys	ics (S	ET-A)	[7]	P.T.O.

46.	The	linear and angular velocities	of a body in circ	cular motion are related as
	(A)	$\vec{v} = \vec{\omega} \times \vec{r}$	(B)	$\vec{v} = \vec{r} \times \vec{\omega}$
	(C)	$\ddot{\omega} = \ddot{v} \times \ddot{r}$	(D)	$\ddot{\omega} = \ddot{r} \cdot \ddot{v}$
47.	The	path difference of two waves	s for destructive	interference should be
	(A)	$n\lambda$	(B)	$n(\lambda+1)$
	(C)	$(2n+1) \lambda/2$	(D)	$(n+1) \lambda/2$
48.	The	SI unit of magnetic flux is		
	(A)	gauss	(B)	maxwell
	(C)	weber	(D)	tesla
49.	Acce	ording to Bohr's atom mode	el, if m and v are	e mass and velocity of electron
	resp	ectively in a permitted orbit	of radius r , then	
	(A)	$mv = \frac{nhr}{2\pi}$	(B)	$mr = \frac{nhv}{2\pi}$
	(C)	$mvr = \frac{nh}{2\pi}$	(D)	$mvr = \frac{h}{2\pi}$
50.	_	nt dipoles of charges of magn		ed inside a cube. The total elec-
	(A)	$\frac{8q}{\epsilon_0}$	(B)	$\frac{16q}{\epsilon_0}$
	(C)	zero	(D)	$\frac{q}{\epsilon_0}$
51.		deal heat engine exhausting heat at	heat at 77°C is	to have 30% efficiency. It must
	(A)	127°C	(B)	227°C
	(C)	327°C	(D)	673°C
Phys	sics (S	ET-A)	[8]	Contd.

(C) P and R

(D) Any two points

53. The resonance frequency f_0 of a series LCR circuit is given by

$$(A) \quad \frac{2\pi}{\sqrt{LC}}$$

(B)
$$\frac{2}{\pi\sqrt{LC}}$$

(C)
$$\frac{1}{2\pi\sqrt{LC}}$$

(D)
$$\frac{1}{2\pi LC}$$

54. The Gravitational potential energy of a body of mass *m* at a distance *r* from centre of the earth

(A) increases as r increases

(B) increases as r decreases

(C) independent of r

(D) none of these

55. The speed of electromagnetic waves can be represented as

(A)
$$c = E/B$$

(B)
$$c = B/E$$

(C)
$$c = E \times B$$

56. Given that $c = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$, the dimension of $\mu_0 \epsilon_0$ is

(A) $[LT^{-1}]$

(B) $[L^{-1}T]$

(C) $[L^2T^{-2}]$

(D) $[L^{-2}T^2]$

57. Which of the following radiations has the least wavelength?

(A) Microwaves

(B) Ultra-Violet

(C) Radiowaves

(D) Red light

58.	The	numerical ratio of velocity to speed is		
	(A)	less than 0	(B)	more than 1
	(C)	either greater than or equal to 1	(D)	either less than or equal to 1
59.		ns is made of glass of refractive index d of refractive index 1.25, its focal leng		When the lens is immersed in a
	(A)	increases by a factor of 1.25	(B)	increases by a factor of 2.5
	(C)	increases by a factor of 1.2	(D)	decreases by a factor of 1.2
60.	The	moment of inertia of a circular ring of n	nass '	M' and radius 'R' about an axis
	pass	ing through its centre and perpendicula	r to it	s plane is
	(A)	MR	(B)	$(MR)^2$
	(C)	MR^2	(D)	½ MR
61.		e between two stationary charges placed in a modium of relative permittivity.		
		ed in a medium of relative permittivity		
	. ,	50 N	` /	2 N
	` /	0.5 N	. ,	10 N
62.	-	rson's near point is 50 cm. The power of rly at the least distance of distinct visio		s required by him to read a book
	(A)	+ 2D	(B)	- 2D
	(C)	+ 0.02D	(D)	- 0.02D
63.	As a	plane wavefront propagates, its radius of	of cur	vature
	(A)	decreases	(B)	increases
	(C)	first increases and then decreases	(D)	remains infinity
64.	Whi	ch one of the following is not a proper	ty of e	elastic collision ?
	(A)	Mechanical energy may be converted	into c	other form of energy
	(B)	Kinetic energy is conserved		
	(C)	Momentum is conserved		
	(D)	Total energy is conserved		
Phys	ics (S	ET-A) [10]		Contd.

` /			
` /		ce	
` /			
` /		hut not zozo	
	same as on the surface		
	ollow copper sphere is positi	vely charged, t	he electric field at its centre will
` /		,	
	-	,	
			_
		-	
. ,			-
· /	•		
. /	•		
		n circular motio	on acts
` /		,	
` /		,	
		-	
In a forward biased p-n junction, the potential barrier			
	(A) (C) The (A) (B) (C) (D) In Ye (A) (C) A ho (B) (C) (D) What (A) (C) (D) What (A) (C) (C) (D) (C) (D) (C) (D) (C) (D) (C) (C) (C) (C) (C) (C) (C) (C) (C)	(A) becomes zero (C) decreases The centripetal force on a body in the central force on the central force on the central force on the central force on the central force of the centr	(A) becomes zero (B) (C) decreases (D) The centripetal force on a body in circular motion (A) radially outwards (B) radially inwards (C) tangential to the circular path (D) along the axis normal to the plane of the circular years and the distance between the slit and screen is doubled. (A) unchanged (B) (C) doubled (D) A hollow copper sphere is positively charged, the beard of the surface (B) less than that on the surface but not zero. (C) more than that on the surface (D) zero What is the angle between the electric dipole mondule to the dipole on its equatorial line? (A) 0° (B) (C) 180° (D) If a rate of change of current of 4A s ⁻¹ induces an self-inductance of the solenoid is (A) 5 mH (B) (C) 50 H (D)

71.	At what temperature, the rms speed of a hy	drogen molecule is equal to that of a
	oxygen molecule at 47°C?	
	(A) 80 K	(B) −73 K
	(C) 3 K	(D) 20 K
72.	A capacitor of capacitance 50 μF is charge	d to 10 V. Its energy is equal to
	(A) $2.5 \times 10^{-3} \text{ J}$	(B) $2.5 \times 10^{-4} \text{ J}$

73. A block of mass 2 kg rests on a plane inclined at 30° with the horizontal. The coefficient of friction between the block and the surface is 0.7. The frictional force acting on the block is

(D) 10^{-6} J

- (A) 9.8 N (B) $0.7 \times 9.8 \sqrt{3} \text{ N}$ (C) $98\sqrt{3} \text{ N}$ (D) $0.7 \times 9.8 \text{ N}$
- 74. The binding energy per nucleon is maximum for $(A) _{26} Fe^{56} \qquad (B) _{2} He^{4}$

(C) $5 \times 10^{-2} \text{ J}$

- (C) $_{36}$ Kr 83 (D) $_{92}$ U 238
- (A) \hat{k} (B) $\hat{i} + \hat{j}$

75. The unit vector along the direction of the vector $\hat{i} + \hat{j}$ is

(C) $(\hat{i} + \hat{j})/\sqrt{2}$ (D) $(\hat{i} + \hat{j})/2$

76. What is the resistance between P and Q in the following network? Each resistance is 3Ω .

77. A metallic wire of resistance 40Ω is stretched to twice of its length. Its new resistance would be

- resistance would be (A) 20Ω (B) 80Ω
 - (C) 160Ω (D) 120Ω

Phys	ics (S	ET-A) [13]		P.T.O.
	(D)	It is possible if $\ddot{\mathbf{B}}$ is at 45° to the direction	ection	of motion of the electron
	(C)	It is possible if $\ddot{\mathbf{B}}$ is parallel to the di		
	(B)	It is possible when B is perpendicul electron	ar to	the direction of motion of the
		It is never possible		
		B. Choose the correct statement.		
83.	An e	electron continues to move in a straight	line v	while passing through magnetic
	(C)	E/h	(D)	Ε/λ
	(A)	E/c^2	(B)	E/c
82.	A ph	oton having energy 'E' have momentun	n give	n by
	(C)	4:1	(D)	1:4
	(A)	2:1	(B)	1:2
81.		asses of all molecules of a gas are halv of the initial and final pressures will b		their speeds doubled, then the
0.1	, ,	zero work		negative work
		maximum positive work		positive but not maximum work
		Force does	(D)	
80.		pody moves in a direction perpendicula	ar to th	nat in which the force acts, then
	(C)	40 A	(D)	10 A
	(A)	5 A	(B)	100 A
79.		t developed in half a minute in a resist agh the resistor is	ance (of 5 Ω is 15000 J. The current
	(C)	5600 J	(D)	6400 J
	(A)	7900 Ј	(B)	8200 J
, 0.	and at the same time does 500 J of work is			
78.	The change in internal energy of the system, when it absorbs 2 kilocalorie of heat			

84.	The	angle of friction is equal to			
	(A)	limiting friction	((B)	angle of repose
	(C)	normal reaction	((D)	coefficient of friction
85.	The	materials suitable for makin	g electromag	gnets	should have
	(A)	high retentivity and high co	percivity		
	(B)	low retentivity and low coe	ercivity		
	(C)	high retentivity and low co	ercivity		
	(D)	low retentivity and high co	ercivity		
86. A rectangular coil of area A of N turns has a current I flowing in clock direction, when looked at from above. The magnetic moment associated with				•	
	(A)	points upwards	((B)	points vertically downwards
	(C)	is zero	((D)	is directly proportional to A^2
87.	The	band width of speech signal	is		
	(A)	2800 Hz	((B)	280 MHz
	(C)	2800 kHz	((D)	28000 Hz
88.	Two	parallel beams of positrons	moving in th	ne sai	me direction will
	(A)	repel each other			
	(B)	will not interact with each	other		
	(C)	attract each other			
	(D)	be deflected normal to the	plane contair	ning	the two beams
89.	web	er ampere per metre is equa	l to		
	(A)	joule	((B)	henry
	(C)	newton	((D)	watt
Phys	Physics (SET-A)				Contd.

90.	When the balanced point is obtained in the potentiometer, the current is drawn						
	from						
	(A)	both the cell and auxiliary b	oattery				
	(B)	cell only					
	(C)	auxiliary battery only					
	(D)	neither cell nor auxiliary ba	attery				
91.	Name the diode for which the output voltage is a regulated voltage						
	(A)	L.E.D	(H	B)	Photodiode		
	(C)	Zener diode	(I	D)	None of these		
92.	A gas expands 0.25 m ³ at constant pressure 10 ³ N/m ² . The work done is						
	(A)	2.5 ergs	(H	B)	250 Ј		
	(C)	250 W	(I	D)	250 N		
93.	When we kick a stone we get hurt. This happens due to the property of						
	(A)	inertia	(H	B)	velocity		
	(C)	reaction	(I	D)	momentum		
94.	The work done by an agency to carry a –10C charge from infinity to a point in						
		rostatic field is 50 J. The po					
	(A)	0.2 V	(F	B)	-5 V		
	(C)	5 V	(I	D)	– 500 V		
95.	The capacitive reactance of a $5\mu\text{F}$ capacitor for a frequency of 50 Hz is						
	(A)	636.9Ω	(H	B)	63.69Ω		
	(C)	6.369Ω	(I	D)	6369Ω		
96.	Time period of a simple pendulum is 2 seconds. If its length is increased by						
	4 times, then its period becomes						
	(A)	16 s	(F	B)	12 s		
	(C)	8 s	(I	D)	4 s		
Phys	ics (S	ET-A)	[15]		P.T.O.		

97.	Whi	Which one of the following is not true for nuclear reaction?						
	(A)	Momentum is conserved						
	(B)	Mass and energy is not conserved						
	(C)	Charge number is conserved						
	(D)	Nucleon number is conserved						
98.	The	The maximum kinetic energy with which photoelectrons are emitted from a metal						
surface depends upon								
	(A)	Intensity of incident light	(B)	Frequency of incident light				
	(C)	Both (A) and (B)	(D)	None of these				
99.	. If the distance between two point masses is doubled, the gravitational attraction between them							
	(A)	is doubled	(B)	is reduced to half				
	(C)	is reduced to quarter	(D)	remains unchanged				
100.	A force applied on a mass is represented as $F = 6\hat{i} - 8\hat{j} + 10\hat{k}$ and produces an							
	acceleration of 1ms ⁻² . What will be the mass of the body?							
	(A)	$10\sqrt{2} \text{ kg}$	(B)	$2\sqrt{10}$ kg				
	(C)	10 kg	(D)	20 kg				