SBI Clerk Prelims 2020 - Quantitative Aptitude (Solutions)

- **36.** (d); Required average = $\frac{450+420+450}{3}$ = 440
- 37. (a); Total male participated from school B & D together = 540 + 560 = 1100Total female participated from school A & C together = 450 + 500 = 950Required difference = 1100 950 = 150
- **38.** (d); Total male participated from school B & C together = 540 + 720 = 1260Total female participated from school A & D together = 450 + 450 = 900Required % = $\frac{1260 900}{900} \times 100 = 40\%$
- **39.** (**b**); Total students participated from school F = $\frac{140}{100} \times 650 + 420 \times \frac{32}{21}$ = 910 + 640 = 1550
- **40.** (b); Total number of male students participated from all the five schools = (650 + 540 + 720 + 560 + 680) = 3150
- **41. (b); Pattern of series –**? = 200
 100
 150
 375
 1312.5

 ×0.5
 ×1.5
 ×2.5
 ×3.5
- 43. (d); Pattern of series
 15 8 9 15 32 ?= 82.5

 (×0.5+0.5) (×1+1) (×1.5+1.5) (×2+2) (×2.5+2.5)

42. (a); Pattern of series -

- (×0.5+0.5) (×1+1) (×1.5+1.5) (×2+2) (×2.5+2.5)

 44. (e); Pattern of series
 6 8 14 26 46 ?= 76

 +2 +6 +12 +20 +30
- **45.** (e); Pattern of series 72000 36000 12000 3000 600 ? = 100 ÷2 ÷3 ÷4 ÷5 ÷6
- **46.** (**d**); let total work be 360 units

 Efficiency of 1 man = $\frac{360}{12 \times 10}$ = 3 units/day

 Efficiency of 1 woman = $\frac{360}{10 \times 18}$ = 2 units/day

 Required time = $\frac{360}{4 \times 3 + 6 \times 2}$ = 15 days
- **47.** (a); distance = 240 kms Required speed = $\frac{240}{2.5}$ = 96 kmph Required % = $\frac{96-60}{60}$ × 100 = 60%

and present age of Rahim = (3x + 10)According to the question, $\frac{x+10+5}{3x+10+5} = \frac{2}{3}$ $\Rightarrow 3x + 45 = 6x + 30$ $\Rightarrow 3x = 15$ $\therefore x = 5$ Hence, required ratio = $\frac{5+10}{3\times 5+10}$ $= \frac{15}{25} = 3:5$

48. (b): Let 10 years ago, ages of Ram and Rahim were x

years and 3x years, respectively.

Then, present age of Ram = (x + 10)

- **49. (b)**; required time = $\frac{140+120}{(132-80 \times \frac{5}{18})}$ = $\frac{260 \times 18}{52 \times 5}$ = 18 sec
- **50.** (c); let CP of book be Rs x SP = Rs 1.2x New CP = Rs 0.9x New SP = Rs 1.2x + 90 ATQ, $0.9x \times \frac{140}{100} = 1.2x + 90$ **1.**26x = 1.2x + 90 x = Rs 1500
- **51.** (a); I. x = 5 II. y = 5 So, x=y
- 52. (d); I. $x^2 + 7x 5x 35 = 0$ x(x+7) - 5(x+7) = 0 (x+7)(x-5) = 0 x = -7, 5II. $y^2 + 7y + 8y + 56 = 0$ y(y+7) + 8(y+7) = 0 (y+7)(y+8) = 0 y = -8, -7So, $x \ge y$
- **53.** (a) I. $x = \pm 9$ II. $y = \pm 8$ So, no relation can be established

So, no relation can be established

54. (a); I. $17x^2 - 14x - 3 = 0$ $17x^2 - 17x + 3x - 3 = 0$ 17x(x-1) + 3(x-1) = 0 (17x + 3)(x - 1) = 0 $x = -\frac{3}{17}$, 1 II. $y^2 - 2y - 35 = 0$ $y^2 - 7y + 5y - 35 = 0$ y(y - 7) + 5(y - 7) = 0y = 7, -5

55. (e); I.
$$x^2 + 9x - 5x - 45 = 0$$

 $x(x+9) - 5(x+9) = 0$
 $(x-5)(x+9) = 0$
 $x = 5, -9$
II. $y^2 - 5y - 8y + 40 = 0$
 $y(y-5) - 8(y-5) = 0$
 $(y-5)(y-8) = 0$
 $y = 5, 8$
So, $x \le y$

- **56. (e);** let initial quantity of milk & water be 5x & 3x lit respectively ATQ, $\frac{5x+8}{3x} = \frac{11}{5}$ $25x + 40 = 33x \Rightarrow x = 5$ required difference = 5x - 3x = 2x = 10 lit
- **57. (a);** let rate of interest be R% ATQ, $1200 = \frac{6000 \times R \times 2}{100}$ R = 10%

Since compounding is done half-yearly, rate of interest = 5%Effective rate of interest = $5 + 5 + \frac{5 \times 5}{100} = 10.25\%$ Required interest = $\frac{6000 \times 10.25 \times 1}{100} = 10.25\%$

- **58. (b);** let speed of boat in still water & speed of stream be 7x & 3x kmph respectively ATQ, $\frac{28}{7x+3x} = \frac{42}{60}$ x = 4 Required difference $= \frac{40}{7x-3x} \frac{60}{7x+3x} = \frac{4}{x} = 1$ hour
- **59. (d)**; let amount invested by A be Rs x

 Profit ratio; A: B = $(x \times 12)$: $(17000 x) \times 6 + (15500 x) \times 6$ = 2x: (32500 2x)ATQ, $\frac{19500}{32500 2x + 2x} \times (32500 2x) = 8100$ 32500 2x = 13500

x = Rs 9500Required capital of B after 6 months = 15500 - x = Rs 6000

- 60. (c); let length & breadth of rectangle be x & y m respectively

 ATQ, 1.4xy xy = 24

 xy = 60(i)

 also, 2(x + y) = 32

 x + y = 16(ii)

 from (i) & (ii)

 x = 10 m, y = 6 m

 breadth of rectangle = 6 m
- **61. (d);** ? = 170 35 ? = 135
- **62.** (a); $(12 + 13) \times 3 = \frac{?}{5}$? = 375
- **63.** (c); $? = (3 \times 5) \times 8$? = 120
- **64. (b);** $(\frac{120}{100} \times 750) \div ? = 25$ $? = 900 \div 25$? = 36
- **65.** (d); ? = $(8 4 + 3) + \frac{6 10 + 7}{12}$? = $7\frac{1}{4}$
- **66. (e);** $275 + \frac{64}{100} \times 750 = 750 + ?$ 275 + 480 = 750 + ? ? = 5
- **67. (a);** ? = 15 + 9 + 144 ? = 168
- **68.** (c); $\frac{510}{?} = 18 + 3.25$? = 24
- **69.** (d); $\frac{12.5}{100} \times (120+?) = 45$ 120 + ? = 360? = 240
- **70.** (c); $44 \times 12 16 = (8)^{?}$ $528 - 16 = (8)^{?}$? = 3