SBI Clerk Prelims 2020 - Quantitative Aptitude (Solutions)

36. (d); Required average $=\frac{450+420+450}{3}=440$
37. (a); Total male participated from school - B \& D together $=540+560=1100$
Total female participated from school - A \& C together $=450+500=950$
Required difference $=1100-950=150$
38. (d); Total male participated from school - B \& C together $=540+720=1260$
Total female participated from school - A \& D together $=450+450=900$
Required $\%=\frac{1260-900}{900} \times 100=40 \%$
39. (b); Total students participated from school $\mathrm{F}=$ $\frac{140}{100} \times 650+420 \times \frac{32}{21}$
$=910+640=1550$
40. (b); Total number of male students participated from all the five schools
$=(650+540+720+560+680)=3150$
41. (b); Pattern of series -

42. (a); Pattern of series -

43. (d); Pattern of series -

44. (e); Pattern of series -

45. (e); Pattern of series -

46. (d); let total work be 360 units

Efficiency of 1 man $=\frac{360}{12 \times 10}=3$ units/day
Efficiency of 1 woman $=\frac{360}{10 \times 18}=2$ units/day
Required time $=\frac{360}{4 \times 3+6 \times 2}=15$ days
47. (a); distance $=240 \mathrm{kms}$

Required speed $=\frac{240}{2.5}=96 \mathrm{kmph}$
Required $\%=\frac{96-60}{60} \times 100=60 \%$
48. (b); Let 10 years ago, ages of Ram and Rahim were x years and $3 x$ years, respectively.
Then, present age of Ram $=(x+10)$
and present age of Rahim $=(3 x+10)$
According to the question,
$\frac{x+10+5}{3 x+10+5}=\frac{2}{3}$
$\Rightarrow 3 \mathrm{x}+45=6 \mathrm{x}+30$
$\Rightarrow 3 \mathrm{x}=15$
$\therefore \mathrm{x}=5$
Hence, required ratio $=\frac{5+10}{3 \times 5+10}$
$=\frac{15}{25}=3: 5$
49. (b); required time $=\frac{140+120}{\left(132-80 \times-\frac{5}{-5}\right.}$
$=\frac{260 \times 18}{52 \times 5}=18 \mathrm{sec}$
50. (c); let CP of book be Rs x

SP = Rs 1.2 x
New CP = Rs 0.9x
New SP = Rs $1.2 \mathrm{x}+90$
ATQ, $0.9 x \times \frac{140}{100}=1.2 x+90$
$1.26 \mathrm{x}=1.2 \mathrm{x}+90$
x = Rs 1500
51. (a); I. $x=5$
II. $y=5$

So, $x=y$
52. (d); I. $x^{2}+7 x-5 x-35=0$
$x(x+7)-5(x+7)=0$
$(x+7)(x-5)=0$
$x=-7,5$
II. $y^{2}+7 y+8 y+56=0$
$y(y+7)+8(y+7)=0$
$(y+7)(y+8)=0$
$y=-8,-7$
So, $x \geq y$
53. (a) I. $x= \pm 9$
II. $\mathrm{y}= \pm 8$

So, no relation can be established
54. (a); I. $17 \mathrm{x}^{2}-14 \mathrm{x}-3=0$
$17 x^{2}-17 x+3 x-3=0$
$17 x(x-1)+3(x-1)=0$
$(17 x+3)(x-1)=0$
$\mathrm{x}=-\frac{3}{17}, 1$
II. $\mathrm{y}^{2}-2 \mathrm{y}-35=0$
$\mathrm{y}^{2}-7 \mathrm{y}+5 \mathrm{y}-35=0$
$\mathrm{y}(\mathrm{y}-7)+5(y-7)=0$
$\mathrm{y}=7,-5$
So, no relation can be established
55. (e); I. $x^{2}+9 x-5 x-45=0$

$$
\begin{aligned}
& x(x+9)-5(x+9)=0 \\
& (x-5)(x+9)=0 \\
& x=5,-9 \\
& \text { II. } y^{2}-5 y-8 y+40=0 \\
& y(y-5)-8(y-5)=0 \\
& (y-5)(y-8)=0 \\
& y=5,8 \\
& \text { So, } x \leq y
\end{aligned}
$$

56. (e); let initial quantity of milk \& water be 5 x \& 3 x lit respectively
ATQ, $\frac{5 x+8}{3 x}=\frac{11}{5}$
$25 \mathrm{x}+40=33 \mathrm{x} \Rightarrow \mathrm{x}=5$
required difference $=5 x-3 x=2 x=10$ lit
57. (a); let rate of interest be R\%

$$
\begin{aligned}
& \text { ATQ, } 1200=\frac{6000 \times R \times 2}{100} \\
& \mathrm{R}=10 \%
\end{aligned}
$$

Since compounding is done half-yearly, rate of interest = 5\%
Effective rate of interest $=5+5+\frac{5 \times 5}{100}=10.25 \%$
Required interest $=\frac{6000 \times 10.25 \times 1}{100}=$ Rs 615
58. (b); let speed of boat in still water \& speed of stream be 7 x \& 3 x kmph respectively
ATQ, $\frac{28}{7 x+3 x}=\frac{42}{60}$
$\mathrm{x}=4$
Required difference $=\frac{40}{7 x-3 x}-\frac{60}{7 x+3 x}=\frac{4}{x}=1$ hour
59. (d); let amount invested by A be Rs x

Profit ratio; A : B $=(x \times 12):(17000-x) \times 6+$ $(15500-x) \times 6$
$=2 \mathrm{x}:(32500-2 \mathrm{x})$
ATQ,$\frac{19500}{32500-2 x+2 x} \times(32500-2 x)=8100$
$32500-2 \mathrm{x}=13500$
$\mathrm{x}=$ Rs 9500
Required capital of B after 6 months
$=15500-\mathrm{x}=$ Rs 6000
60. (c); let length \& breadth of rectangle be $\mathrm{x} \& \mathrm{y} \mathrm{m}$ respectively
ATQ, 1.4xy - xy = 24
$x y=60$ \qquad
also, $2(\mathrm{x}+\mathrm{y})=32$
$x+y=16$ \qquad
from (i) \& (ii)
$x=10 \mathrm{~m}, \mathrm{y}=6 \mathrm{~m}$ breadth of rectangle $=6 \mathrm{~m}$
61. (d); ? = 170-35
$?=135$
62. (a); $(12+13) \times 3=\frac{\text { ? }}{5}$
? $=375$
63. (c); ? $=(3 \times 5) \times 8$
$?=120$
64. (b); $\left(\frac{120}{100} \times 750\right) \div ?=25$
$?=900 \div 25$
$?=36$
65. (d); ? $=(8-4+3)+\frac{6-10+7}{12}$
$?=7 \frac{1}{4}$
66. (e); $275+\frac{64}{100} \times 750=750+$?
$275+480=750+$?
? $=5$
67. (a); ? $=15+9+144$
$?=168$
68. (c); $\frac{510}{?}=18+3.25$
$?=24$
69. (d); $\frac{12.5}{100} \times(120+?)=45$
$120+$? $=360$
? $=240$
70. (c); $44 \times 12-16=(8)$?
$528-16=(8)$?
? $=3$

