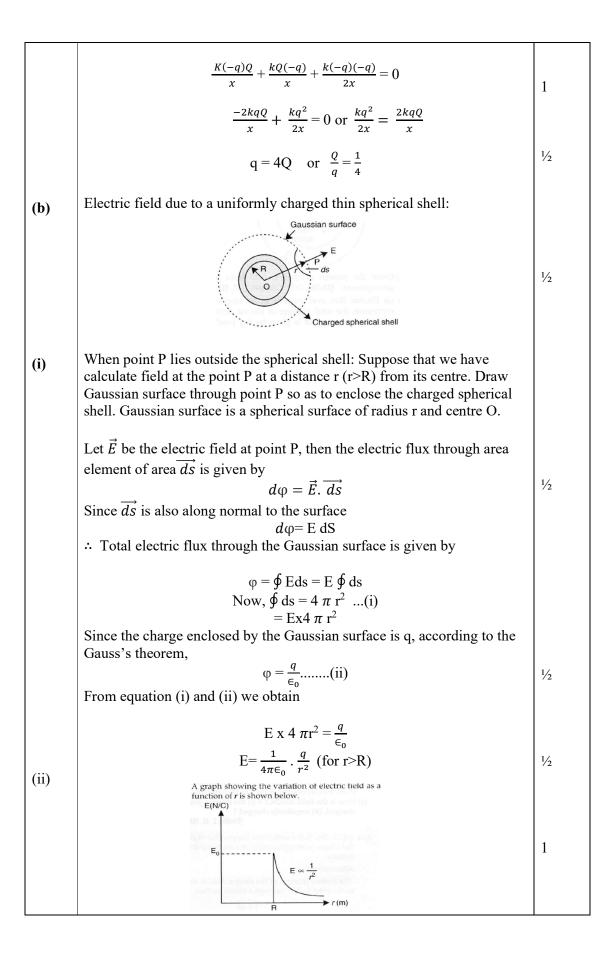
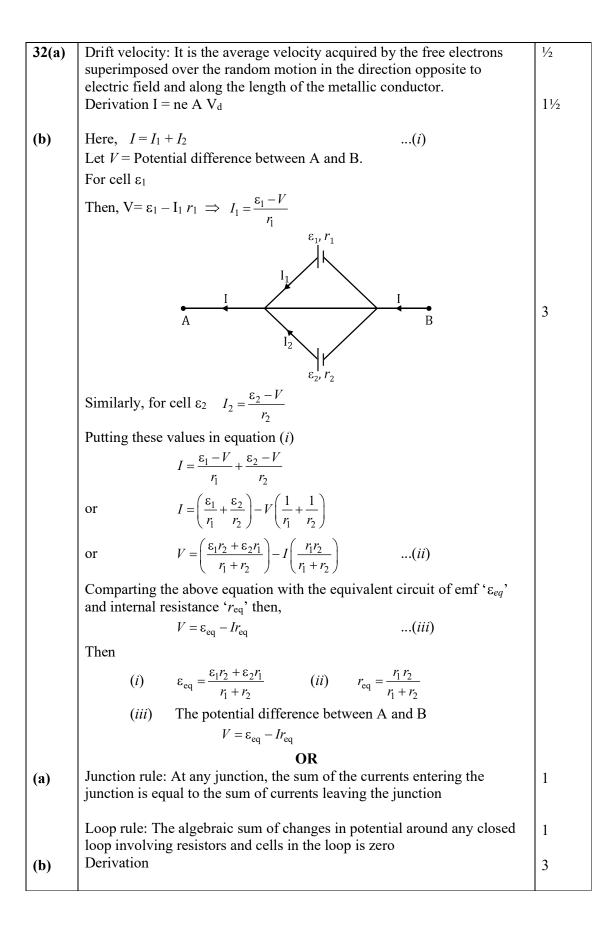
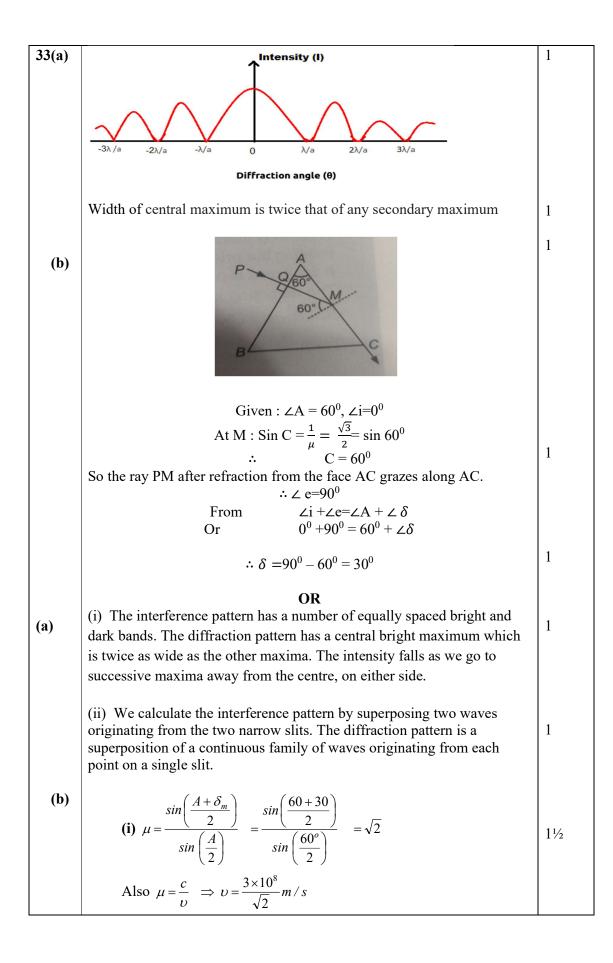

Class: XII SESSION : 2022-2023 MARKING SCHEME CBSE SAMPLE QUESTION PAPER (THEORY) SUBJECT: PHYSICS


Q.no		Marks
	SECTION A	
1	(ii) q ₁ q ₂ <0	1
2	(iv) zero	1
3	(ii) material A is germanium and material B is copper	1
4	(iv) 6A in the clockwise direction	1
5	(iii) 4:3	1
6	(i) decreases	1
7	(ii) increase	1
8	(iv) Both electric and magnetic field vectors are parallel to each other.	1
9	(ii) the circular and elliptical loops	1
10	(iv) 0.85	1
11	(iii) 3000 Å	1
12	(iv) 4.77 X 10 ⁻¹⁰ m	1
13	(ii) The nuclear force is much weaker than the Coulomb force .	1
14	(i) 30 V	1
15	(i)	1
16	c) A is true but R is false	1
17	c) A is true but R is false	1
18	a) Both A and R are true and R is the correct explanation of A	1
	SECTION B	
19	λ_1 -Microwave	1/2
	λ_2 - ultraviolet	1/2
	λ_{3-} infrared	1/2
	Ascending order - $\lambda_2 < \lambda_3 < \lambda_1$	1/2
20	A - diamagnetic	1/2
	B- paramagnetic	1/2
	The magnetic susceptibility of A is small negative	1/2
	and that of B is small positive.	1/2
21	From the relation $R = R_0 A^{1/3}$, where R_0 is a constant and A is the mass	1/2
	number of a nucleus	
	$R_{Fe}/R_{Al} = (A_{Fe}/A_{Al})^{1/3}$	
	$=(125/27)^{\frac{1}{3}}$	1/2
	$R_{Fe} = 5/3 R_{Al}$	
	$=5/3 \times 3.6$	1/2
	= 6 fermi	1⁄2
	OR	
	Given short wavelength limit of Lyman series	


	1	
	$\frac{1}{\lambda_L} = R\left(\frac{1}{1^2} - \frac{1}{\infty}\right)$ $\frac{1}{913.4 \text{ Å}} = R\left(\frac{1}{1^2} - \frac{1}{\infty}\right)$	1⁄2
	$\lambda_{\rm L} = \frac{1}{R} = 913.4 \text{ Å}$	1/2
	For the short wavelength limit of Balmer series $n_1=2, n_2 = \infty$ $\frac{1}{\lambda_B} = R\left(\frac{1}{2^2} - \frac{1}{\infty}\right)$	1/2
	$\lambda_B = \frac{4}{R} = 4 \ge 913.4 \text{ Å}$ = 3653.6 Å	1/2
22	$= 3653.6 \text{ Å}$ $\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	1/2
	$\frac{1}{f} = \left(\frac{\mu_m}{\mu_w} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	1⁄2
	$\frac{\frac{\mu_m}{\mu_w}}{\frac{\mu_m}{\mu_m}} = \frac{1.25}{1.33}$ $\frac{\mu_m}{\mu_m} = 0.98$	1/2
	μ_w The value of $(\mu - 1)$ is negative and 'f' will be negative. So it will behave like diverging lens.	1/2
23	To keep the reading of ammeter constant value of R should be increased	1
	as with the increase in temperature of a semiconductor, its resistance decreases and current tends to increase.	1
	OR	
	B - reverse biased In the case of reverse biased diode the potential barrier becomes higher	1/2
	as the battery further raises the potential of the n side.	1⁄2
	C -forward biased Due to forward bias connection the potential of P side is raised and hence	1/2
	the height of the potential barrier decreases.	1⁄2
24	Angular width $2\varphi = 2\lambda/d$	1/2
	Given $\lambda = 6000$ Å In Case of new λ (assumed λ ' here),	1/2
	angular width decreases by 30% New angular width = 0.70 (2 φ)	1/2
	$2 \lambda'/d = 0.70 X (2 \lambda/d)$ $\therefore \lambda' = 4200 \text{ Å}$	1/2


25	Surface charge density of plate A = +17.7 × 10 ⁻²² C/m ² Surface charge density of plate B = -17.7 × 10 ⁻²² C/m ² (a) In the outer region of plate I, electric field intensity E is zero. (b)Electric field intensity E in between the plates is given by relation $E = \frac{\sigma}{\epsilon_0}$ Where, $\epsilon_0 = \text{Permittivity of free space} = 8.85 \text{ x} 10^{-12} \text{ N}^{-1} \text{ C}^2 \text{ m}^{-2}$	1/2 1/2
	$\therefore E = \frac{17.7 \ x \ 10^{-22}}{8.85 \ x \ 10^{-1}}$	1/2 1/2
	Therefore, electric field between the plates is $2.0 \times 10^{-10} \text{ N/C}$	72
	SECTION C	
26	Diagram Derivation The ampere is the value of that steady current which, when maintained in each of the two very long, straight, parallel conductors of negligible cross-section, and placed one metre apart in vacuum, would exert on each of these conductors a force equal to 2×10^{-7} newtons per metre of	¹ / ₂ 1 ¹ / ₂ 1
	length.	
27	Area of the circular loop = πr^2	
	$= 3.14 \times (0.12)^2 \text{ m}^2 = 4.5 \times 10^{-2} \text{ m}^2$	
	$E = -\frac{d\varphi}{dt} = -\frac{d}{dt} (BA) = -A \frac{dB}{dt} = -A \cdot \frac{B_2 - B_1}{t_2 - t_1}$	1/2
	For $0 < t < 2s$	
	$E_1 = -4.5 \times 10^{-2} \times \left\{\frac{1-0}{2-0}\right\} = -2.25 \times 10^{-2} \text{ V}$	
	$\therefore I_1 = \frac{E_1}{R} = \frac{-2.25 \times 10^{-2}}{8.5} \text{ A} = -2.6 \times 10^{-3} \text{ A} = -2.6 \text{ mA}$	1/2
	For $2s < t < 4s$,	
	$E_2 = -4.5 \times 10^{-2} \times \left\{\frac{1-1}{4-2}\right\} = 0$	1/2
	$\therefore I_2 = \frac{E_2}{R} = 0$	
	For $4s < t < 6s$,	
	$I_3 = -\frac{4.5 \times 10^{-2}}{8.5} \times \left\{ \frac{0-1}{6-4} \right\} A = 2.6 \text{ mA}$	1/2

	(ii) At face AC, let the angle of	1
	incidence be r_2 . For grazing ray,	
	$e = 90^{\circ}$	
	$\Rightarrow \mu = \frac{1}{\sin r_2} \Rightarrow r_2 = \sin^{-1} \left(\frac{1}{\sqrt{2}} \right) = 45^{\circ}$	11⁄2
	Let angle of refraction at face AB be r_1 .	
	Now $r_1 + r_2 = A$	
	$\therefore r_1 = A - r_2 = 60^\circ - 45^\circ = 15^\circ$	
	Let angle of incidence at this face be <i>i</i>	
	$\mu = \frac{\sin i}{\sin r_1} \implies \sqrt{2} = \frac{\sin i}{\sin 15^\circ}$	
	$\therefore i = \sin^{-1} \left(\sqrt{2} \cdot \sin 15^o \right) = 21.5^0$	
	SECTION E	
34(i)	When the image is formed at infinity, we can see it with minimum strain	1
	in the ciliary muscles of the eye.	1
(ii)	The multi-component lenses are used for both objective and the eyepiece to improve image quality by minimising various optical aberrations in lenses.	1
(iii)	(a)The compound microscope is used to observe minute nearby objects	1
	whereas the telescope is used to observe distant objects.	
	(b) In compound microscope the focal length of the objective is lesser	1
	than that of the eyepiece whereas in telescope the focal length of the	
	objective is larger than that of the eyepiece.	
(iii)	(a) The image formed by reflecting type telescope is brighter than that formed by refracting telescope.	1
	(b) The image formed by the reflecting type telescope is more magnified	1
	than that formed by the refracting type telescope.	
35(i)	LEDs are made up of compound semiconductors and not by the	1
	elemental conductor because the band gap in the elemental conductor has	-
	a value that can detect the light of a wavelength which lies in the infrared	
	(IR) region.	
(ii)	1.8 eV to 3 eV	1
(iii)	LED is reversed biased that is why it is not glowing. OR	2
	V-I Characteristic curves of pn junction diode in forward biasing and reverse biasing.	1+1