MODEL PAPER – 1 S.S.C. PUBLIC EXAMINATIONS – 2021 MATHEMATICS

(English Medium)

Class: X (Max. Marks: 100) Time: 2hr. 45 min. **Instructions to students:** There are four sections and 33 questions in this paper. 1. 2. Answers should be written in a given answer sheets. There is an internal choice in Section - IV 3. 4. Write all the questions visible and legibly. 5. 15 Minutes are given for reading the question paper and 2hr 30 min given for writing answers. Section - I Note: 1. Answer all the Questions. 2. Each Question carries 1 mark $12 \times 1 = 12 M$ 1. Distance from $(\sin\theta,\cos\theta)$ to the origin is () A) $tan\theta$ B) $\sin\theta$ C) $\cos\theta$ D) 1 2. $p(x) = x^2 - 5x + 6$ then p(3) = () B) 2 C) 0 D) -2 A) 1 If α, β are zeroes of $ax^2 + bx + c$ then $\alpha + \beta = \dots (a \neq 0)$ 3.) B) $-\frac{b}{a}$ C) $\frac{a}{b}$ $2 \tan 30^{\circ}$ () $\frac{1+\tan^2 45^0}{1+\tan^2 45^0}$ a) $\sin 60^{\circ}$ b) $\cos 60^{\circ}$ c) $\tan 30^{\circ}$ d) $\sin 30^{\circ}$ 5. The 10th term of the A.P. 5, 1, -3, -7,is) B) -31 C) -35 A) 31 D) 35 HCF (84, 120) = 6. () A) 6 C) 3 B) 12 D) 1 The zero value of p(x) = 3x - 2 is 7. () A) $\frac{3}{2}$ B) $-\frac{3}{2}$ C) $\frac{2}{3}$ D) $-\frac{2}{3}$

8.	Find the area	of sector, wh	sector, whose radius is 7 cm. with the given angle : ()										
	a) 60 ⁰	b) 30 ⁰	c) 72 ⁰	d) 90 ⁰									
9.	$1 + \cot^2\theta =$				()							
	A) $\cot^2\theta$	B) 0	C) 1	D) $cosec^2\theta$									
10.	The set of all	l natural num	bers which di	vide 51 is	()							
	A) {3,17}	B) {1,3,17}	C) {1,3,17,51}	D) { }									
11.	Distance bety	ween the poin	ts (0,0) and (o	$\cos \alpha$, $a \sin \alpha$) is	()							
	A) 0 units	B) 1 units	C) 2 units	D) units									
12.	The slope of	the line perp	endicular to X	axis is	()							
	A) 0	B) 1	C) 1/2	D) not defined									
	Section – II												
Note:	1. Answer al	l the Questio	ns.										
	2. Each Ques	$8 \times 2 = 16 M$	1										
13.	Let A = $\{a, e,$	i, o, u and $B =$	$\{a,i,u\}$. Show	that $A \cup B = A$.									
14.	For what val	ue of 'p' the fo	ollowing pair	of equations has a uni	que solutio	n.							
	2x + py = -5	and $3x + 3y = -$	-6										
15.	If $p(x) = 5x^7$	$-6x^5+7x-6,$	find										
	(i) coefficient of x^5 (ii) degree of $p(x)$												
16.	Which of these are arithmetic progressions and why?												
	a) 2,3,5,7,8,10,15,												
17.	Is getting a head complementary to getting a tail? Give reasons.												
18.	Find the mod	de of the 5, 6,	9, 10, 6, 12, 3,	6, 11, 10, 4, 6, 7.									
19.	Find the midpoint of the line segment joining the points (2,7) and (12,-7).												
20.	A boy observ	ved the top of	$+7x-6$, find x^5 (ii) degree of $p(x)$ e arithmetic progressions and why? 5, complementary to getting a tail? Give reasons. the 5, 6, 9, 10, 6, 12, 3, 6, 11, 10, 4, 6, 7. of the line segment joining the points (2,7) and (12,-7). the top of an electric pole at an angle of elevation of 60° when the										
	observation p	of the line perpendicular to X – axis is () B) 1 C) $1/2$ D) not defined Section – II all the Questions. Restion carries 2 Marks. $8 \times 2 = 16 \text{ M}$ (a,e,i,o,u) and $B = \{a,i,u\}$. Show that $A \cup B = A$. For all $A \cap B = A$ and $A \cap B = A$ are a unique solution. Solution of 'p' the following pair of equations has a unique solution. Solution of $A \cap A \cap A$ find the ent of $A \cap $											

Note: 1. Answer all the Questions.

2. Each Question carries 4 Marks

 $8 \times 4 = 32 M$

21. Solve
$$3^x = 5^{x-2}$$

22. Solve the following systems of equations:

$$x + y = 2$$
.; $2x + 2y = 4$

If $A = \{0,2,4,6\}$, $B = \{3,5,7\}$ and $C = \{p,q,r\}$ then fill the appropriate symbol, \in or \notin in the 23. blanks.

(ii) 3.....C

24. Verify that 1 and
$$\frac{3}{2}$$
 are the roots of the equation $2x^2 - 5x + 3 = 0$

- Check whether (5,-2), (6,4) and (7,-2) are the vertices of an isosceles triangle. 25.
- 26. The marks obtained in mathematics by 30 students of Class X of a certain school are given in table below. Find the mean of the marks obtained by the students.

Marks obtained (x_i)	10	20	36	40	50	56	60	70	72	80	88	92	95
Number of student (f_i)	1	1	3	4	3	2	4	4	1	1	2	3	1

27. Give
$$\cot \theta = \frac{7}{2}$$
, then evaluate (i) $\frac{(1+\sin\theta)(1-\sin\theta)}{(1+\cos\theta)(1-\cos\theta)}$ (ii) $\frac{(1+\sin\theta)(1-\sin\theta)}{\cos\theta}$

One card is drawn from a well – shuffled deck of 52 cards. Calculate the probability that the 28. card will (i) be an ace, (ii) not be an ace.

Section - IV

Note: 1. Answer all the Questions.

2. Each Question carries 8 marks

3. There is an internal choice for each question

 $5 \times 8 = 40 M$

29. List all the subsets of the following sets.

(i)
$$C = \{x, y, z\}$$

C=
$$\{x, y, z\}$$
 (ii) D= $\{a, b, c, d\}$ (iii) E= $\{1,4,9,16\}$ (iv) F= $\{10,100,1000\}$

(iv)
$$F = \{10.100.1000\}$$

If
$$\log\left(\frac{x+y}{3}\right) = \frac{1}{2}(\log x + \log y)$$
, then find the value of $\frac{x+y}{y} = \frac{1}{x}$

If A, B and C are interior angles of a triangle ABC, then show that $\tan \left(\frac{A+B}{2}\right) = \cot \frac{C}{2}$

Show that
$$\frac{1-\tan^2 A}{\cot^2 A - 1} = \tan^2 A$$

31. Thirty women were examined in a hospital by a doctor and their of heart beats per minute were recorded and summarised as shown. Find the mean heart beats per minute for these women, choosing a suitable method.

Number of heart beats/ minute	65-68	68-71	71-74	74-77	77-80	80-83	83-86
Number of women	2	4	3	8	7	4	2

Show that the points (1,7), (4,2), (-1,-1) and (-4,4) are the vertices of a square.

- 32. E and F are points on the sides PQ and PR respectively of ΔPQR . for each of the following state whether $EF \parallel QR$ or not?
 - i) PE = 3.9 cm EQ = 3 cm PF = 3.6 cm and FR = 2.4 cm.
 - ii) PE = 4 cm QE = 4.5 cm PF = 8 cm and RF = 9 cm.

(or)

A train travels a distance of 480 km at a uniform speed. If the speed had been 8km/h less, then it would have taken 3 hours more to cover the same distance. We need to find the speed of the train.

33. Draw the graphs of the given polynomial and find the zeroes. Justify the answers.

(i)
$$p(x) = x^2 - x - 12$$
 (ii) $p(x) = x^2 - 6x + 9$ (or)

Construct a tangent to a circle of radius 4 cm from a point on the concentric circle of radius 6 cm and measure its length. Also verify the measurement by actual calculation.