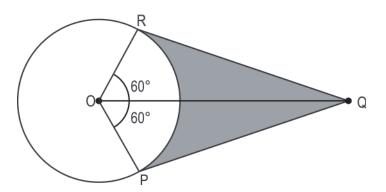

Chapter - 16 Multiple Concepts


Q: 1 A spotlight, P, is at a height of 12 m from the surface. The light from P, forms a right [3] circular cone and illuminates a circular region on the surface as shown below.

(Note: The figure is not to scale.)

Find the area of the illuminated circular region on the surface, in terms of π . Show your steps along with a rough diagram with all the relevant measures marked.

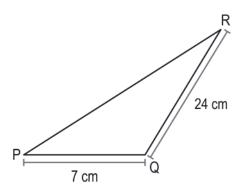
 $\frac{Q: 2}{2}$ Shown below is a circle with centre O and radius 10 cm. Two tangents QR and QP are [3] drawn to it from an external point Q and OQ = 20 cm.

(Note: The figure is not to scale.)

Find the area, in terms of π , occupied by the shaded region. Show your work.

 $\frac{Q:3}{m}$ The line *m* is a tangent to the circle C at the point (9, 12). The circle is centred at the [2] origin.

Check if the line *m* passes through the point (15, 0). Show your work.


Q: 4 If $3\cot \theta + \tan \theta = 5\sec \theta$; $0^{\circ} \le \theta \le 90^{\circ}$, find the value of θ .

[3]

Show your steps and give valid reasons.

Q: 5 Rehan has a set of 40 cards numbered 1 - 40 without repeating any number. Rehan [3] wants to construct ▲PQR shown below by choosing the length of PR, in cm, from the set of the cards.

(Note: The figure is not to scale.)

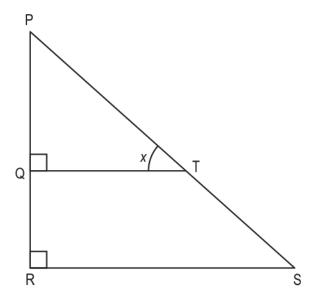
What is the probability that a card chosen at random makes **APQR** an **OBTUSE** angled triangle with **Q** as obtuse angle? Show your work.

Q: 6 Kiran is making a toy by using two circular disks of radii 12 cm and 6 cm respectively, ^[5] connected by a taut wire. The wire, XY, is the internal tangent to both disks as shown below.

(Note: The figure is not to scale.)

If the centres of the circular disks, A and B are 30 cm apart, what is the length of the wire XY? Show your steps with a figure and give valid reasons.

Q: 7 Shown below are two paths from Madrid to New York. The dotted line is the shortest [3] distance, approximately 6000 km, on a 2D map. The other solid circular arc is the shortest distance on a 3D globe and the actual path taken by a flight. The arc subtends an angle of 60° at the centre of the circular arc.

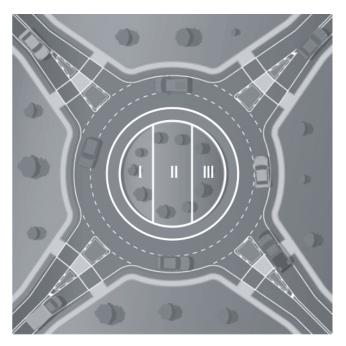

(Note: The figure is not to scale.)

What is the actual distance covered by the fight? Draw a rough diagram and show your work.

(Note: Take $\pi = 3.14$, if needed.)

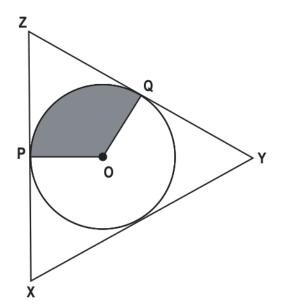
Q: 8 In the figure below, $\tan x = \frac{3}{4}$, PT = 10 cm and QR = 3 cm.

[3]



Find the area of quadrilateral RSTQ. Show your steps and give valid reasons.

Q: 9 At a certain roundabout, the radius of the circular region is 50 ft. The circular region [5] includes a 2 ft wide circular concrete footpath and a flowering bed. The flowering bed is divided into three parts using two dividers of length $48\sqrt{3}$ ft each as shown below.

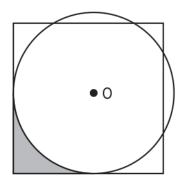


(Note: The figure is not to scale.)

Find the area of regions (I + III), in terms of π . Draw a rough diagram and show your steps.

 $\frac{Q: 10}{T}$ In the figure below, a circle with centre O is inscribed in an equilateral triangle ΔXYZ . [2] The area of the shaded region of the circle is 2π cm².

(Note: The figure is not to scale.)


What is the radius of the circle? Show your steps and give valid reasons.

Q: 11 A point P lies on a circle. Two friends, Priya and Sumedha, drew tangents to the circle [1] at point P.

What is the probability that their tangents coincide? Give a valid reason for your answer.

Q: 12 Shown below is a circle and a square. The circle with centre O has a radius of 4 cm. [3]

(Note: The figure is not to scale.)

Find the area of the shaded region. Show your work and give valid reasons.

(Note: If needed, take π as 3.14.)

Q: 13 Given below are two equations.

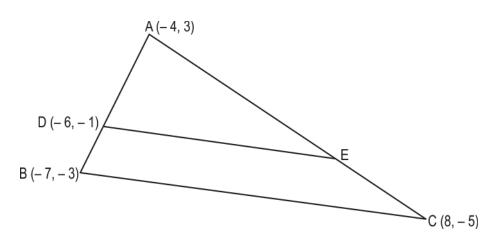
$$49^{(x + 3y)} = 7$$
$$7^{(4x + 12y)} = 49^{4}$$

i) Frame a pair of linear equations in two variables by simplifying the given equations.ii) Do these linear equations form a pair of coincident lines? Justify your answer.

Q: 14 A rhombus PQRS has a side length of 5.8 cm and a diagonal QR of length 8.4 cm. [2]

Use a ruler and compass to draw the rhombus PQRS.

[2]



Multiple Concepts

CLASS 10

[3]

Q: 15 In the figure shown below, DE || BC.

⁽Note: The figure is not to scale.)

Find the coordinates of point E. Show your work and give valid reasons.

Math Multiple Concepts CLASS 10

Answer Key

Q.No	Teacher should award marks if students have done the following:	Marks
1	Draws a rough figure representing the given information. It may look as follows:	0.5
	P 30° 12 m	
	Assumes the radius of the circular region to be <i>r</i> and finds the value of <i>r</i> as 12(tan30°) = $4\sqrt{3}$ m.	1.5
	Finds the area of the illuminated circular region as $\pi \times (4\sqrt{3})^2 = 48\pi \text{ m}^2$.	1
2	Finds the lengths of the tangents RQ and PQ as $10\sqrt{3}$ cm each, either by applying the Pythagoras theorem as $\sqrt{(20^2 - 10^2)}$ or by considering RQ and PQ as 10tan60°.	0.5
	Finds the area of $\triangle ORQ$ as $\frac{1}{2} \times 10 \times 10\sqrt{3} = 50\sqrt{3}$ cm ² .	0.5
	Similarly, finds the area of ΔOPQ as 50 $\sqrt{3}$ cm ² .	
	Finds the area of the quadrilateral PQRO as 2 \times 50 $\sqrt{3}$ = 100 $\sqrt{3}$ cm ² .	0.5
	Finds the area of the minor sector OPR as:	1
	$\frac{120^{\circ}}{360^{\circ}} \times \pi \times (10)^{2}$	
	$=\frac{100\pi}{3}$ cm ²	
	(Award 0.5 marks if only the formula for area of a sector is correctly written.)	

CLASS 10 Ans

Q.No	Teacher should award marks if students have done the following:	Marks
	Finds the area occupied by the shaded region as:	0.5
	(Area of the quadrilateral PQRO) - (Area of the minor sector OPR)	
	= $100\sqrt{3}$ cm ² - $\frac{100\pi}{3}$ cm ²	
	(Award full marks if the correct answer is obtained by an alternate method.)	
3	Finds the radius of the circle using the distance formula between (0, 0) and (9, 12) as 15 units.	1
	Concludes that (15, 0) is a point on the circle and the line <i>m</i> being a tangent touches the circle at only one point, the line cannot pass through the point (15, 0).	1
	(Award full marks if graphical representation is used to conclude the answer.)	
4	Simplifies the given equation as:	0.5
	$3 \frac{\cos\theta}{\sin\theta} + \frac{\sin\theta}{\cos\theta} = 5 \frac{1}{\cos\theta}$	
	$=> 3\cos^2\theta + \sin^2\theta - 5\sin\theta = 0$	
	Simplifies the above equation as:	0.5
	$2\sin^2\theta + 5\sin\theta - 3 = 0$	
	Factorises the above equation to get sin $\theta = \frac{1}{2}$ or (-3).	1
	Writes that sin θ cannot be equal to (-3) as $0\leq$ sin $\theta\leq 1$ and hence concludes that sin $\theta=\frac{1}{2}$.	0.5
	Uses the above step to find the value of θ as 30° since sin 30° = $\frac{1}{2}$.	0.5
5	Identifies that at PR = 25 cm, Δ PQR is a right-angled triangle. Hence, for obtuse-angled triangle, PR > 25 cm.	1
	Writes that $PR < (24 + 7)$ cm or $PR < 31$ cm for PQR to be a triangle.	1

Answer Key

CLASS 10

Q.No	Teacher should award marks if students have done the following:	Marks
	Uses the above steps and finds the probability that a card chosen at random makes Δ PQR an OBTUSE angled triangle at Q as $\frac{5}{40}$.	1
6	Draws the figure by joining AB, AX and YB. The figure may look as follows:	0.5
	(Note: The figure is not to scale.) Writes that in ΔAXP and ΔBYP:	1.5
	$\angle AXY = \angle XYB = 90^{\circ}$ (as tangent is \perp to radius)	
	$\angle APX = \angle BPY$ (vertically opposite angles)	
	Conclude that $\Delta AXP \sim \Delta BYP$ by using the AA similarity criterion.	
	Uses the above step and writes: $\frac{AP}{PB} = \frac{XP}{PY} = \frac{AX}{BY} = \frac{12}{6} = 2$	1.5
	=> AP = 2PB.	
	Uses AP + PB = 30 (given) and AP = 2PB to get PB as 10 cm and AP as 20 cm.	
	Uses the Pythagoras theorem for Δ BYP and finds PY as 8 cm.	1
	Finds XP as 16 cm by using the ratio XP = 2PY.	
	(Award full marks if the Pythagoras theorem is used for Δ AXP and Δ BYP to find the lengths of XP and PY respectively.)	

CLASS 10 An

Q.No	Teacher should award marks if students have done the following:	Marks
	Finds the length of the wire, XY as $16 + 8 = 24$ cm.	0.5
7	Draws a rough diagram representing the given situation. The diagram may look as follows:	1
	(Note: The figure is not drawn to scale.)	
	Finds the radius of the circle, R as $\frac{3000}{\sin 30^{\circ}}$ = 6000 km.	1
	Finds the actual distance covered by the flight as $\frac{60^{\circ}}{360^{\circ}} \times 2 \times 3.14 \times 6000 = 6280$ km.	1
	(Award 0.5 marks if only the formula for the arc length is correctly written.)	
8	Uses tan $x = \frac{3}{4}$ for Δ PQT and PT = 10 cm to find the length of PQ and QT as 6 cm and 8 cm respectively.	1
	Writes that in ΔPQT and ΔPRS:	0.5
	∠PQT = ∠PRS = 90° ∠QPT = ∠RPS (common angle)	
	Concludes that $\Delta PQT \sim \Delta PRS$ by using the AA similarity criterion.	

CLASS 10 Ans

Q.No	Teacher should award marks if students have done the following:	Marks
	Uses the above two steps and writes the relation as:	1
	$\frac{PQ}{PR} = \frac{QT}{RS}$	
	$=>\frac{6}{9}=\frac{8}{RS}$	
	=> RS = 12 cm	
	Finds the area of quadrilateral RSTQ as $\frac{1}{2} \times (8 + 12) \times 3 = 30$ sq cm.	0.5
9	Draws a rough diagram. The diagram may look as follows:	1
	Writes that sin $\theta = \frac{24\sqrt{3}}{48} = \frac{\sqrt{3}}{2}$ and finds the angle subtended by the chord at the centre as 2 × 60° = 120°.	1
	Finds the area of the sector with central angle of 120° as $\frac{120^{\circ}}{360^{\circ}} \times \pi \times (48)^2 = 768\pi$ ft ²	1
	(Award 0.5 marks if only the formula for the area of a sector is correctly written.)	
	Finds the height OT of Δ MON as:	1
	$\cos 60^{\circ} = \frac{OT}{48}$ => OT = 24 ft	
	(Award full marks if Pythagoras' theorem is correctly used to find the height.)	
	Finds the area of Δ MON as $\frac{1}{2} \times 48\sqrt{3} \times 24 = 576\sqrt{3}$ ft ² .	0.5

?

Math Multiple Concepts

CLASS 10 A

Q.No	Teacher should award marks if students have done the following:	Marks
	Finds the area of the segments (I + III) as 2(768 π - 576 $\sqrt{3}$) or 384(4 π - 3 $\sqrt{3}$) ft ² .	0.5
10	Writes that $\angle PZQ = 60^{\circ}$ and gives the reason that ΔXYZ is an equilateral triangle.	1
	Writes that $\angle ZPO = \angle ZQO = 90^{\circ}$ and gives the reason that the tangent at any point of a circle is perpendicular to the radius through the point of contact.	
	Finds $\angle POQ$ as 360° - 90° - 90° - 60° = 120° and gives the reason that the sum of internal angles of a quadrilateral is 360°.	
	Uses the area of the shaded region of the circle and finds the radius of the circle, <i>r</i> , as:	1
	$2\pi = \frac{120^{\circ}}{360^{\circ}} \times \pi r^2$	
	=> <i>r</i> = √6 cm	
11	Writes that the probability of their tangents coinciding is 1 and gives a reason. For example, writes that there is only one tangent at any point on the circumference of the circle.	1
12	Writes that radius of a circle is perpendicular to the tangent at the point of contact and draws two radii. The figure may look as follows:	1
	(Award 1 mark if an equivalent explanation is written without a figure.)	
	Writes that PQOR is a square and finds its area as $4 \times 4 = 16$ cm ² .	0.5

CLASS 10 Answer Key

Q.No	Teacher should award marks if students have done the following:	Marks
	Writes that QOR is a quadrant and finds its area as $\frac{90}{360} \times 3.14 \times 4 \times 4 = 12.56$ cm ² .	1
	Finds the area of the shaded region as $16 - 12.56 = 3.44 \text{ cm}^2$.	0.5
13	i) Frames the pair of linear equations in two variables using the given information as:	1
	2 x + 6 y = 1 4 x + 12 y = 8	
	(Award 0.5 marks for each correct linear equation in two variables.)	
	ii) Writes that these linear equations do not form a pair of coincident lines.	0.5
	Justifies the answer. For example, writes that $\frac{2}{4} = \frac{6}{12} \neq \frac{1}{8}$.	0.5
14	Draws the base PQ of length 5.8 cm, diagonal QS of length 8.4 cm and PS of length 5.8 cm.	0.5
	Draws a ray ST parallel to PQ by making \angle PQS equal to \angle TSQ.	1
	Cuts a length of 5.8 cm from S and joins SR and QR to get the rhombus PQRS.	0.5
	The construction may look as follows:	0
	B B B B B B B B B B	

CLASS 10 Answer Key

Q.No	Teacher should award marks if students have done the following:	Marks
15	Assumes that D divides AB in ratio <i>m</i> : <i>n</i> and uses section formula to write:	0.5
	$(-6, -1) = (\frac{-7m-4n}{m+n}, \frac{-3m+3n}{m+m})$	
	Finds <i>m</i> : <i>n</i> as 2:1.	1
	Writes that in ΔABC , according to the Basic Proportionality Theorem (BPT) point E will divide AC in ratio 2:1 since DE BC and D divides AB in ratio 2:1.	0.5
	Uses the section formula to find the coordinates of point E as: ($\frac{8(2)+(-4)(1)}{2+1}$, $\frac{(-5)(2)+3(1)}{2+1}$)	0.5
	Evaluates the above expressions to find the coordinates of point E as $(4, \frac{-7}{3})$.	0.5