Chapter-2 Polynomials

Q: 1 Shown below are the parts of graphs of two polynomials, $g(x)$ and $h(x)$. When $h(x$) is divided by ($x-3$), the remainder is k.

Which of these is true for the remainder when $g(x)$ is divided by $(x-3)$?
1 It is less than k.
2 It is equal to k.
3 It is more than k.
4 (cannot conclude without knowing the polynomials)

Q: 2 Shown below is a part of the graph of a polynomial $h(x)$.

On dividing $h(x)$ by which of the following will the remainder be zero?
i) $(x-2)$
ii) $(x+2)$
iii) $(x-4)$
iv) $(x+4)$

1 only ii)
2 only i) and iii)
3 only ii) and iv)
4 (cannot be determined without knowing the polynomial $h(x)$)

Q: 3

Write a quadratic polynomial whose sum of zeros is less than that of the polynomial shown in the graph above.

Q: 4

$$
\frac{x^{2}-3 \sqrt{2} x+4}{x-\sqrt{2}} ; x \neq \sqrt{2}
$$

At how many points does the graph of the above expression intersect the \boldsymbol{x}-axis? Show your work.

Two polynomials are shown in the graph below.

Find the number of zeroes that are common to both the polynomials. Explain your answer.

Q: $6 p$ and q are zeroes of the polynomial $2 x^{2}+5 x-4$.
Without finding the actual values of p and q, evaluate ($1-p)(1-q)$. Show your steps.

Q: 7 A polynomial is given by $q(x)=x^{3}-2 x^{2}-9 x+k$, where k is a constant.
The sum of two zeroes of $q(x)$ is zero.
Using the relationship between the zeroes and coefficients of a polynomial, find the:
i) zeroes of $q(x)$.
ii) value of k.

Show your steps.

Q: $8 p(x)=a x^{2}-8 x+3$, where a is a non-zero real number. One zero of $p(x)$ is 3 times [3] the other zero.
i) Find the value of a. Show your work.
ii) What is the shape of the graph of $\boldsymbol{p}(x)$? Give a reason for your answer.

Q: $9 f(x)=2 x^{2}-4 x+k$, where k is a non-zero real number. When $f(x)$ is divided by (x +2), it leaves a remainder of (-14).
i) Find the zeroes of $f(x)$.
ii) Shown below is the graph of $f(x)$. The vertex is the minimum value of $f(x)$ and the dotted line drawn through the vertex is the axis of symmetry of the graph.

At what point does the axis of symmetry intersect the x-axis? Find the minimum value of $f(x)$.

Show your steps.

Q: $10 p(x)=2 x^{2}-6 x-3$. The two zeroes are of the form:
$\frac{3 \pm \sqrt{k}}{2}$; Where k is a real number

Use the relationship between the zeroes and coefficients of a polynomial to find the value of \boldsymbol{k}. Show your steps.

Q: 11 Find the distance between the zeroes of the polynomial $f(x)=2 x^{2}-x$ - 6. Show your [2] steps.

Q: $12 x^{4}+a x^{3}+b x^{2}+2 x+3=\left(x^{2}-2\right) q(x)-2 x-3$ where a, b are non-zero real constants and $q(x)$ is a non-zero polynomial.
i) Find the values of \boldsymbol{a} and \boldsymbol{b}.
ii) Find the zeroes of $q(x)$.

Show your steps.

Q: 13
$f(x)=x^{3}-a x^{2}+(a-3) x+6$, where a is a non-zero real number. When $f(x)$ is divided by $(x+1)$, there is no remainder.

If $f(x)$ is completely factorisable, find the zeroes of $f(x)$. Show your steps.

Q: 14 One zero of $f(x)=x^{3}-3 x^{2}+4$ is 2 .
At how many points will the graph of $f(x)$ intersect the x-axis? Show your steps.

Q: 15 Students of a class were shown the graph below.

Based on their answers, they were divided into two groups. Group 1 said the graph represented a quadratic polynomial whereas group 2 said the graph represented a cubic polynomial.
i) Which group was correct?
ii) Write the polynomial represented by the graph.

Q: 16 Shown below are the graphs of two cubic polynomials, $f(x)$ and $g(x)$. Both polynomials have the zeroes (-1), 0 and 1.

Anya said, "Both the graphs represent the same polynomial, $f(x)=g(x)=(x+1)($ $x-0)(x-1)$ as they have the same zeroes."

Pranit said, "Both the graphs represent two different polynomials, $f(x)=(x+1)(x-$ $0)(x-1)$ and $g(x)=-(x+1)(x-0)(x-1)$ and only two such polynomials exist that can have the zeroes (-1), 0 and 1."

Aadar said, "Both the graphs represent two different polynomials and infinitely many such polynomials exist that have the zeroes (-1), 0 and 1."

Who is right? Justify your answer.

Q: $17 p(x)=(x+3)^{2}-2(x-c)$; where c is a constant.
If $p(x)$ is divisible by x, find the value of c. Show your steps.

The table below gives the correct answer for each multiple-choice question in this test.

Q.No	Correct Answers
1	1
2	1

Q.No	Teacher should award marks if students have done the following:	Marks
3	Identifies the sum of the zeroes of the given polynomial as 3-2=1.	1
	Writes a quadratic polynomial whose sum of zeroes is less than 1. For example, $x^{2}+$ $3 x-5=0$.	1
4	Factorises the numerator to write the given expression as: $\frac{(x-\sqrt{2})(x-2 \sqrt{2})}{x-\sqrt{2}}$	1
	Writes that the graph of the above expression, $x-2 \sqrt{ } 2$, intersects the x-axis at exactly one point.	1
5	Finds the number of zeroes that are common to both the polynomials as 1.	0.5
	Explains the answer. For example, the two polynomials intersect at 2 points but only 1 of them lie on the x-axis.	0.5
6	Expands (1-p)(1-q) to get $1-(p+q)+p q$.	0.5
	Finds the sum of the zeroes as $\frac{-5}{2}$.	0.5
	Finds the product of the zeroes as $\frac{-4}{2}=\mathbf{- 2}$.	0.5
	Uses the above steps to find the value of (1-p)(1-q) as $1-\left(-\frac{5}{2}\right)-2=\frac{3}{2}$.	0.5
7	i) Assumes the values of zeroes of $q(x)$ as $(-\alpha), \alpha$ and β.	0.5
	Writes the sum of zeroes as: $-\alpha+\alpha+\beta=2$ Finds $\boldsymbol{\beta}$ as 2.	0.5

Q.No	Teacher should award marks if students have done the following:	Marks
	Writes the equation for the sum of the products of zeroes taken two at a time as: $-\alpha^{2}-\alpha \beta+\beta \alpha=-9$ Finds α^{2} as 9.	1
	Finds the 3 zeroes of $q(x)$ as (-3), 3 and 2.	0.5
	ii) Writes the equation for the product of zeroes as $\left(-\alpha^{2} \beta\right)=(-k)$ and finds the value of k as 18.	0.5
8	i) Assumes the roots of $p(x)$ to be α and β to write the relation $\alpha=3 \beta$.	0.5
	Writes the sum of the roots as $4 \beta=\frac{8}{a}$ to get β as $\frac{2}{a}$.	0.5
	Writes the product of the roots as $3 \beta^{2}=\frac{3}{a}$ to get a as 4 .	1
	ii) Writes that, since a is positive, the graph of $p(x)$ is an open upward parabola or open upwards like \mathbf{U}.	1
9	i) Writes that, since remainder of $\frac{f(x)}{(x+2)}$ is $\mathbf{- 1 4}$, therefore, $f(-2)=\mathbf{- 1 4}$.	0.5
	Uses the above step to write the equation as: $2(-2)^{2}-4(-2)+k=-14$ Finds the value of \boldsymbol{k} as $\mathbf{- 3 0}$.	1
	Factorises $f(x)$ as $(2 x+6)(x-5)$ and finds the zeroes as -3 and 5.	1.5
	ii) Finds the point at which the axis of symmetry intersects the \boldsymbol{x}-axis as the average of the two zeroes: $\frac{(-3+5)}{2}=1 .$	1
	Finds the minimum value of $f(x)$ as: $f(1)=2(1)^{2}-4(1)-30=-32$	1

Q.No	Teacher should award marks if students have done the following:	Marks
10	Writes the equation for the product of zeroes as: $\left(\frac{3+\sqrt{k}}{2}\right)\left(\frac{3-\sqrt{k}}{2}\right)=\frac{-3}{2}$	1
	Simplifies the above equation and writes: $\frac{9-k}{4}=\frac{-3}{2}$	0.5
	Solves the above equation and finds the value of \boldsymbol{k} as $\mathbf{1 5}$.	0.5
11	Factorises $f(x)$ as $(x-2)(2 x+3)$.	1
	Writes $f(x)=0$ and finds the coordinates of the zeroes as $(2,0)$ and $\left(\frac{-3}{2}, 0\right)$. (Award full marks if only the zeroes of $f(x)$ are written.)	0.5
	Finds the distance between the zeroes as $\frac{7}{2}$ units.	0.5
12	i) Writes the given equation as $x^{4}+a x^{3}+b x^{2}+4 x+6=\left(x^{2}-2\right) q(x)$.	0.5

Q.No	Teacher should award marks if students have done the following:	Marks
	Divides $x^{4}+a x^{3}+b x^{2}+4 x+6$ by $\left(x^{2}-2\right)$ to get $q(x)$ as $x^{2}+a x+b+2$. For example: $\begin{aligned} & x^{2}-2 x^{2}+a x+b+2 \\ & x^{4}+a x^{3}+b x^{2}+4 x+6 \\ & \frac{x^{4}-2 x^{2}}{a x^{3}+x^{2}(b+2)+4 x+6} \\ &-\frac{a x^{3}}{}-2 a x \\ & \hline-x^{2}(b+2)+x(2 a+4)+6 \\ & x^{2}(b+2)-2 b-4 \\ & x(2 a+4)+2 b+10 \end{aligned}$	2
	Equates the coefficient of x in the remainder to 0 and finds the value of \boldsymbol{a} as $\mathbf{- 2}$.	0.5
	Equates the constant term in the remainder to 0 and finds the value of \boldsymbol{b} as $\mathbf{- 5}$.	0.5
	ii) Uses step 3 and writes $q(x)$ as $x^{2}-2 x-3$.	0.5
	Factorises $q(x)$ as $(x+1)(x-3)$ and finds its zeroes as -1 and 3.	1
13	Writes that, since $f(x)$ is divisible by $(x+1), f(-1)=0$ and finds the value of a as 4.	0.5
	Uses the above step and writes $f(x)$ as $x^{3}-4 x^{2}+x+6$.	0.5

Q.No	Teacher should award marks if students have done the following:	Marks
	Divides $f(x)$ by $(x+1)$ and finds the quotient as $x^{2}-5 x+6$. For example: $x+1 \begin{aligned} & \frac{x^{2}-5 x+6}{x^{3}-4 x^{2}+x+6} \\ & -x^{3}+x^{2} \\ & -5 x^{2}+x+6 \\ & -5 x^{2}-5 x \\ & \hline-\begin{array}{r} -5 x+6 \\ 6 x+6 \end{array} \\ & \hline 0 \end{aligned}$	1
	Factorises the quotient as $(x-2)(x-3)$.	0.5
	Finds the zeroes of $f(x)$ as (-1), 2 and 3.	0.5
14	Divides $f(x)$ by $(x-2)$ and finds the quotient as $x^{2}-x-2$. For example: $\begin{array}{r} \frac{x^{2}-x-2}{x^{3}-3 x^{2}+4} \\ \frac{x^{3}-2 x^{2}}{-x^{2}+4} \\ \frac{-x^{2}+2 x}{-2 x+4} \\ \frac{-2 x+4}{} \end{array}$	1
	Factorises the quotient as $(x-2)(x+1)$.	0.5

Q.No	Teacher should award marks if students have done the following:	Marks
	Concludes from the above step that the graph of $f(x)$ intersects the x-axis at two points.	0.5
15	i) Writes that group 2 was correct.	0.5
	ii) Writes the polynomial represented by the graph as $(x-2)^{2}(x+2)$.	0.5
16	Writes that Aadar is right and gives a justification. For example, the factored form of a cubic polynomial with the zeroes (-1), 0 and 1 can be written as $k(x+1)(x-0)(x-$ 1) where k is an integer.	1
17	Writes the given polynomial as: $p(x)=x^{2}+9+4 x+2 c$	0.5
	Writes that, if $p(x)$ is divisible by $x, p(0)=0$. OR Writes that the remainder of $\frac{p(x)}{x}$, which is $9+2 c$, should be 0 .	1
	Finds the value of c as $\frac{-9}{2}$.	0.5

