Chapter-8 Introduction to Trigonometry

Q: 1 If $\cos y=0$, then what is the value of $\frac{1}{2} \cos \frac{y}{2}$?
10
$2 \frac{1}{2}$
$3 \frac{1}{\sqrt{2}}$
$4 \frac{1}{2 \sqrt{2}}$

Q: $2 \mathbf{P}$ and \mathbf{Q} are acute angles such that $\mathbf{P}>\mathbf{Q}$.
Which of the following is DEFINITELY true?
$1 . \sin P<\sin Q$
$2 \tan P>\tan Q$
$3 \cos \mathrm{P}>\cos \mathrm{Q}$
4. $\cos P>\sin Q$

Q: 3 In a right-angled triangle $P Q R, \angle Q=90^{\circ}$.
Which of these is ALWAYS 0 ?
1 . $\cos P-\sec R$
$2 \tan P-\cot R$
$3 \sin P-\operatorname{cosec} R$
4 (cannot be known without knowing the value of P)

Q: 4

Show that $\sin \theta=\cos (90-\theta)$ is true using the definition of trigonometric ratios.

Q: 5 In the triangles shown below, $\angle Q=\angle T$.

Write an expression each for $\cos \mathbf{Q}$ and $\sin T$.

Q: 6 A unit circle is shown below with centre O. A tangent $A B$ is drawn to the circle at point [2] M such that $\angle M O B=\beta$.

(Note: The figure is not to scale.)
If $\mathrm{OA} \perp \mathrm{OB}$, write the expressions that represent the lengths of
i) OB
ii) $O A$
iii) $A B$

Q: 7 In the figure below, $5 \sin P=4$.

(Note: The figure is not to scale.)
What is the length of PR? Draw a diagram and show your steps.

Math

Q: $8 \triangle P Q R$ is inscribed in a circle with a centre O and radius r units.

If $P R$ is the diameter of the circle and $\angle R Q O=\beta$,
Express $\left(Q R^{4}-P Q^{4}\right)$, in terms of r and β, to the simplest form.
Show your steps and give valid reasons.

Q: 9 Prove the following.
i) $\frac{1}{\operatorname{cosec} \theta-\cot \theta}-\frac{\cot \theta}{\cos \theta}=\cot \theta$
ii) $\frac{\tan 18^{\circ}}{\cos 72^{\circ}}-\frac{1}{\operatorname{cosec} 72^{\circ}+\tan 18^{\circ}}=\cot 72^{\circ}$

Q: $\mathbf{1 0}$ Shown below is a cuboid. Its length is I units, breadth \boldsymbol{b} units and height \boldsymbol{h} units.

i) Express $\cos \theta$ in terms of I, b, and h.
ii) If the figure was a cube, what would be the value of $\cos \boldsymbol{\theta}$?

Show your work.

Q: 11 Prove that:
$\frac{\operatorname{cosec}^{2} x-\sin ^{2} x \cot ^{2} x-\cot ^{2} x}{\sin ^{2} x}=1$

Q: 12
If $\frac{1}{\sin \theta-\cos \theta}=\frac{\operatorname{cosec} \theta}{\sqrt{2}}$, prove that $\left(\frac{1}{\sin \theta+\cos \theta}\right)^{2}=\frac{\sec ^{2} \theta}{2}$.

Q: 13 Solve:
$\left(\frac{4 \tan 53^{\circ}}{\cot 37^{\circ}}\right)^{2}-\frac{\sec 34^{\circ} \sin 56^{\circ} \cos 17^{\circ}}{\sec 6^{\circ} \sin 73^{\circ} \sin 84^{\circ}}$

Show your steps.

Q: 14 During a math lesson, Mr. Kumar wrote the expression given below on the board and asked the students to simplify it.

$$
\frac{\cos A}{1-\sin A}+\frac{1-\sin A}{\cos A}
$$

Salma solved it in her notebook as follows:

$$
\begin{aligned}
& \frac{\cos A}{1-\sin A}+\frac{1-\sin A}{\cos A} \\
= & \frac{\cos ^{2} A+(1-\sin A)^{2}}{(1-\sin A) \times \cos A} \cdots(\text { step } 1) \\
= & \frac{\cos ^{2} A+\cos ^{2} A}{(1-\sin A) \times \cos A} \cdots \text { (step 2) } \\
= & \frac{2 \cos ^{2} A}{(1-\sin A) \times \cos A} \cdots \text { (step 3) } \\
= & \left.\frac{2 \cos A}{1-\sin A} \quad \ldots \text { (step } 4\right)
\end{aligned}
$$

Examine if Salma has made any error(s) and rectify them to find the correct answer.

Q: 15 The teacher asked the students to correctly complete the following sentence about the [3] rhombus.
"A rhombus has a side length of I units and one of its angles is equal to θ. The ratio of the lengths of the two diagonals is dependent on \qquad ."

Ashima: only I.
Bilal: only θ.
Chris: both I and $\boldsymbol{\theta}$.
Duleep: neither I nor $\boldsymbol{\theta}$.
Who answered the question correctly? Show your work and give valid reasons.

Q: 16 A 90 cm wide door opens on one side of the room at a maximum angle of 90°. Due to shortage of space, a $\mathbf{4 0} \mathbf{~ c m}$ by $\mathbf{8 0} \mathbf{~ c m}$ table is kept behind the door along the wall such that it obstructs its path.

(Note: The figure is not to scale.)
At what distance from the hinge should the table be kept such that the door opens for a maximum angle of 60°. Show your work.
(Note: Use $\sqrt{ } 2=1.41, \sqrt{ } 3=1.73$)

The table below gives the correct answer for each multiple-choice question in this test.

Q.No	Correct Answers
1	4
2	2
3	2

Q.No	Teacher should award marks if students have done the following:	Marks
4	Marks the 3rd angle as 90- $\boldsymbol{\theta}$ and verifies the given statement using the ratio definition.	1
5	Writes $\cos \mathbf{Q}=\frac{\mathrm{r}}{\mathrm{p}}$.	0.5
	Writes $\sin \mathrm{T}=\sin \mathrm{Q}=\frac{\mathrm{q}}{\mathrm{p}}$.	0.5
6	i) Applies trigonometric ratios in $\triangle O M B$ to write: $\begin{aligned} & \cos (\beta)=\frac{O M}{O B}=\frac{1}{O B} \\ & \Rightarrow O B=\sec \beta \end{aligned}$	0.5
	ii) Applies trigonometric ratio in $\triangle O M A$ to write: $\begin{aligned} & \cos \left(90^{\circ}-\beta\right)=\frac{O M}{O A}=\frac{1}{O A} \\ & \Rightarrow O A=\operatorname{cosec} \beta \end{aligned}$	0.5
	iii) Uses above steps along with Pythagoras' theorem to write: $\begin{aligned} & A B^{2}=O A^{2}+O B^{2} \\ \Rightarrow & A B^{2}=\operatorname{cosec}^{2} \beta+\sec ^{2} \beta \\ \Rightarrow & A B^{2}=\frac{\cos ^{2} \beta+\sin ^{2} \beta}{\sin ^{2} \beta \cos ^{2} \beta} \\ \Rightarrow & A B=\sqrt{\frac{1}{\sin ^{2} \beta \cos ^{2} \beta}} \\ \Rightarrow & A B=\frac{1}{\sin \beta \cos \beta} \end{aligned}$ (Award full marks for any other variation of the correct answer.)	1

Chapter 8 - Introduction to Trigonometry

| Q.No | Teacher should award marks if students have done the following: | Marks |
| :--- | :--- | :--- | :--- |
| 7 | Writes that, in an isosceles triangle, the perpendicular bisects the base and draws a
 diagram. The diagram may look as follows: | 0.5 |

Q.No	Teacher should award marks if students have done the following:	Marks
	Simplifies and factorises the above expression for $\left(Q^{4}-P Q^{4}\right)$ as $16 r^{4}(\cos \beta-\sin$ $\beta)(\cos \beta+\sin \beta)$. (Award full marks if the student simplifies to any other variation of this equation.)	0.5
9	i) Simplifies the given LHS by rationalizing the first term as: $\frac{\operatorname{cosec} \theta+\cot \theta}{\operatorname{cosec}^{2} \theta-\cot ^{2} \theta}-\frac{\cot \theta}{\cos \theta}$	0.5
	Simplifies the above expression as: $\operatorname{cosec} \theta+\cot \theta-\operatorname{cosec} \theta=\cot \theta$ Concludes that LHS = RHS.	1
	ii) Simplifies the given LHS as: $\frac{\sin 18^{\circ}}{\cos 18^{\circ}} \times \frac{1}{\sin 18^{\circ}}-\frac{1}{\operatorname{cosec} 72^{\circ}+\cot 72^{\circ}}$	0.5
	Simplifies the above expression by rationalizing the second term as: $\sec 18^{\circ}-\frac{\operatorname{cosec} 72^{\circ}-\cot 72^{\circ}}{\operatorname{cosec}^{2} 72^{\circ}-\cot ^{2} 72^{\circ}}$	0.5
	Simplifies the above expression as: $\sec 18^{\circ}-\sec 18^{\circ}+\cot 72^{\circ}=\cot 72^{\circ}$ Concludes that LHS = RHS.	0.5
10	i) Finds the length of CH using the Pythagoras' theorem in \triangle CGH as: $\mathbf{C H}=\sqrt{ }\left(\mathbf{C G}^{2}+\mathbf{G H}{ }^{2}\right)=\sqrt{ }\left(I^{2}+b^{2}\right)$ units	0.5

Q.No	Teacher should award marks if students have done the following:	Marks
	Finds the length of CE using the Pythagoras' theorem in $\triangle C H E$ as: $C E=\sqrt{ }\left(C^{2}+E H^{2}\right)=\sqrt{ }\left(I^{2}+b^{2}+h^{2}\right)$ units	0.5
	Finds $\cos \theta$ as: $\begin{aligned} \cos \theta & =\frac{\mathrm{CH}}{\mathrm{CE}}=\frac{\sqrt{l^{2}+b^{2}}}{\sqrt{l^{2}+b^{2}+h^{2}}} \\ \Rightarrow \cos \theta & =\sqrt{\frac{l^{2}+b^{2}}{l^{2}+b^{2}+h^{2}}} \end{aligned}$ (Award 0.5 marks if only the ratio for $\cos \boldsymbol{\theta}$ is correctly written.)	1
	ii) Applies $I=\boldsymbol{b}=\boldsymbol{h}$ for a cube and solves for $\cos \boldsymbol{\theta}$ as: $\cos \theta=\sqrt{\frac{l^{2}+b^{2}}{l^{2}+b^{2}+h^{2}}}=\sqrt{\frac{2}{3}}$	1
11	Simplifies the given LHS as: $\frac{1-\sin ^{2} x \cot ^{2} x}{\sin ^{2} x}$	1
	Simplifies the above expression as: $\operatorname{cosec}^{2} x-\cot ^{2} x$	0.5
	Simplifies the above expression as 1 and concludes that LHS $=$ RHS.	0.5

Q.No	Teacher should award marks if students have done the following:	Marks
12	Squares both sides of the given equation as: $\frac{1}{\sin ^{2} \theta+\cos ^{2} \theta-2 \sin \theta \cos \theta}=\frac{\operatorname{cosec}^{2} \theta}{2}$	0.5
	Simplifies the above equation as: $\frac{2}{\operatorname{cosec}^{2} \theta}=1-2 \sin \theta \cos \theta$	1
	Simplifies the above equation as: $2 \sin \theta \cos \theta=1-2 \sin ^{2} \theta$	1
	Squares the LHS of the equation to be proved as: $\frac{1}{\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta}$	0.5
	Uses step 3 and simplifies the above expression as: $\frac{1}{2-2 \sin ^{2} \theta}$	1
	Simplifies the above expression as: $\frac{1}{2 \cos ^{2} \theta}=\frac{\sec ^{2} \theta}{2}$ Concludes that LHS = RHS.	1

Q.No	Teacher should award marks if students have done the following:	Marks
13	Simplifies the given expression as: $\left(\frac{4 \cot \left(90^{\circ}-53^{\circ}\right)}{\cot 37^{\circ}}\right)^{2}-\frac{\operatorname{cosec}\left(90^{\circ}-34^{\circ}\right) \times \frac{1}{\operatorname{cosec} 56^{\circ}} \times \sin \left(90^{\circ}-17^{\circ}\right)}{\operatorname{cosec}\left(90^{\circ}-6^{\circ}\right) \times \sin 73^{\circ} \times \frac{1}{\operatorname{cosec} 84^{\circ}}}$	1.5
	Simplifies the given expression as: $\left(\frac{4 \cot 37^{\circ}}{\cot 37^{\circ}}\right)^{2}-\frac{\operatorname{cosec} 56^{\circ} \times \frac{1}{\operatorname{cosec} 56^{\circ}} \times \sin 73^{\circ}}{\operatorname{cosec} 84^{\circ} \times \sin 73^{\circ} \times \frac{1}{\operatorname{cosec} 84^{\circ}}}$	1
	Simplifies the above expression as: $4^{2}-1=15$	0.5
14	Identifies that step (2) has an error.	0.5
	For step (2), identifies that incorrect identity is used and writes the correct identity as: $(1-\sin A)^{2}=1+\sin ^{2} A-2 \sin A$	0.5
	Writes the step by step solution to get the correct simplified form as $\mathbf{2 s e c} \mathbf{A}$ or $\frac{2}{\cos A}$.	1
15	Draws a rhombus, say $A B C D$, and connects diagonals AC and BD bisecting at a point, say E.	0.5
	In $\triangle E A D$, applies the properties of the rhombus to get i) $\angle \mathrm{AED}=90^{\circ}$ ii) $A E=\frac{A C}{2}$ iii) $D E=\frac{B D}{2}$ iv) $\angle E A D=\frac{\theta}{2}$	1

Math

Q.No	Teacher should award marks if students have done the following:	Marks
Applies trigonometric ratio to get $\tan \frac{\theta}{2}=\frac{A E}{D E}=\frac{A C}{B D}$	0.5	
	Writes that the ratio of the diagonals $\frac{A C}{B D}$ is only dependent on θ and not I. Writes that Bilal answered it correctly.	1
	0.5	
	Solves the above equation to find the value of x as $40 \times 1.73=69.2 \mathrm{~cm}$.	0.5

