# Chapter - 8 Introduction to Trigonometry





- 1 cos P sec R
- 2 tan P cot R3 sin P cosec R
- 4 (cannot be known without knowing the value of P)



Show that sin  $\theta$  = cos (90 -  $\theta$ ) is true using the definition of trigonometric ratios.

[1]

#### Q: 5 In the triangles shown below, $\angle Q = \angle T$ .



Write an expression each for cos Q and sin T.



 $\frac{Q: 6}{M}$  A unit circle is shown below with centre O. A tangent AB is drawn to the circle at point [2] M such that  $\angle MOB = \beta$ .



(Note: The figure is not to scale.)

#### If OA $\perp$ OB, write the expressions that represent the lengths of

- i) OB
- ii) OA
- iii) AB

#### Q: 7 In the figure below, $5\sin P = 4$ .



(Note: The figure is not to scale.)

What is the length of PR? Draw a diagram and show your steps.

[2]



#### **Q:** 8 **A**PQR is inscribed in a circle with a centre O and radius r units.



If PR is the diameter of the circle and  $\angle RQO = \beta$ ,

Express (QR<sup>4</sup> - PQ<sup>4</sup>), in terms of *r* and  $\beta$ , to the simplest form. Show your steps and give valid reasons.

#### Q: 9 Prove the following.

i) 
$$\frac{1}{\cos \theta - \cot \theta} - \frac{\cot \theta}{\cos \theta} = \cot \theta$$
  
ii)  $\frac{\tan 18^{\circ}}{\cos 72^{\circ}} - \frac{1}{\csc 72^{\circ} + \tan 18^{\circ}} = \cot 72^{\circ}$ 

[3]



[2]

[3]

Q: 10 Shown below is a cuboid. Its length is *l* units, breadth *b* units and height *h* units. [3]



i) Express  $\cos \theta$  in terms of *I*, *b*, and *h*.

ii) If the figure was a cube, what would be the value of  $\cos \theta$  ?

Show your work.

Q: 11 Prove that:

$$\frac{\csc^2 x - \sin^2 x \cot^2 x - \cot^2 x}{\sin^2 x} = 1$$

$$\frac{Q: 12}{\text{If } \frac{1}{\sin \theta - \cos \theta}} = \frac{\csc \theta}{\sqrt{2}}, \text{ prove that } \left(\frac{1}{\sin \theta + \cos \theta}\right)^2 = \frac{\sec^2 \theta}{2}.$$
[5]

Q: 13 Solve:

$$\left(\frac{4 \tan 53^{\circ}}{\cot 37^{\circ}}\right)^{2} - \frac{\sec 34^{\circ} \sin 56^{\circ} \cos 17^{\circ}}{\sec 6^{\circ} \sin 73^{\circ} \sin 84^{\circ}}$$

Show your steps.



**Q: 14** During a math lesson, Mr. Kumar wrote the expression given below on the board and [2] asked the students to simplify it.

$$\frac{\cos A}{1-\sin A} + \frac{1-\sin A}{\cos A}$$

Salma solved it in her notebook as follows:

$$\frac{\cos A}{1-\sin A} + \frac{1-\sin A}{\cos A}$$
$$= \frac{\cos^2 A + (1-\sin A)^2}{(1-\sin A) \times \cos A} \quad \dots (\text{step 1})$$
$$= \frac{\cos^2 A + \cos^2 A}{(1-\sin A) \times \cos A} \quad \dots (\text{step 2})$$
$$= \frac{2\cos^2 A}{(1-\sin A) \times \cos A} \quad \dots (\text{step 3})$$
$$= \frac{2\cos A}{1-\sin A} \qquad \dots (\text{step 4})$$

Examine if Salma has made any error(s) and rectify them to find the correct answer.

 $\frac{Q: 15}{m}$  The teacher asked the students to correctly complete the following sentence about the [3] rhombus.

"A rhombus has a side length of *I* units and one of its angles is equal to  $\theta$ . The ratio of the lengths of the two diagonals is dependent on \_\_\_\_\_."

Ashima: only *l.* Bilal: only θ. Chris: both *l* and θ. Duleep: neither *l* nor θ.

Who answered the question correctly? Show your work and give valid reasons.



Q: 16 A 90 cm wide door opens on one side of the room at a maximum angle of 90°. Due to [1] shortage of space, a 40 cm by 80 cm table is kept behind the door along the wall such that it obstructs its path.



(Note: The figure is not to scale.)

At what distance from the hinge should the table be kept such that the door opens for a maximum angle of 60°. Show your work.

(Note: Use  $\sqrt{2} = 1.41$ ,  $\sqrt{3} = 1.73$ )



#### The table below gives the correct answer for each multiple-choice question in this test.

| Q.No | Correct Answers |
|------|-----------------|
| 1    | 4               |
| 2    | 2               |
| 3    | 2               |



| Q.No | Teacher should award marks if students have done the following:                                  | Marks |
|------|--------------------------------------------------------------------------------------------------|-------|
| 4    | Marks the 3rd angle as 90 - $	heta$ and verifies the given statement using the ratio definition. | 1     |
| 5    | Writes $\cos Q = \frac{r}{p}$ .                                                                  | 0.5   |
|      | Writes sin T = sin Q = $\frac{q}{p}$ .                                                           | 0.5   |
| 6    | i) Applies trigonometric ratios in $\Delta OMB$ to write:                                        | 0.5   |
|      | $\cos(\beta) = \frac{OM}{OB} = \frac{1}{OB}$                                                     |       |
|      | $\Rightarrow$ OB = sec $\beta$                                                                   |       |
|      | ii) Applies trigonometric ratio in ΔΟΜΑ to write:                                                | 0.5   |
|      | $\cos(90^{\circ} - \beta) = \frac{OM}{OA} = \frac{1}{OA}$                                        |       |
|      | $\Rightarrow$ OA = cosec $\beta$                                                                 |       |
|      | iii) Uses above steps along with Pythagoras' theorem to write:                                   | 1     |
|      | $AB^2 = OA^2 + OB^2$                                                                             |       |
|      | $\Rightarrow AB^2 = cosec^2\beta + sec^2\beta$                                                   |       |
|      | $\Rightarrow AB^{2} = \frac{\cos^{2}\beta + \sin^{2}\beta}{\sin^{2}\beta \cos^{2}\beta}$         |       |
|      | $\Rightarrow AB = \sqrt{\frac{1}{\sin^2\beta\cos^2\beta}}$                                       |       |
|      | $\Rightarrow AB = \frac{1}{\sin\beta\cos\beta}$                                                  |       |
|      | (Award full marks for any other variation of the correct answer.)                                |       |



| Q.No | Teacher should award marks if students have done the following:                                                                                                                                     | Marks |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 7    | Writes that, in an isosceles triangle, the perpendicular bisects the base and draws a diagram. The diagram may look as follows:                                                                     | 0.5   |
|      | P H R<br>15 units Q                                                                                                                                                                                 |       |
|      | (Note: The figure is not to scale.)                                                                                                                                                                 |       |
|      | Uses the value of sin P to find the length of SQ as 15sin P = 15 $\times \frac{4}{5}$ = 12 units.                                                                                                   | 0.5   |
|      | Uses the Pythagoras theorem to find the length of PS as $\sqrt{(15^2 - 12^2)} = 9$ units.                                                                                                           | 0.5   |
|      | Finds the length of PR as $2 \times 9 = 18$ units.                                                                                                                                                  | 0.5   |
| 8    | Identifies that $\Delta RQO$ is isosceles since $OQ = OR = r$ and finds the measure of $\angle ORQ = \angle OQR = \beta$ .                                                                          | 0.5   |
|      | Identifies that $\Delta$ PQR is right-angled at Q and finds the length of QR as PR $\times$ cos $\beta$ = 2 r (cos $\beta$ ).                                                                       | 0.5   |
|      | Identifies that $\Delta PQR$ is right-angled at Q and finds the length of PQ as PR $\times \sin \beta = 2$ r (sin $\beta$ ).                                                                        | 0.5   |
|      | Uses steps 2 and 3 to express (QR <sup>4</sup> - PQ <sup>4</sup> ) as 16 $r^4$ (cos <sup>4</sup> $\beta$ - sin <sup>4</sup> $\beta$ ).                                                              | 0.5   |
|      | Factorises the above expression for (QR <sup>4</sup> - PQ <sup>4</sup> ) as 16 $r^4$ (cos <sup>2</sup> $\beta$ - sin <sup>2</sup> $\beta$ ) (cos <sup>2</sup> $\beta$ + sin <sup>2</sup> $\beta$ ). | 0.5   |

## ? Math

## Chapter 8 - Introduction to Trigonometry CLASS 10

| Q.No | Teacher should award marks if students have done the following:                                                                                                | Marks |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|      | Simplifies and factorises the above expression for (QR <sup>4</sup> - PQ <sup>4</sup> ) as 16 $r^4$ (cos $\beta$ - sin $\beta$ ) (cos $\beta$ + sin $\beta$ ). | 0.5   |
|      | (Award full marks if the student simplifies to any other variation of this equation.)                                                                          |       |
| 9    | i) Simplifies the given LHS by rationalizing the first term as:                                                                                                | 0.5   |
|      | $\frac{\csc \theta + \cot \theta}{\csc^2 \theta - \cot^2 \theta} - \frac{\cot \theta}{\cos \theta}$                                                            |       |
|      | Simplifies the above expression as:                                                                                                                            | 1     |
|      | $\cos \theta + \cot \theta - \csc \theta = \cot \theta$                                                                                                        |       |
|      | Concludes that LHS = RHS.                                                                                                                                      |       |
|      | ii) Simplifies the given LHS as:                                                                                                                               | 0.5   |
|      | $\frac{\sin 18^{\circ}}{\cos 18^{\circ}} \times \frac{1}{\sin 18^{\circ}} - \frac{1}{\cos ec 72^{\circ} + \cot 72^{\circ}}$                                    |       |
|      | Simplifies the above expression by rationalizing the second term as:                                                                                           | 0.5   |
|      | $\sec 18^{\circ} - \frac{\csc 72^{\circ} - \cot 72^{\circ}}{\csc^2 72^{\circ} - \cot^2 72^{\circ}}$                                                            |       |
|      | Simplifies the above expression as:                                                                                                                            | 0.5   |
|      | sec 18° - sec 18° + cot 72° = cot 72°                                                                                                                          |       |
|      | Concludes that LHS = RHS.                                                                                                                                      |       |
| 10   | i) Finds the length of CH using the Pythagoras' theorem in $\Delta CGH$ as:                                                                                    | 0.5   |
|      | $CH = \sqrt{(CG^2 + GH^2)} = \sqrt{(l^2 + b^2)}$ units                                                                                                         |       |

| ŝ |      |
|---|------|
| ! | Math |

Chapter 8 - Introduction to Trigonometry CLASS 10

| Q.No | Teacher should award marks if students have done the following:                 | Marks |
|------|---------------------------------------------------------------------------------|-------|
|      | Finds the length of CE using the Pythagoras' theorem in $\Delta CHE$ as:        | 0.5   |
|      | $CE = \sqrt{(CH^2 + EH^2)} = \sqrt{(I^2 + b^2 + h^2)}$ units                    |       |
|      | Finds cos θ as:                                                                 | 1     |
|      | $\cos \theta = \frac{CH}{CE} = \frac{\sqrt{l^2 + b^2}}{\sqrt{l^2 + b^2 + h^2}}$ |       |
|      | $\Rightarrow \cos \theta = \sqrt{\frac{l^2 + b^2}{l^2 + b^2 + h^2}}$            |       |
|      | (Award 0.5 marks if only the ratio for $\cos \theta$ is correctly written.)     |       |
|      | ii) Applies $I = b = h$ for a cube and solves for cos $\theta$ as:              | 1     |
|      | $\cos \theta = \sqrt{\frac{l^2 + b^2}{l^2 + b^2 + h^2}} = \sqrt{\frac{2}{3}}$   |       |
| 11   | Simplifies the given LHS as:                                                    | 1     |
|      | $\frac{1-\sin^2 x \cot^2 x}{\sin^2 x}$                                          |       |
|      | Simplifies the above expression as:                                             | 0.5   |
|      | $\csc^2 x - \cot^2 x$                                                           |       |
|      | Simplifies the above expression as 1 and concludes that LHS = RHS.              | 0.5   |



Math Chapter 8 - Introduction to Trigonometry CLASS 10

| Q.No | Teacher should award marks if students have done the following:                          | Marks |
|------|------------------------------------------------------------------------------------------|-------|
| 12   | Squares both sides of the given equation as:                                             | 0.5   |
|      | $\frac{1}{\sin^2\theta + \cos^2\theta - 2\sin\theta\cos\theta} = \frac{\csc^2\theta}{2}$ |       |
|      | Simplifies the above equation as:                                                        | 1     |
|      | $\frac{2}{\csc^2\theta} = 1 - 2\sin\theta\cos\theta$                                     |       |
|      | Simplifies the above equation as:                                                        | 1     |
|      | $2\sin\theta\cos\theta = 1 - 2\sin^2\theta$                                              |       |
|      | Squares the LHS of the equation to be proved as:                                         | 0.5   |
|      | $\frac{1}{\sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta}$                          |       |
|      | Uses step 3 and simplifies the above expression as:                                      | 1     |
|      | $\frac{1}{2-2sin^2\theta}$                                                               |       |
|      | Simplifies the above expression as:                                                      | 1     |
|      | $\frac{1}{2\cos^2\theta} = \frac{\sec^2\theta}{2}$                                       |       |
|      | Concludes that LHS = RHS.                                                                |       |



h Chapter 8 - Introduction to Trigonometry CLASS 10

| Q.No | Teacher should award marks if students have done the following:                                                                                                                                                                                                      | Marks |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 13   | Simplifies the given expression as:                                                                                                                                                                                                                                  | 1.5   |
|      | $\left(\frac{4\cot(90^{\circ}-53^{\circ})}{\cot 37^{\circ}}\right)^{2} - \frac{\csc(90^{\circ}-34^{\circ}) \times \frac{1}{\csc 56^{\circ}} \times \sin(90^{\circ}-17^{\circ})}{\csc(90^{\circ}-6^{\circ}) \times \sin 73^{\circ} \times \frac{1}{\csc 84^{\circ}}}$ |       |
|      | Simplifies the given expression as:                                                                                                                                                                                                                                  | 1     |
|      | $\left(\frac{4\cot 37^{\circ}}{\cot 37^{\circ}}\right)^{2} - \frac{\csc 56^{\circ} \times \frac{1}{\csc 56^{\circ}} \times \sin 73^{\circ}}{\csc 84^{\circ} \times \sin 73^{\circ} \times \frac{1}{\csc 84^{\circ}}}$                                                |       |
|      | Simplifies the above expression as:<br>4 <sup>2</sup> -1 = 15                                                                                                                                                                                                        | 0.5   |
| 14   | Identifies that step (2) has an error.                                                                                                                                                                                                                               | 0.5   |
|      | For step (2), identifies that incorrect identity is used and writes the correct identity as:                                                                                                                                                                         | 0.5   |
|      | $(1 - \sin A)^2 = 1 + \sin^2 A - 2 \sin A$                                                                                                                                                                                                                           |       |
|      | Writes the step by step solution to get the correct simplified form as 2sec A or $\frac{2}{\cos A}$ .                                                                                                                                                                | 1     |
| 15   | Draws a rhombus, say ABCD, and connects diagonals AC and BD bisecting at a point, say E.                                                                                                                                                                             | 0.5   |
|      | In $\Delta$ EAD, applies the properties of the rhombus to get                                                                                                                                                                                                        | 1     |
|      | i) ∠AED = 90°                                                                                                                                                                                                                                                        |       |
|      | ii) AE = $\frac{AC}{2}$                                                                                                                                                                                                                                              |       |
|      | iii) DE = $\frac{BD}{2}$                                                                                                                                                                                                                                             |       |
|      | iv) $\angle EAD = \frac{\theta}{2}$                                                                                                                                                                                                                                  |       |





Math Chapter 8 - Introduction to Trigonometry CLASS 10

| Q.No | Teacher should award marks if students have done the following:                                         | Marks |
|------|---------------------------------------------------------------------------------------------------------|-------|
|      | Applies trigonometric ratio to get<br>tan $\frac{\theta}{2} = \frac{AE}{DE} = \frac{AC}{BD}$            | 0.5   |
|      | $\tan \frac{1}{2} = \frac{1}{DE} = \frac{1}{BD}$                                                        |       |
|      | Writes that the ratio of the diagonals $\frac{AC}{BD}$ is only dependent on $\theta$ and not <i>l</i> . | 1     |
|      | Writes that Bilal answered it correctly.                                                                |       |
| 16   | Assumes the required distance as <i>x</i> cm and writes the ratio as:                                   | 0.5   |
|      | $\tan 30^\circ = \frac{40}{x}$                                                                          |       |
|      | Solves the above equation to find the value of x as $40 \times 1.73 = 69.2$ cm.                         | 0.5   |