FINAL JEE-MAIN EXAMINATION - JUNE, 2022

(Held On Friday 24th June, 2022)
TIME: 9:00 AM to 12:00 PM

MATHEMATICS

SECTION-A

1. Let $\mathrm{A}=\{\mathrm{z} \in \mathrm{C}: 1 \leq|\mathrm{z}-(1+\mathrm{i})| \leq 2\}$ and
$B=\{z \in A:|z-(1-i)|=1\}$. Then, $B:$
(A) is an empty set
(B) contains exactly two elements
(C) contains exactly three elements
(D) is an infinite set

Official Ans. by NTA (D)
Allen Ans. (D)
Sol. $A=\{z \in C: 1 \leq|z-(1+i)| \leq 2\}$

$B=\{z \in A:|z-(1-i)|=1\}$.
$\mathrm{A} \cap \mathrm{B}$ has infinite set.
2. The remainder when 3^{2022} is divided by 5 is
(A) 1
(B) 2
(C) 3
(D) 4

Official Ans. by NTA (D)

Allen Ans. (D)

Sol. $3^{2022}=9^{1011}=(10-1)^{1011}=10 \mathrm{~m}-1=10 \mathrm{~m}-5+4$ $=5(2 \mathrm{~m}-1)+4(\mathrm{~m}$ is integer $)$

Remainder $=4$
3. The surface area of a balloon of spherical shape being inflated, increases at a constant rate. If initially, the radius of balloon is 3 units and after 5 seconds,, it becomes 7 units, then its radius after 9 seconds is :
(A) 9
(B) 10
(C) 11
(D) 12

TEST PAPER WITH SOLUTION

Official Ans. by NTA (A)

Allen Ans. (A)
Sol. Let r be the radius of spherical balloon
$S=$ Surface area
$\mathrm{S}=4 \pi \mathrm{r}^{2}$
$\frac{\mathrm{dS}}{\mathrm{dt}}=8 \pi \mathrm{r} \times \frac{\mathrm{dr}}{\mathrm{dt}}=\mathrm{k} \quad($ constant $)$
$4 \pi \mathrm{r}^{2}=\mathrm{kt}+\mathrm{C}$ (C is constant of integration)
For $\mathrm{t}=0, \mathrm{r}=3 \Rightarrow 36 \pi=\mathrm{C}$
For $\mathrm{t}=5, \mathrm{r}=7 \Rightarrow \mathrm{~K}=32 \pi$
$4 \pi r^{2}=32 \pi t+36 \pi$
$r^{2}=8 t+9$
for $t=9$
$\mathrm{r}^{2}=81$
$\mathrm{r}=9$
4. Bag A contains 2 white, 1 black and 3 red balls and bag B contains 3 black, 2 red and n white balls. One bag is chosen at random and 2 balls drawn from it at random, are found to be 1 red and 1 black. If the probability that both balls come from Bag A is $\frac{6}{11}$, then n is equal to \qquad -.
(A) 13
(B) 6
(C) 4
(D) 3

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. $\quad E_{1}=$ denotes selection for $1^{\text {st }}$ bag
$\mathrm{E}_{2}=$ denotes selection for $2^{\text {nd }}$ bag
$\mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{1}{2}, \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{1}{2}$
$\mathrm{A}=$ selected balls are 1 red $\& 1$ black
$\mathrm{P}\left(\frac{\mathrm{A}}{\mathrm{E}_{1}}\right)=\frac{{ }^{3} \mathrm{C}_{1} \times{ }^{1} \mathrm{C}_{1}}{{ }^{6} \mathrm{C}_{2}}=\frac{1}{5}$
$P\left(\frac{A}{E_{1}}\right)=\frac{{ }^{3} C_{1} \times{ }^{2} C_{1}}{(n+5)_{C_{2}}}=\frac{12}{(n+5)(n+4)}$
$P\left(\frac{E_{1}}{A}\right)=\frac{P\left(E_{1}\right) \times P\left(\frac{A}{E_{1}}\right)}{P\left(E_{1}\right) \times P\left(\frac{A}{E_{1}}\right)+P\left(E_{2}\right) \times P\left(\frac{A}{E_{2}}\right)}$
$=\frac{\frac{1}{10}}{\frac{1}{10}+\frac{6}{(n+5)(n+4)}}=\frac{6}{11}$
$\Rightarrow \mathrm{n}=4$
5. Let $x^{2}+y^{2}+A x+B y+C=0$ be a circle passing through $(0,6)$ and touching the parabola $y=x^{2}$ at $(2,4)$. Then $\mathrm{A}+\mathrm{C}$ is equal to \qquad .
(A) 16
(B) $88 / 5$
(C) 72
(D) -8

Official Ans. by NTA (A)
Allen Ans. (A)
Sol. $x^{2}+y^{2}+A x+B y+C=0$ is passing through $(0,6)$
$\Rightarrow 6 \mathrm{~B}+\mathrm{C}=-36$
The tangent of the parabola $y=x^{2}$ at $(2,4)$ is
$4 \mathrm{x}-\mathrm{y}-4=0$
The tangent of circle $x^{2}+y^{2}+A x+B y+C=0$ at $(2,4)$ is
$(4+A) x+(8+B) y+2 A+4 B+2 C=0$
From Equation (1) and (2)
$\frac{4+\mathrm{A}}{4}=\frac{8+\mathrm{B}}{-1}=\frac{2 \mathrm{~A}+4 \mathrm{~B}+2 \mathrm{C}}{-4}$
$A+4 B=-36$
$3 \mathrm{~A}+4 \mathrm{~B}+2 \mathrm{C}=-4$
From equation (3) and (4)
$A+C=16$
6. The number of values of α for which the system of equations:
$\mathrm{x}+\mathrm{y}+\mathrm{z}=\alpha$
$\alpha x+2 \alpha y+3 z=-1$
$x+3 \alpha y+5 z=4$
is inconsistent, is
(A) 0
(B) 1
(C) 2
(D) 3

Official Ans. by NTA (B)
Allen Ans. (B)
Sol. $x+y+z=\alpha$
$\alpha x+2 \alpha y+3 z=-1$
$x+3 \alpha y+5 z=4$
Has inconsistent solution
$D=\left|\begin{array}{ccc}1 & 1 & 1 \\ \alpha & 2 \alpha & 3 \\ 1 & 3 \alpha & 5\end{array}\right|=0$
$\Rightarrow(\alpha-1)^{2}=0$
$\alpha=1$
For $\alpha=1$
$\mathrm{D}_{1}=\left|\begin{array}{ccc}1 & 1 & 1 \\ -1 & 2 & 3 \\ 4 & 3 & 5\end{array}\right|$
$=(10-9)-(-5-12)+(-3-8)$
$=1+17-11 \neq 0$
For $\alpha=1$ the system of equation has Inconsistent solution
7. If the sum of the squares of the reciprocals of the roots α and β of the equation $3 x^{2}+\lambda x-1=0$ is 15 , then $6\left(\alpha^{3}+\beta^{3}\right)^{2}$ is equal to :
(A) 18
(B) 24
(C) 36
(D) 96

Official Ans. by NTA (B)

Allen Ans. (B)

Sol. Here α, β roots of equation $3 x^{2}+\lambda x-1=0$
$\alpha+\beta=\frac{-\lambda}{3}, \alpha \beta=\frac{-1}{3}$
$\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha^{2} \beta^{2}}=15$
$\lambda^{2}=9$
Now $6\left(\alpha^{3}+\beta^{3}\right)^{2}=6\left((\alpha+\beta)\left((\alpha+\beta)^{2}-3 \alpha \beta\right)\right)^{2}$
$=6\left(\frac{\lambda^{2}}{9}\right)\left\{\frac{\lambda^{2}}{9}+1\right\}^{2}=24$
$=22100=100 \lambda$
$\lambda=221$
8. The set of all values of k for which $\left(\tan ^{-1} \mathrm{x}\right)^{3}+\left(\cot ^{-1} \mathrm{x}\right)^{3}=\mathrm{k} \pi^{3}, \mathrm{x} \in \mathrm{R}$, is the interval :
(A) $\left[\frac{1}{32}, \frac{7}{8}\right)$
(B) $\left(\frac{1}{24}, \frac{13}{16}\right)$
(C) $\left[\frac{1}{48}, \frac{13}{16}\right]$
(D) $\left[\frac{1}{32}, \frac{9}{8}\right)$

Official Ans. by NTA (A)
Allen Ans. (A)
Sol. Let $\mathbf{S}=\left(\tan ^{-1} \mathrm{x}\right)^{3}+\left(\cot ^{-1} \mathrm{x}\right)^{3}$

$$
\begin{aligned}
& =\left(\tan ^{-1} x+\cot ^{-1} x\right)-3 \tan ^{-1} x \cdot \cot ^{-1} x\left(\tan ^{-1} x+\cot ^{-1} x\right) \\
& \quad=\frac{\pi^{3}}{8}-\frac{3 \pi}{2} \tan ^{-1} x\left(\frac{\pi}{2}-\tan ^{-1} x\right) \\
& \quad=\frac{3 \pi}{2}\left(\tan ^{-1} \mathrm{x}-\frac{\pi}{4}\right)^{2}+\frac{\pi^{3}}{32} \\
& \quad \Rightarrow \frac{\pi^{3}}{32} \leq \mathrm{S}<\frac{7}{8} \pi^{3} \\
& \quad=\frac{\pi^{3}}{32} \leq \mathrm{K} \pi^{3}<\frac{7}{8} \pi^{3} \\
& \quad \frac{1}{32} \leq \mathrm{K}<\frac{7}{8}
\end{aligned}
$$

9. Let $S=\{\sqrt{n}: 1 \leq n \leq 50$ and n is odd $\}$

Let $\mathrm{a} \in \mathrm{S}$ and $\mathrm{A}=\left[\begin{array}{ccc}1 & 0 & \mathrm{a} \\ -1 & 1 & 0 \\ -\mathrm{a} & 0 & 1\end{array}\right]$
If $\sum_{\mathrm{a} \in \mathrm{S}} \operatorname{det}(\operatorname{adj} \mathrm{A})=100 \lambda$, then λ is equal to
(A) 218
(B) 221
(C) 663
(D) 1717

Official Ans. by NTA (B)
Allen Ans. (B)
Sol. $S=\{\sqrt{n}: 1 \leq n \leq 50$ and n is odd $\}$
$=\{\sqrt{1}, \sqrt{3}, \sqrt{5} \ldots \ldots \ldots . \sqrt{49}\}, 25$ terms
$|A|=1+a^{2}$
$\sum_{\mathrm{a} \in \mathrm{S}} \operatorname{det}(\operatorname{adj} \mathrm{A})=\sum_{\mathrm{a} \in \mathrm{S}}|\mathrm{A}|^{2}=\sum\left(1+\mathrm{a}^{2}\right)^{2}$
10. $f(x)=4 \log _{e}(x-1)-2 x^{2}+4 x+5, x>1$, which one of the following is NOT correct ?
(A) f is increasing in $(1,2)$ and decreasing in $(2, \infty)$
(B) $f(x)=-1$ has exactly two solutions
(C) $f^{\prime}(e)-f^{\prime \prime}(2)<0$
(D) $f(x)=0$ has a root in the interval $(e, e+1)$

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. $f(x)=4 \log _{e}(x-1)-2 x^{2}+4 x+5, x>1$
$f^{\prime}(x)=\frac{4}{x-1}-4(x-1)$
For $1<\mathrm{x}<2 \Rightarrow \mathrm{f}^{\prime}(\mathrm{x})>0$
For $\mathrm{x}>2 \Rightarrow \mathrm{f}^{\prime}(\mathrm{x})<0$ (option 1 is correct)
$f(x)=-1$ has two solution (option 2 is correct)
$\mathrm{f}(\mathrm{e})>0$
$\mathrm{f}(\mathrm{e}+1)<0$
$\mathrm{f}(\mathrm{e}) . \mathrm{f}(\mathrm{e}+1)<0$ (option 4 is correct)
$f^{\prime}(e)-f^{\prime \prime}(2)=\frac{4}{e-1}-4(e-1)+8>0$
(option C is incorrect)
11. the tangent at the point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ on the curve $y=x^{3}+3 x^{2}+5$ passes through the origin, then $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ does NOT lie on the curve :
(A) $x^{2}+\frac{y^{2}}{81}=2$
(B) $\frac{y^{2}}{9}-x^{2}=8$
(C) $y=4 x^{2}+5$
(D) $\frac{x}{3}-y^{2}=2$

Official Ans. by NTA (D)
Allen Ans. (D)
Sol. The tangent at $\left(x_{1}, y_{1}\right)$ to the curve
$y=x^{3}+3 x^{2}+5$
$y-y_{1}=\left(3 x_{1}^{2}+6 x_{1}\right)\left(x-x_{1}\right)$ passing through origin
$-y_{1}=\left(3 x_{1}^{3}+6 x_{1}\right)\left(-x_{1}\right)$
$y_{1}=\left(3 x_{1}^{3}+6 x_{1}^{2}\right)$

And $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ lies on the curve
$y=x^{3}+3 x^{2}+5$
$\mathrm{y}_{1}=\mathrm{x}_{1}^{3}+3 \mathrm{x}_{1}^{2}+5$
From equation (1) and (2)
$2 y_{1}=3 x_{1}^{2}+\frac{15}{2}$
Hence the equation of curve $y=\frac{3}{2} x^{2}+\frac{15}{2}$
This curve does not intersect $\frac{x}{3}-y^{2}=2$
12. The sum of absolute maximum and absolute minimum values of the function
$f(x)=\left|2 x^{2}+3 x-2\right|+\sin x \cos x$ in the interval $[0,1]$ is :
(A) $3+\frac{\sin (1) \cos ^{2}(1 / 2)}{2}$
(B) $3+\frac{1}{2}(1+2 \cos (1)) \sin (1)$
(C) $5+\frac{1}{2}(\sin (1)+\sin (2))$
(D) $2+\sin \left(\frac{1}{2}\right) \cos \left(\frac{1}{2}\right)$

Official Ans. by NTA (B)
Allen Ans. (B)
Sol. $f(x)=\left|2 x^{2}+3 x-2\right|+\sin x \cos x$
$f(x)=|(2 x-1)(x+2)|+\sin x \cos x$
$f^{\prime}(x)=\left\{\begin{array}{cc}4 x+3+\frac{\cos 2 x}{4}, & \frac{1}{2}<x<1 \\ -(4 x+3)+\frac{\cos 2 x}{4}, & 0 \leq x<\frac{1}{2}\end{array}\right.$
For $0 \leq x<\frac{1}{2} \Rightarrow f^{\prime}(x)<0$
For $\frac{1}{2}<x \leq 1 \Rightarrow f^{\prime}(x)>0$
$\mathrm{f}(\mathrm{x})$ local minima at $\mathrm{x}=\frac{1}{2}$ and
local maxima at $\mathrm{x}=1$
$\mathrm{f}\left(\frac{1}{2}\right)+\mathrm{f}(1)=3+\frac{1}{2}(1+2 \cos 1) \sin 1$
13. If $\left\{a_{i}\right\}_{i=1}^{n}$ where n is an even integer, is an arithmetic progression with common difference 1 , and $\sum_{i=1}^{n} a_{i}=192, \sum_{i=1}^{n / 2} a_{2 i}=120$, then n is equal to:
(A) 48
(B) 96
(C) 92
(D) 104

Official Ans. by NTA (B)
Allen Ans. (B)
Sol. $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}}=\frac{\mathrm{n}}{2}\left\{2 \mathrm{a}_{1}+(\mathrm{n}+1)\right\}=192$
$\Rightarrow 2 \mathrm{a}_{1}+(\mathrm{n}-1)=\frac{384}{\mathrm{n}}$
$\sum_{\mathrm{i}=1}^{\mathrm{n} / 2} \mathrm{a}_{2 \mathrm{i}}=\frac{\mathrm{n}}{4}\left[2 \mathrm{a}_{1}+2+\left(\frac{\mathrm{n}}{2}-1\right) 2\right]=120$
$2 \mathrm{a}_{1}+\mathrm{n}=\frac{480}{\mathrm{n}}$
From equation (2) and (1)
$1=\frac{480}{n}-\frac{384}{n}$
$\mathrm{n}=480-384=96$
14. If $x=x(y)$ is the solution of the differential equation $y \frac{d x}{d y}=2 x+y^{3}(y+1) e^{y}, x(1)=0$; then $x(e)$ is equal to :
(A) $\mathrm{e}^{3}\left(\mathrm{e}^{\mathrm{e}}-1\right)$
(B) $\mathrm{e}^{\mathrm{e}}\left(\mathrm{e}^{3}-1\right)$
(C) $\mathrm{e}^{2}\left(\mathrm{e}^{\mathrm{e}}+1\right)$
(D) $\mathrm{e}^{\mathrm{e}}\left(\mathrm{e}^{2}-1\right)$

Official Ans. by NTA (A)
Allen Ans. (A)
Sol. $y \frac{d x}{d y}=2 x+y^{3}(y+1) e^{y}, x(1)=0$
$\frac{d x}{d y}-\frac{2}{y} x=y^{2}(y+1) e^{y}$
I.f $=\mathrm{e}^{\int \frac{-2}{\mathrm{y}} \mathrm{dy}}=\frac{1}{\mathrm{y}^{2}}$
$x \cdot \frac{1}{y^{2}}=\int(y+1) e^{y} d y$
$\frac{x}{y^{2}}=(y+1) e^{y}-e^{y}+c=y \cdot e^{y}+c$
$x=y^{3} e^{y}+c y^{2}$
For $x=0, y=1 \Rightarrow c=-e$
$x=y^{3} e^{y}-e . y^{2}$
$x(e)=e^{3}\left(e^{e}-1\right)$
15. Let $\lambda x-2 y=\mu$ be a tangent to the hyperbola $a^{2} x^{2}-y^{2}=b^{2}$. Then $\left(\frac{\lambda}{a}\right)^{2}-\left(\frac{\mu}{b}\right)^{2}$ is equal to:
(A) -2
(B) -4
(C) 2
(D) 4

Official Ans. by NTA (D)
Allen Ans. (D)
Sol. $\lambda \mathrm{x}-2 \mathrm{y}=\mu$ is a tangent to the curve
$a^{2} x^{2}-y^{2}=b^{2}$ then
$a^{2} x^{2}-\left(\frac{\lambda x-\mu}{2}\right)^{2}=b^{2}$
$\left(4 a^{2}-\lambda^{2}\right) x^{2}+2 \lambda \mu x-\mu^{2}-4 b^{2}=0$
Disc. $=0$
$4 \lambda^{2} \mu^{2}+4\left(4 a^{2}-\lambda^{2}\right)\left(\mu^{2}+4 b^{2}\right)=0$
$4 \lambda^{2} b^{2}-4 a^{2} \mu^{2}=16 a^{2} b^{2}$
$\frac{\lambda^{2}}{a^{2}}-\frac{\mu^{2}}{b^{2}}=4$
16. Let \hat{a}, \hat{b} be unit vectors. If \vec{c} be a vector such that the angle between $\hat{\mathrm{a}}$ and $\overrightarrow{\mathrm{c}}$ is $\frac{\pi}{12}$, and $\hat{b}=\vec{c}+2(\overrightarrow{\mathrm{c}} \times \hat{\mathrm{a}})$, then $|6 \overrightarrow{\mathrm{c}}|^{2}$ is equal to
(A) $6(3-\sqrt{3})$
(B) $3+\sqrt{3}$
(C) $6(3+\sqrt{3})$
(D) $6(\sqrt{3}+1)$

Official Ans. by NTA (C)
Allen Ans. (C)
Sol. $|\hat{b}|^{2}=|\vec{c}+2(\vec{c} \times \hat{a})|^{2}$
$|\hat{b}|^{2}=|c|^{2}+4|\overrightarrow{\mathrm{c}} \times \hat{\mathrm{a}}|^{2}+4 \overrightarrow{\mathrm{c}} .(\overrightarrow{\mathrm{c}} \times \hat{\mathrm{a}})$
$1=|c|^{2}+4|c|^{2} \sin ^{2} \frac{\pi}{12}+0$
$1=|c|^{2}+4|c|^{2}\left(\frac{\sqrt{3}-1}{2 \sqrt{2}}\right)^{2}$
$|c|^{2}=\frac{1}{3-\sqrt{3}}=\frac{3+\sqrt{3}}{6}$
So $6^{2}|c|^{2}=6(3+\sqrt{3})$
17. If a random variable X follows the Binomial distribution $B(33, p)$ such that $3 P(X=0)=P(X=1)$, then the value of $\frac{P(X=15)}{P(X=18)}-\frac{P(X=16)}{P(X=17)}$ is equal to
(A) 1320
(B) 1088
(C) $\frac{120}{1331}$
(D) $\frac{1088}{1089}$

Official Ans. by NTA (A)

Allen Ans. (A)

Sol. $n=33$, let probability of success is p and $q=1-p$
$3 \mathrm{p}(\mathrm{x}=0)=\mathrm{p}(\mathrm{x}=1)$
3. ${ }^{33} \mathrm{C}_{0}(\mathrm{q}){ }^{33}={ }^{33} \mathrm{C}_{1} \mathrm{pq}^{32}$
$\mathrm{p}=\frac{1}{12}, \mathrm{q}=\frac{11}{12}, \frac{\mathrm{q}}{\mathrm{p}}=11$
$\frac{p(x=15)}{p(x=18)}-\frac{p(x=16)}{p(x=17)}$
$\frac{{ }^{33} C_{15} p^{15} q^{18}}{{ }^{33} C_{18} p^{18} q^{15}}-\frac{{ }^{33} C_{16} p^{16} q^{17}}{{ }^{33} C_{17} p^{17} q^{16}}=\left(\frac{q}{p}\right)^{3}-\left(\frac{q}{p}\right)$
$=(11)^{3}-11$
$=1320$
18. The domain of the function $f(x)=\frac{\cos ^{-1}\left(\frac{x^{2}-5 x+6}{x^{2}-9}\right)}{\log _{e}\left(x^{2}-3 x+2\right)}$ is
(A) $(-\infty, 1) \cup(2, \infty)$
(B) $(2, \infty)$
(C) $\left[-\frac{1}{2}, 1\right) \cup(2, \infty)$
(D) $\left[-\frac{1}{2}, 1\right) \cup(2, \infty)-\left\{\frac{3+\sqrt{5}}{2}, \frac{3-\sqrt{5}}{2}\right\}$

Official Ans. by NTA (DROP)
Allen Ans. (D)

Sol. $-1 \leq \frac{x^{2}-5 x+6}{x^{2}-9} \leq 1$
$\frac{x^{2}-5 x+6}{x^{2}-9}-1 \leq 0$
$\frac{1}{x+3} \geq 0$
$x \in(-3, \infty) \ldots \ldots(1)$
$\frac{x^{2}-5 x+6}{x^{2}-9}+1 \geq 0$
$\frac{2 x+1}{x+3} \geq 0$
$x \in(-\infty,-3) \cup\left[-\frac{1}{2}, \infty\right)$.
after taking intersection
$x \in\left[-\frac{1}{2}, \infty\right)$
$x^{2}-3 x+2>0$
$x \in(-\infty, 1) \cup(2, \infty)$
$x^{2}-3 x+2 \neq 1$
$x \neq \frac{3 \pm \sqrt{5}}{2}$
after taking intersection of each solution
$\left[-\frac{1}{2}, 1\right) \cup(2, \infty)-\left\{\frac{3+\sqrt{5}}{2}, \frac{3-\sqrt{5}}{2}\right\}$
19. Let
$\mathrm{S}=\left\{\theta \in[-\pi, \pi]-\left\{ \pm \frac{\pi}{2}\right\}: \sin \theta \tan \theta+\tan \theta=\sin 2 \theta\right\}$.
If $T=\sum_{\theta \in S} \cos 2 \theta$, then $T+n(S)$ is equal
(A) $7+\sqrt{3}$
(B) 9
(C) $8+\sqrt{3}$
(D) 10

Official Ans. by NTA (B)
Allen Ans. (B)
Sol. $\sin \theta \tan \theta+\tan \theta=\sin 2 \theta$
$\tan \theta(\sin \theta+1)=\frac{2 \tan \theta}{1+\tan ^{2} \theta}$
$\tan \theta=0 \Rightarrow \theta=-\pi, 0, \pi$
$(\sin \theta+1)=2 \cdot \cos ^{2} \theta=2(1+\sin \theta)(1-\sin \theta)$
$\sin \theta=-1$ which is not possible
$\sin \theta=\frac{1}{2} \quad \theta=\frac{\pi}{6}, \frac{5 \pi}{6}$
$\mathrm{n}(\mathrm{s})=5$
$\mathrm{T}=\cos 0+\cos 2 \pi+\cos 2 \pi+\cos \frac{\pi}{3}+\cos \frac{5 \pi}{3}$
$\mathrm{T}=4$
$\mathrm{T}+\mathrm{n}(\mathrm{s})=9$
20. The number of choices of $\Delta \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\}$, such that $(\mathrm{p} \Delta \mathrm{q}) \Rightarrow((\mathrm{p} \Delta \sim \mathrm{q}) \vee((\sim \mathrm{p}) \Delta \mathrm{q}))$ is a tautology, is
(A) 1
(B) 2
(C) 3
(D) 4

Official Ans. by NTA (B)

Allen Ans. (B)

Sol. For tautology $((p \Delta \sim q) \vee((\sim p) \Delta q))$ must be true.
This is possible only when $\Delta=\vee \& \Rightarrow$

SECTION-B

1. The number of one-one function $\mathrm{f}:\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\} \rightarrow$ $\{0,1,2, \ldots ., 10\}$ such that $2 f(a)-f(b)+3 f(c)+$ $f(d)=0$ is \qquad .

Official Ans. by NTA (31)
Allen Ans. (31)
Sol. $2 f(a)+3 f(c)=f(d)-f(b)$
Using fundamental principle of counting
Number of one-one function is 31
2. In an examination, there are 5 multiple choice questions with 3 choices, out of which exactly one is correct There are 3 marks for each correct answer, -2 marks for each wrong answer and 0 mark if the question is not attempted. Then, the number of ways a student appearing in the examination gets 5 marks is_.

Official Ans. by NTA (40)

Allen Ans. (40)
Sol. $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=5$
Only one possibilities $3,3,3,-2,-2$
Number of ways is $=\frac{5!}{3!2!} \times 2 \times 2=40$
3. Let $\mathrm{A}\left(\frac{3}{\sqrt{\mathrm{a}}}, \sqrt{\mathrm{a}}\right) \mathrm{a}>0$, be a fixed point in the xy-plane. The image of A in y -axis be B and the
$(3 \lambda-2 \mu+7,-\lambda-3 \mu-6, \lambda-\mu-2)$
image of B in x-axis be C. If $D(3 \cos \theta$, a $\sin \theta)$ is a point in the fourth quadrant such that the maximum area of $\triangle \mathrm{ACD}$ is 12 square units, then a is equal to \qquad .

Official Ans. by NTA (8)

Allen Ans. (8)
Sol. $\quad \mathrm{A}=\left(\frac{3}{\sqrt{\mathrm{a}}}, \sqrt{\mathrm{a}}\right)$
$\mathrm{B}=\left(\frac{-3}{\sqrt{\mathrm{a}}}, \sqrt{\mathrm{a}}\right)$
$C=\left(-\frac{3}{\sqrt{\mathrm{a}}},-\sqrt{\mathrm{a}}\right)$
Area of ACD
$\frac{1}{2}\left|\begin{array}{cc}\frac{3}{\sqrt{\mathrm{a}}} & \sqrt{\mathrm{a}} \\ -\frac{3}{\sqrt{\mathrm{a}}} & -\sqrt{\mathrm{a}} \\ 3 \cos \theta & \mathrm{a} \sin \theta \\ \frac{3}{\sqrt{\mathrm{a}}} & \sqrt{\mathrm{a}}\end{array}\right|$
$\frac{1}{2} 6 \sqrt{\mathrm{a}}(\cos \theta-\sin \theta)$
$3 \sqrt{\mathrm{a}}(\cos \theta-\sin \theta)$
max values of function is $3 \sqrt{\mathrm{a}} \sqrt{2}$
$3 \sqrt{\mathrm{a}} \sqrt{2}=12$
$2 \mathrm{a}=16$
$a=8$
4. Let a line having direction ratios $1,-4,2$ intersect the lines $\frac{x-7}{3}=\frac{y-1}{-1}=\frac{z+2}{1}$ and $\frac{x}{2}=\frac{y-7}{3}=\frac{z}{1}$ at the point A and B. Then $(A B)^{2}$ is equal to \qquad .

Official Ans. by NTA (84)
Allen Ans. (84)

Sol.

DR's of AB
$\frac{3 \lambda-2 \mu+7}{1}=\frac{-\lambda-3 \mu-6}{-4}=\frac{\lambda-\mu-2}{2}$
Taking first (2) $-12 \lambda+8 \mu-28=-\lambda-3 \mu-6$
$\lambda-\mu+2=0$
Taking second \& third
$-2 \lambda-6 \mu-12=-4 \lambda+4 \mu+8$
$\lambda-5 \mu-10=0$
After solving above two equation $\lambda=-5, \mu=-3$
$\mathrm{A}=(-8,6,7)$
$\mathrm{B}=(-6,-2,-3)$
$(\mathrm{AB})^{2}=4+64+16=84$
5. The number of points where the function
$f(x)=\left\{\begin{array}{ccr}\left|2 x^{2}-3 x-7\right| & \text { if } & x \leq-1 \\ {\left[4 x^{2}-1\right]} & \text { if } & -1<x<1 \\ |x+1|+|x-2| & \text { if } & x \geq 1\end{array}\right.$
[t] denotes the greatest integer $\leq \mathrm{t}$, is discontinuous is \qquad .

Official Ans. by NTA (7)
Allen Ans. (7)
Sol.

6. Let $f(\theta)=\sin \theta+\int_{-\pi / 2}^{\pi / 2}(\sin \theta+t \cos \theta) f(t) d t$. Then the value of $\left|\int_{0}^{\pi / 2} f(\theta) d \theta\right|$ is \qquad .

Official Ans. by NTA (1)
Allen Ans. (1)

Sol. $\mathrm{f}(\theta)=\sin \theta+\int_{-\pi / 2}^{\pi / 2}(\sin \theta+t \cos \theta) \mathrm{f}(\mathrm{t}) \mathrm{dt}$
$f(\theta)=\sin \theta+\sin \theta \int_{-\pi / 2}^{\pi / 2} f(t) d t+\cos \theta \int_{-\pi / 2}^{\pi / 2} t f(t) d t$
Let $A=\int_{-\pi / 2}^{\pi / 2} f(t) d t, B=\int_{-\pi / 2}^{\pi / 2} t f(t) d t$
$f(\theta)=\sin \theta+A \sin \theta+B \cos \theta$
$f(\theta)=(A+1) \sin \theta+B \cos \theta$
$A=\int_{-\pi / 2}^{\pi / 2}(A+1) \sin t+B \cos t d t$
$A=2 B$
$B=\int_{-\pi / 2}^{\pi / 2} t((A+1) \sin t+B \cos t)$
$B=\int_{-\pi / 2}^{\pi / 2} t(A+1) \sin t$
$B=(A+1) 2 \int_{0}^{\pi / 2} t \sin t d t$
$B=(A+1) 2.1$
$2 \mathrm{~A}+2-\mathrm{B}=0$
After solving
$\mathrm{B}=-\frac{2}{3}, \mathrm{~A}=-\frac{4}{3}$
$\left|\int_{0}^{\pi / 2} f(\theta) d \theta\right|=\left|\int_{0}^{\pi / 2}-\frac{1}{3} \sin \theta-\frac{2}{3} \cos \theta\right|$
$=1$
7. Let $\operatorname{Max}_{0 \leq x \leq 2}\left\{\frac{9-x^{2}}{5-x}\right\}=\alpha$ and $\operatorname{Min}_{0 \leq x \leq 2}\left\{\frac{9-x^{2}}{5-x}\right\}=\beta$

If $\int_{\beta-\frac{8}{3}}^{2 \alpha-1} \operatorname{Max}\left\{\frac{9-x^{2}}{5-x}, x\right\} d x=\alpha_{1}+\alpha_{2} \log _{e}\left(\frac{8}{15}\right)$ then
$\alpha_{1}+\alpha_{2}$ is equal to \qquad

Official Ans. by NTA (34)

Allen Ans. (34)
Sol. $y=\frac{9-x^{2}}{5-x}=5+x+\frac{16}{x-5}$

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=1-\frac{16}{(x-5)^{2}}
$$

So critical point is $\mathrm{x}=1$ in $[0,2]$
$\mathrm{y}(0)=\frac{9}{5}, \mathrm{y}(1)=2, \mathrm{y}(2)=\frac{5}{3}$
So $\alpha=2$ and $\beta=\frac{5}{3}$
$\mathrm{I}=\int_{-1}^{3} \max \left(\frac{9-\mathrm{x}^{2}}{5-\mathrm{x}}, \mathrm{x}\right)$
$I=\int_{-1}^{9 / 5} \frac{9-x^{2}}{5-x} d x+\int_{9 / 5}^{3} x d x$
$I=\int_{-1}^{9 / 5} 5+x+\frac{16}{x-5} d x+\int_{9 / 5}^{3} x d x$
After solving
$\mathrm{I}=14+\frac{28}{25}+16 \ln \left(\frac{8}{15}\right)+\frac{72}{25}$
$\alpha_{1}=18$ and $\alpha_{2}=16$
8. If two tangents drawn from a point (α, β) lying on the ellipse $25 x^{2}+4 y^{2}=1$ to the parabola $y^{2}=4 x$ are such that the slope of one tangent is four times the other, then the value of
$(10 \alpha+5)^{2}+\left(16 \beta^{2}+50\right)^{2}$ equals \qquad
Official Ans. by NTA (2929)
Allen Ans. (2929)
Sol. $\alpha=\frac{1}{5} \cos \theta, \beta=\frac{1}{2} \sin \theta$
Equation of tangent to $y^{2}=4 x$
$y=m x+\frac{1}{m}$
It passes through (α, β)
$\frac{1}{2} \sin \theta=\mathrm{m} \frac{1}{5} \cos \theta+\frac{1}{\mathrm{~m}}$
$\mathrm{m}^{2}\left(\frac{\cos \theta}{5}\right)-\mathrm{m}\left(\frac{1}{2} \sin \theta\right)+1=0$
It has two roots m_{1} and m_{2} where $\mathrm{m}_{1}=4 \mathrm{~m}_{2}$
$\mathrm{m}_{1}+\mathrm{m}_{2}=\frac{\frac{1}{2} \sin \theta}{\frac{\cos \theta}{5}}$
$\mathrm{m}_{1} \mathrm{~m}_{2}=\frac{5}{\cos \theta}$
After eliminating m_{1} and m_{2}
$\cos \theta=\frac{-5 \pm \sqrt{29}}{2}$
$\alpha=\frac{-5 \pm \sqrt{29}}{10} \Rightarrow 10 \alpha+5= \pm \sqrt{29}$
$\beta^{2}=\frac{1}{4} \sin ^{2} \theta \Rightarrow 16 \beta^{2}=-50 \pm 10 \sqrt{29}$
$(10 \alpha+5)^{2}+\left(16 \beta^{2}+50\right)^{2}=2929$
9. Let S be the region bounded by the curves $\mathrm{y}=\mathrm{x}^{3}$ and $y^{2}=x$. The curve $y=2|x|$ divides S into two regions of areas R_{1} and R_{2}.

If $\max \left\{R_{1}, R_{2}\right\}=R_{2}$, then $\frac{R_{2}}{R_{1}}$ is equal to \qquad .

Official Ans. by NTA (19)

Allen Ans. (19)

Sol.

$S=\int_{0}^{1} \sqrt{x}-x^{3}$
$=\left[\frac{2 x^{3 / 2}}{3}-\frac{x^{4}}{4}\right]_{1}^{0}$
$=\frac{5}{12}$
$R_{1}=\int_{0}^{1 / 4}(\sqrt{x}-2 x) d x$
$=\left[\frac{2 x^{3 / 2}}{3}-x^{2}\right]_{0}^{1 / 4}=\frac{1}{48}$
$\therefore \mathrm{R}_{2}=\frac{19}{48}$
So, $\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}=19$
10. If the shortest distance between the line
$\overrightarrow{\mathrm{r}}=(-\hat{\mathrm{i}}+3 \mathrm{k})+\lambda(\hat{\mathrm{i}}-\mathrm{a} \hat{\mathrm{j}})$ and
$\overrightarrow{\mathrm{r}}=(-\hat{\mathrm{j}}+2 \mathrm{k})+\mu(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\mathrm{k})$ is $\sqrt{\frac{2}{3}}$, then the integral
value of a is equal to

Official Ans. by NTA (2)

Allen Ans. (2)

Sol. $\quad a_{1}=(-1,0,3)$
$\mathrm{a}_{2}=(0,-1,2)$
$\mathrm{b}_{1}=(1,-\mathrm{a}, 0)$ dr's of line (1)
$\mathrm{b}_{2}=(1,-1,1) \mathrm{dr}$'s of line (2)
$\overline{\mathbf{a}}_{2}-\overline{\mathbf{a}}_{1}=(1,-1,-1)$
$\overline{\mathrm{b}}_{1} \times \overline{\mathrm{b}}_{2}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \mathrm{k} \\ 1 & -\mathrm{a} & 0 \\ 1 & -1 & 1\end{array}\right|$
$\overline{\mathrm{b}}_{1} \times \overline{\mathrm{b}}_{2}=\hat{\mathrm{i}}(-\mathrm{a})-\hat{\mathrm{j}}+\mathrm{k}(\mathrm{a}-1)$
$\left|\overline{\mathrm{b}}_{1} \times \overline{\mathrm{b}}_{2}\right|=\sqrt{\mathrm{a}^{2}+1+(\mathrm{a}-1)^{2}}$
$\mathrm{a}_{2}-\mathrm{a}_{1} \cdot \overline{\mathrm{~b}}_{1} \times \overline{\mathrm{b}}_{2}=2-2 \mathrm{a}$
$\frac{2(1-\mathrm{a})}{\sqrt{\mathrm{a}^{2}+1+(\mathrm{a}-1)^{2}}}=\sqrt{\frac{2}{3}}$
Squaring an both the side
After solving $\mathrm{a}=2, \frac{1}{2}$

